|
|
|
|
|
|
REPORTS - SPECIAL REPORTS |
|
|
|
|
|
|
|
|
|
|
Emissions Scenarios |
|
|
Table TS- 2a : Overview of main primary
driving forces in 1990, 2020, 2050, and 2100. Bold numbers show the value for
the illustrative scenario and the numbers between brackets show the value for
the rangea across all 40 SRES scenarios in the six scenario groups that constitute
the four families. Units are given in the table. Technological change is not
quantified in the table. |
|
Family |
|
A1
|
|
A2
|
B1
|
B2
|
|
Scenario group |
1990
|
A1FI
|
A1B
|
A1T
|
A2
|
B1
|
B2
|
|
Population (billion) |
5.3
|
|
|
|
|
|
|
2020 |
|
7.6 (7.4- 7.6)
|
7.5 (7.2- 7.6)
|
7.6 (7.4- 7.6)
|
8.2 (7.5- 8.2)
|
7.6 (7.4- 7.6)
|
7.6 (7.6- 7.8)
|
2050 |
|
8.7
|
8.7 (8.3- 8.7)
|
8.7
|
11.3 (9.7- 11.3)
|
8.7 (8.6- 8.7)
|
9.3 (9.3- 9.8)
|
2100 |
|
7.1 (7.0- 7.1)
|
7.1 (7.0- 7.7)
|
7.0
|
15.1 (12.0- 15.1)
|
7.0 (6.9- 7.1)
|
10.4 (10.3- 10.4)
|
|
World GDP (1012 1990US$/ yr) |
21
|
|
|
|
|
|
|
2020 |
|
53 (53- 57)
|
56 (48- 61)
|
57 (52- 57)
|
41 (38- 45)
|
53 (46- 57)
|
51 (41- 51)
|
2050 |
|
164 (163- 187)
|
181 (120- 181)
|
187 (177- 187)
|
82 (59- 111)
|
136 (110- 166)
|
110 (76- 111)
|
2100 |
|
525 (522- 550)
|
529 (340- 536)
|
550 (519- 550)
|
243 (197- 249)
|
328 (328- 350)
|
235 (199- 255)
|
|
Per capita income ratio: developed
countries and economies in transition
(Annex- I) to developing countries
(Non- Annex- I) |
16.1
|
|
|
|
|
|
|
2020 |
|
7.5 (6.2- 7.5)
|
6.4 (5.2- 9.2)
|
6.2 (5.7- 6.4)
|
9.4 (9.0- 12.3)
|
8.4 (5.3- 10.7)
|
7.7 (7.5- 12.1)
|
2050 |
|
2.8
|
2.8 (2.4- 4.0)
|
2.8 (2.4- 2.8)
|
6.6 (5.2- 8.2)
|
3.6 (2.7- 4.9)
|
4.0 (3.7- 7.5)
|
2100 |
|
1.5 (1.5- 1.6)
|
1.6 (1.5- 1.7)
|
1.6 (1.6- 1.7)
|
4.2 (2.7- 6.3)
|
1.8 (1.4- 1.9)
|
3.0 (2.0- 3.6)
|
a For some driving forces, no range is indicated because all
scenario runs have adopted exactly the same assumptions.
|
Table TS- 2b: Overview of main primary driving
forces in 1990, 2020, 2050, and 2100. Bold numbers show the value for the illustrative
scenario and the numbers between brackets show the value for the rangea across
26 harmonized SRES scenarios in the six scenario groups that constitute the
four families. Units are given in the table . Technological change is not quantified
in the table. |
|
Family |
|
A1
|
|
A2
|
B1
|
B2
|
|
Scenario group |
1990
|
A1FI
|
A1B
|
A1T
|
A2
|
B1
|
B2
|
|
Population (billion) |
5.3
|
|
|
|
|
|
|
2020 |
|
7.6 (7.4- 7.6)
|
7.4 (7.4- 7.6)
|
7.6 (7.4- 7.6)
|
8.2
|
7.6 (7.4- 7.6)
|
7.6
|
2050 |
|
8.7
|
8.7
|
8.7
|
11.3
|
8.7 (8.6- 8.7)
|
9.3
|
2100 |
|
7.1 (7.0- 7.1)
|
7.1 (7.0- 7.1)
|
7.0
|
15.1
|
7.0 (6.9- 7.1)
|
10.4
|
|
World GDP (1012 1990US$/ yr) |
21
|
|
|
|
|
|
|
2020 |
|
53 (53- 57)
|
56 (52- 61)
|
57 (56- 57)
|
41
|
53 (51- 57)
|
51 (48- 51)
|
2050 |
|
164 (164- 187)
|
181 (164- 181)
|
187 (182- 187)
|
82
|
136 (134- 166)
|
110 (108- 111)
|
2100 |
|
525 (525- 550)
|
529 (529- 536)
|
550 (529- 550)
|
243
|
328 (328- 350)
|
235 (232- 237)
|
|
Per capita income ratio: developed
countries and economies in transition
(Annex- I) to developing countries
(Non- Annex- I) |
16.1
|
|
|
|
|
|
|
2020 |
|
7.5 (6.2- 7.5)
|
6.4 (5.2- 7.5)
|
6.2 (6.2- 6.4)
|
9.4 (9.4- 9.5)
|
8.4 (5.3- 8.4)
|
7.7 (7.5- 8.0)
|
2050 |
|
2.8
|
2.8 (2.4- 2.8)
|
2.8
|
6.6
|
3.6 (2.7- 3.9)
|
4.0 (3.8- 4.6)
|
2100 |
|
1.5 (1.5- 1.6)
|
1.6 (1.5- 1.7)
|
1.6
|
4.2
|
1.8 (1.6- 1.9)
|
3.0 (3.0- 3.5)
|
a For some driving forces, no range is indicated because all
scenario runs have adopted exactly the same assumptions.
|
Table TS-3a: Overview of main secondary
scenario driving forces in 1990, 2020, 2050, and 2100. Bold numbers show the
value for the illustrative scenario and the numbers between brackets show the
value for the range across all 40 SRES scenarios in the six scenario groups
that constitute the four families. Units are given in the table. |
|
Family |
|
A1
|
|
A2
|
B1
|
B2
|
|
Scenario group |
1990
|
A1FI
|
A1B
|
A1T
|
A2
|
B1
|
B2
|
|
Final energy intensity (106 J/ US$)a |
16.7
|
|
|
|
|
|
|
2020 |
|
9.4 (8.5- 9.4)
|
9.4 (8.1- 12.0)
|
8.7 (7.6- 8.7)
|
12.1 (9.3- 12.4)
|
8.8 (6.7- 11.6)
|
8.5 (8.5- 11.8)
|
2050 |
|
6.3 (5.4- 6.3)
|
5.5 (4.4- 7.2)
|
4.8 (4.2- 4.8)
|
9.5 (7.0- 9.5)
|
4.5 (3.5- 6.0)
|
6.0 (6.0- 8.1)
|
2100 |
|
3.0 (2.6- 3.2)
|
3.3 (1.6- 3.3)
|
2.3 (1.8- 2.3)
|
5.9 (4.4- 7.3)
|
1.4 (1.4- 2.7)
|
4.0 (3.7- 4.6)
|
|
|
|
|
|
|
|
|
Primary energy (1018 J/ yr)a |
351
|
|
|
|
|
|
|
2020 |
|
669
(653- 752)
|
711
(573- 875)
|
649
(515- 649)
|
595
(485- 677)
|
606
(438- 774)
|
566
(506- 633)
|
2050 |
|
1431
(1377- 1601)
|
1347
(968- 1611)
|
1213
(913- 1213)
|
971
(679- 1059)
|
813
(642- 1090)
|
869
(679- 966)
|
2100 |
|
2073
(1988- 2737)
|
2226
(1002- 2683)
|
2021
(1255- 2021)
|
1717
(1304- 2040)
|
514
(514- 1157)
|
1357
(846- 1625)
|
|
|
|
|
|
|
|
|
Share of coal in primary energy (%)a |
24
|
|
|
|
|
|
|
2020 |
|
29 (24- 42)
|
23 (8- 28)
|
23 (8- 23)
|
22 (18- 34)
|
22 (8- 27)
|
17 (14- 31)
|
2050 |
|
33 (13- 56)
|
14 (3- 42)
|
10 (2- 13)
|
30 (24- 47)
|
21 (2- 37)
|
10 (10- 49)
|
2100 |
|
29 (3- 48)
|
4 (4- 41)
|
1 (1- 3)
|
53 (17- 53)
|
8 (0- 22)
|
22 (12- 53)
|
|
|
|
|
|
|
|
|
Share of zero carbon in primary energy (%)a |
18
|
|
|
|
|
|
|
2020 |
|
15 (10- 20)
|
16 (9- 26)
|
21 (15- 22)
|
8 (8- 16)
|
21 (7- 22)
|
18 (7- 18)
|
2050 |
|
19 (16- 31)
|
36 (21- 40)
|
43 (39- 43)
|
18 (14- 29)
|
30 (18- 40)
|
30 (15- 30)
|
2100 |
|
31 (30- 47)
|
65 (27- 75)
|
85 (64- 85)
|
28 (26- 37)
|
52 (33- 70)
|
49 (22- 49)
|
a 1990 values include non- commercial energy consistent with
IPCC WGII SAR (Energy Primer) but with SRES accounting conventions. Note
that ASF, MiniCAM, and IMAGE scenarios do not consider non- commercial
renewable energy. Hence, these scenarios report lower energy use.
|
Table TS- 3b : Overview of main secondary
scenario driving forces in 1990, 2020, 2050, and 2100. Bold numbers show the
value for the illustrative scenario and the numbers between brackets show the
value for the range across 26 harmonized SRES scenarios in the six scenario
groups that constitute the four families. Units are given in the table. |
|
Family |
|
A1
|
|
A2
|
B1
|
B2
|
|
Scenario group |
1990
|
A1FI
|
A1B
|
A1T
|
A2
|
B1
|
B2
|
|
Final energy intensity (106 J/ US$)a |
16.7
|
|
|
|
|
|
|
2020 |
|
9.4 (8.5- 9.4)
|
9.4 (8.7- 12.0))
|
8.7 (7.6- 8.7)
|
12.1 (11.3- 12.1)
|
8.8 (6.7- 11.6)
|
8.5 (8.5- 9.1)
|
2050 |
|
6.3 (5.4- 6.3)
|
5.5 (5.0- 7.2)
|
4.8 (4.3- 4.8)
|
9.5 (9.2- 9.5)
|
4.5 (3.5- 6.0)
|
6.0 (6.0- 6.6)
|
2100 |
|
3.0 (3.0- 3.2)
|
3.3 (2.7- 3.3)
|
2.3
|
5.9 (5.5- 5.9)
|
1.4 (1.4- 2.1)
|
4.0 (3.9- 4.1)
|
|
Primary energy (1018 J/ yr)a |
351
|
|
|
|
|
|
|
2020 |
|
669
(657- 752)
|
711
(589- 875)
|
649
(611- 649)
|
595
(595- 610)
|
606
(451- 774)
|
566
(519- 590)
|
2050 |
|
1431
(1377- 1601)
|
1347
(1113- 1611)
|
1213
(1086- 1213)
|
971
(971- 1014)
|
813
(642- 1090)
|
869
(815- 941)
|
2100 |
|
2073
(2073- 2737)
|
2226
(1002- 2683)
|
2021
(1632- 2021)
|
1717
(1717- 1921)
|
514
(514- 1157)
|
1357
(1077- 1357)
|
|
Share of coal in primary energy (%)a |
24
|
|
|
|
|
|
|
2020 |
|
29 (24- 42)
|
23 (8- 26)
|
23 (23- 23)
|
22 (20- 22)
|
22 (19- 27)
|
17 (14- 31)
|
2050 |
|
33 (13- 52)
|
14 (3- 42)
|
10 (10- 13)
|
30 (27- 30)
|
21 (4- 37)
|
10 (10- 35)
|
2100 |
|
29 (3- 46)
|
4 (4- 41)
|
1 (1- 3)
|
53 (45- 53)
|
8 (0- 22)
|
22 (19- 37)
|
|
Share of zero carbon in primary energy (%)a |
18
|
|
|
|
|
|
|
2020 |
|
15 (10- 20)
|
16 (9- 26)
|
21 (15- 21)
|
8 (8- 16)
|
21 (7- 22)
|
18 (12- 18)
|
2050 |
|
19 (16- 31)
|
36 (23- 40)
|
43 (41- 43)
|
18 (18- 29)
|
30 (18- 40)
|
30 (21- 30)
|
2100 |
|
31 (30- 47)
|
65 (39- 75)
|
85 (67- 85)
|
28 (28- 37)
|
52 (44- 70)
|
49 (22- 49)
|
a 1990 values include non- commercial energy consistent with
IPCC WGII SAR (Energy Primer) but with SRES accounting conventions. Note
that ASF, MiniCAM, and IMAGE scenarios do not consider non- commercial
renewable energy. Hence, these scenarios report lower energy use.
|
Table TS- 4a : Overview of GHG, SO2
, and ozone precursor emissions a in 1990, 2020, 2050, and 2100, and cumulative
carbon dioxide emissions to 2100. Bold numbers show the value for the illustrative
scenario and the numbers between brackets show the value for the range across
all 40 SRES scenarios in the six scenario groups that constitute the four families.
Units are given in the table . |
|
Family |
|
A1
|
|
A2
|
B1
|
B2
|
|
Scenario group |
1990
|
A1FI
|
A1B
|
A1T
|
A2
|
B1
|
B2
|
|
Carbon dioxide, fossil fuels (GtC/ yr) |
6.0
|
|
|
|
|
|
|
2020 |
|
11.2 (10.7- 14.3)
|
12.1 (8.7- 14.7)
|
10.0 (8.4- 10.0)
|
11.0 (7.9- 11.3)
|
10.0 (7.8- 13.2)
|
9.0 (8.5- 11.5)
|
2050 |
|
23.1 (20.6- 26.8)
|
16.0 (12.7- 25.7)
|
12.3
(10.8- 12.3)
|
16.5 (10.5- 18.2)
|
11.7 (8.5- 17.5)
|
11.2 (11.2- 16.4)
|
2100 |
|
30.3 (27.7- 36.8)
|
13.1 (12.9- 18.4)
|
4.3 (4.3- 9.1)
|
28.9 (17.6- 33.4)
|
5.2 (3.3- 13.2)
|
13.8 (9.3- 23.1)
|
|
Carbon dioxide, land use (GtC/ yr) |
1.1
|
|
|
|
|
|
|
2020 |
|
1.5 (0.3- 1.8)
|
0.5 (0.3- 1.6)
|
0.3 (0.3- 1.7)
|
1.2 (0.1- 3.0)
|
0.6 (0.0- 1.3)
|
0.0 (0.0- 1.9)
|
2050 |
|
0.8 (0.0- 0.9)
|
0.4 (0.0- 1.0)
|
0.0 (- 0.2- 0.5)
|
0.9 (0.6- 0.9)
|
-0.4 (- 0.7- 0.8)
|
-0.2 (- 0.2- 1.2)
|
2100 |
|
-2.1 (- 2.1- 0.0)
|
0.4 (- 2.4- 2.2)
|
0.0 (0.0- 0.1)
|
0.2 (- 0.1- 2.0)
|
-1.0 (- 2.8- 0.1)
|
-0.5 (- 1.7- 1.5)
|
|
Cumulative carbon dioxide, fossil fuels (GtC) |
|
|
|
|
|
|
|
1990-2100 |
|
2128
(2079- 2478)
|
1437
(1220- 1989)
|
1038
(989- 1051)
|
1773
(1303- 1860)
|
989
(794- 1306)
|
1160
(1033- 1627)
|
|
Cumulative carbon dioxide, land use (GtC) |
|
|
|
|
|
|
|
1990-2100 |
|
61 (31- 69)
|
62 (31- 84)
|
31 (31- 62)
|
89 (49- 181)
|
-6 (- 22- 84)
|
4 (4- 153)
|
|
Cumulative carbon dioxide, total (GtC) |
|
|
|
|
|
|
|
1990-2100 |
|
2189
(2127- 2538)
|
1499
(1301- 2073)
|
1068
(1049- 1113)
|
1862
(1352- 1938)
|
983
(772- 1390)
|
1164
(1164- 1686)
|
|
Sulfur dioxide, (MtS/ yr) |
70.9
|
|
|
|
|
|
|
2020 |
|
87 (60- 134)
|
100 (62- 117)
|
60 (60- 101)
|
100 (66- 105)
|
75 (52- 112)
|
61 (48- 101)
|
2050 |
|
81 (64- 139)
|
64 (47- 120)
|
40 (40- 64)
|
105 (78- 141)
|
69 (29- 69)
|
56 (42- 107)
|
2100 |
|
40 (27- 83)
|
28 (26- 71)
|
20 (20- 27)
|
60 (60- 93)
|
25 (11- 25)
|
48 (33- 48)
|
|
Methane, (MtCH4 /yr) |
310
|
|
|
|
|
|
|
2020 |
|
416 (415- 479)
|
421 (400- 444)
|
415 (415- 466)
|
424 (354- 493)
|
377 (377- 430)
|
384 (384- 469)
|
2050 |
|
630 (511- 636)
|
452 (452- 636)
|
500 ( 492- 500)
|
598 (402- 671)
|
359 (359- 546)
|
505 (482- 536)
|
2100 |
|
735 (289- 735)
|
289 (289- 640)
|
274 (274- 291)
|
889 (549- 1069)
|
236 (236- 579)
|
597 (465- 613)
|
|
Nitrous Oxide,
(MtN/ yr) |
6.7
|
|
|
|
|
|
|
2020 |
|
9.3 (6.1- 9.3)
|
7.2 (6.1- 9.6)
|
6.1 (6.1- 7.8)
|
9.6 (6.3- 12.2)
|
8.1 (5.8- 9.5)
|
6.1 (6.1- 11.5)
|
2050 |
|
14.5 (6.3- 14.5)
|
7.4 (6.3- 14.3)
|
6.1 (6.1- 6.7)
|
12.0 (6.8- 13.9)
|
8.3 (5.6- 14.8)
|
6.3 (6.3- 13.2)
|
2100 |
|
16.6 (5.9- 16.6)
|
7.0 (5.8- 17.2)
|
5.4 (4.8- 5.4)
|
16.5 (8.1- 19.3)
|
5.7 (5.3- 20.2)
|
6.9 (6.9- 18.1)
|
|
CFC/ HFC/ HCFC (MtC equiv./ yr) b |
1672
|
|
|
|
|
|
|
2020 |
|
337
|
337
|
337
|
292
|
291
|
299
|
2050 |
|
566
|
566
|
566
|
312
|
338
|
346
|
2100 |
|
614
|
614
|
614
|
753
|
299
|
649
|
|
PFC, (MtC equiv./ yr) b |
32.0
|
|
|
|
|
|
|
2020 |
|
42.7
|
42.7
|
42.7
|
50.9
|
31.7
|
54.8
|
2050 |
|
88.7
|
88.7
|
88.7
|
92.2
|
42.2
|
106.6
|
2100 |
|
115.3
|
115.3
|
115.3
|
178.4
|
44.9
|
121.3
|
|
SF6 , (MtC equiv./ yr) b |
37.7
|
|
|
|
|
|
|
2020 |
|
47.8
|
47.8
|
47.8
|
63.5
|
37.4
|
54.7
|
2050 |
|
119.2
|
119.2
|
119.2
|
104.0
|
67.9
|
79.2
|
2100 |
|
94.6
|
94.6
|
94.6
|
164.6
|
42.6
|
69.0
|
|
CO, (MtCO/ yr) |
879
|
|
|
|
|
|
|
2020 |
|
1204
(1123- 1552)
|
1032
(978- 1248)
|
1147
(1147- 1160)
|
1075
(748- 1100)
|
751
(751- 1162)
|
1022
(632- 1077)
|
2050 |
|
2159
(1619- 2307)
|
1214
(949- 1925)
|
1770
(1244- 1770)
|
1428
(642- 1585)
|
471
(471- 1470)
|
1319
(580- 1319)
|
2100 |
|
2570
(2298- 3766)
|
1663
(1080- 2532)
|
2077
(1520- 2077)
|
2326
(776- 2646)
|
363
(363- 1871)
|
2002
(661- 2002)
|
|
NMVOC, (Mt/ yr) |
139
|
|
|
|
|
|
|
2020 |
|
192 (178- 230)
|
222 (157- 222)
|
190 (188- 190)
|
179 (166- 205)
|
140 (140- 193)
|
180 (152- 180)
|
2050 |
|
322 (256- 322)
|
279 (158- 301)
|
241 (206- 241)
|
225 (161- 242)
|
116 (116- 237)
|
217 (147- 217)
|
2100 |
|
420 (167- 484)
|
194 (133- 552)
|
128 (114- 128)
|
342 ( 169- 342)
|
87 (58- 349)
|
170 (130- 304)
|
|
NOx , (MtN/ yr) |
30.9
|
|
|
|
|
|
|
2020 |
|
50 (46- 51)
|
46 (46- 66)
|
46 (46- 49)
|
50 (42- 50)
|
40 (38- 59)
|
43 (38- 52)
|
2050 |
|
95 (49- 95)
|
48 (48- 100)
|
61 (49- 61)
|
71 (50- 82)
|
39 (39- 72)
|
55 (42- 66)
|
2100 |
|
110 (40- 151)
|
40 (40- 77)
|
28 (28- 40)
|
109 (71- 110)
|
19 (16- 35)
|
61 (34- 77)
|
a The uncertainties in the SRES emissions for non- CO2 greenhouse
gases are generally greater than those for energy CO2 . Therefore, the
ranges of non- CO2 GHG emissions provided in the Report may not fully
reflect the level of uncertainty compared to CO2 , for example only a
single model provided the sole value for halocarbon emissions.
b In the SPM the emissions of CFC/ HFC/ HCFC, PFC, and SF6
are presented as carbon- equivalent emissions. This was done by multiplying
the emissions by weight of each substance (see Table 5- 8) by its global
warming potential (GWP; see Table 5- 7) and subsequent summation. The
results were then converted from CO2 -equivalents (reflected by the GWPs)
into carbon- equivalents. Note that the use of GWP is less appropriate
for emission profiles that span a very long period. It is used here, in
the interest of readability of the SPM in preference to a more detailed
breakdown by the 27 substances listed in Table 5- 7. The method here is
also preferred over the even less desirable option to display weighted
numbers for the aggregate categories in this table.
|
Table TS- 4b: Overview of GHG, SO2 ,
and ozone precursor emissions a in 1990, 2020, 2050, and 2100, and cumulative
carbon dioxide emissions to 2100. Bold numbers show the value for the illustrative
scenario and the numbers between brackets show the value for the range across
26 harmonized SRES scenarios in the six scenario groups that constitute the
four families. Units are given in the table . |
|
Family |
|
A1
|
|
A2
|
B1
|
B2
|
|
Scenario group |
1990
|
A1FI
|
A1B
|
A1T
|
A2
|
B1
|
B2
|
|
Carbon dioxide, fossil fuels (GtC/ yr) |
6.0
|
|
|
|
|
|
|
2020 |
|
11.2
(10.7-14.3)
|
12.1
(8.7- 14.7)
|
10.0
(9.8- 10.0)
|
11.0
(10.3- 11.0)
|
10.0
(8.2- 13.2)
|
9.0
(8.8- 10.2)
|
2050 |
|
23.1
(20.6- 26.8)
|
16.0
(12.7- 25.7)
|
12.3
(11.4- 12.3)
|
16.5
(15.1- 16.5)
|
11.7
(8.5- 17.5)
|
11.2
(11.2- 15.0)
|
2100 |
|
30.3
(30.3- 36.8)
|
13.1
(13.1- 17.9)
|
4.3
(4.3- 8.6)
|
28.9
(28.2- 28.9)
|
5.2
(3.3- 7.9)
|
13.8
(13.8- 18.6)
|
|
|
|
|
|
|
|
|
|
Carbon dioxide, land use (GtC/ yr) |
1.1
|
|
|
|
|
|
|
2020 |
|
1.5 (0.3- 1.8)
|
0.5 (0.3- 1.6)
|
0.3 (0.3- 1.7)
|
1.2 (1.1- 1.2)
|
0.6 (0.0- 1.3)
|
0.0 (0.0- 1.1)
|
2050 |
|
0.8 (0.0- 0.8)
|
0.4 (0.0- 1.0)
|
0.0 (- 0.2- 0.0)
|
0.9 (0.8- 0.9)
|
-0.4 (- 0.7- 0.8)
|
-0.2 (- 0.2- 1.2)
|
2100 |
|
-2.1 (- 2.1- 0.0)
|
0.4 (- 2.0- 2.2)
|
0.0 (0.0- 0.1)
|
0.2 (0.0- 0.2)
|
-1.0 (- 2.6- 0.1)
|
-0.5 (- 0.5- 1.2)
|
|
|
|
|
|
|
|
|
|
Cumulative carbon dioxide, fossil fuels (GtC) |
|
|
|
|
|
|
|
1990-2100 |
|
2128
(2096- 2478)
|
1437
(1220- 1989)
|
1038
(1038- 1051)
|
1773
(1651- 1773)
|
989
(794- 1306)
|
1160
(1160- 1448)
|
|
|
|
|
|
|
|
|
|
Cumulative carbon dioxide, land use (GtC) |
|
|
|
|
|
|
|
1990-2100 |
|
61 (31- 61)
|
62 (31- 84)
|
31 (31- 62)
|
89 (81- 89)
|
-6 (- 22- 84)
|
4 (4- 125)
|
|
Cumulative carbon dioxide, total (GtC) |
|
|
|
|
|
|
|
1990-2100 |
|
2189
(2127- 2538)
|
1499
(1301- 2073)
|
1068
(1068- 1113)
|
1862
(1732- 1862)
|
983
(772- 1390)
|
1164
(1164- 1573)
|
|
Sulfur dioxide, (MtS/ yr) |
70.9
|
|
|
|
|
|
|
2020 |
|
87 (60- 134)
|
100 (62- 117)
|
60 (60- 101)
|
100 (80- 100)
|
75 (52- 112)
|
61 (61- 78)
|
2050 |
|
81 (64- 139)
|
64 (47- 64)
|
40 (40- 64)
|
105 (104- 105)
|
69 (29- 69)
|
56 (44- 56)
|
2100 |
|
40 (27- 83)
|
28 (28- 47)
|
20 (20- 27)
|
60 (60- 69)
|
25 (11- 25)
|
48 (33- 48)
|
|
Methane, (MtCH4 /yr) |
310
|
|
|
|
|
|
|
2020 |
|
416 (416- 479)
|
421 (406- 444)
|
415 (415- 466)
|
424 (418- 424)
|
377 (377- 430)
|
384 (384- 391)
|
2050 |
|
630 (511- 630)
|
452 (452- 636)
|
500 (492- 500)
|
598 (598- 671)
|
359 (359- 546)
|
505 (482- 505)
|
2100 |
|
735 (289- 735)
|
289 (289- 535)
|
274 (274- 291)
|
889 (889- 1069)
|
236 (236- 561)
|
597 (465- 597)
|
|
Nitrous oxide, (MtN/ yr) |
6.7
|
|
|
|
|
|
|
2020 |
|
9.3 (6.1- 9.3)
|
7.2 (6.1- 9.6)
|
6.1 (6.1- 7.8)
|
9.6 (6.3- 9.6)
|
8.1 (5.8- 9.5)
|
|
2050 |
|
14.5 (6.3- 14.5)
|
7.4 (6.3- 13.8)
|
6.1 (6.1- 6.7)
|
12.0 (6.8- 12.0)
|
8.3 (5.6- 14.8)
|
|
2100 |
|
16.6 (5.9- 16.6)
|
7.0 (5.8- 15.6)
|
5.4 (4.8- 5.4)
|
16.5 (8.1- 16.5)
|
5.7 (5.3- 20.2)
|
|
|
CFC/ HFC/ HCFC (MtC equiv./ y) b |
1672
|
|
|
|
|
|
|
2020 |
|
337
|
337
|
337
|
292
|
291
|
299
|
2050 |
|
566
|
566
|
566
|
312
|
338
|
346
|
2100 |
|
614
|
614
|
614
|
753
|
299
|
649
|
|
PFC, (MtC equiv./ yr) b |
32.0
|
|
|
|
|
|
|
2020 |
|
42.7
|
42.7
|
42.7
|
50.9
|
31.7
|
54.8
|
2050 |
|
88.7
|
88.7
|
88.7
|
92.2
|
42.2
|
106.6
|
2100 |
|
115.3
|
115.3
|
115.3
|
178.4
|
44.9
|
121.3
|
|
SF6 , (MtC equiv./ yr) b |
37.7
|
|
|
|
|
|
|
2020 |
|
47.8
|
47.8
|
47.8
|
63.5
|
37.4
|
54.7
|
2050 |
|
119.2
|
119.2
|
119.2
|
104.0
|
67.9
|
79.2
|
2100 |
|
94.6
|
94.6
|
94.6
|
164.6
|
42.6
|
69.0
|
|
CO, (MtCO/ yr) |
879
|
|
|
|
|
|
|
2020 |
|
1204
(1123- 1552)
|
1032
(1032- 1248)
|
1147
(1147- 1160)
|
1075
(1075- 1100)
|
751
(751- 1162)
|
1022
(941- 1022)
|
2050 |
|
2159
(1619- 2307)
|
1214
(1214- 1925)
|
1770
(1244- 1770)
|
1428
(1428- 1585)
|
471
(471- 1470)
|
1319 (1180- 1319)
|
2100 |
|
2570
(2298- 3766)
|
1663
(1663- 2532)
|
2077
(1520- 2077)
|
2326
(2325- 2646)
|
363
(363- 1871)
|
2002
(1487- 2002)
|
|
NMVOC, (Mt/ yr) |
139
|
|
|
|
|
|
|
2020 |
|
192 (178- 230)
|
222 (194- 222)
|
190 (188- 190)
|
179 (179- 204)
|
140 (140- 193)
|
180 (179- 180)
|
2050 |
|
322 (256- 322)
|
279 (259- 301)
|
241 (206- 241)
|
225 (225- 242)
|
116 (116- 237)
|
217 (197- 217)
|
2100 |
|
420 (167- 484)
|
194 (137- 552)
|
128 (114- 128)
|
342 (311- 342)
|
87 (58- 349)
|
170 (130- 170)
|
|
NOx , (MtN/ yr) |
30.9
|
|
|
|
|
|
|
2020 |
|
50 (46- 51)
|
46 (46- 66)
|
46 (46- 49)
|
50 (47- 50)
|
40 (38- 59)
|
43 (38- 43)
|
2050 |
|
95 (49- 95)
|
48 (48- 100)
|
61 (49- 61)
|
71 (66- 71)
|
39 (39- 72)
|
55 (42- 55)
|
2100 |
|
110 (40- 151)
|
40 (40- 77)
|
28 (28- 40)
|
109 (109- 110)
|
19 (16- 35)
|
61 (34- 61)
|
a The uncertainties in the SRES emissions for non-CO2 greenhouse
gases are generally greater than those for energy CO2. Therefore, the
ranges of non-CO2 GHG emissions provided in the Report may not fully
reflect the level of uncertainty compared to CO2 , for example only a
single model provided the sole value for halocarbon emissions.
b In the SPM the emissions of CFC/ HFC/ HCFC, PFC, and SF6 are presented
as carbon- equivalent emissions. This was done by multiplying the emissions
by weight of each substance (see Table 5-8)
by its global warming potential (GWP; see Table
5-7) and subsequent summation. The results were then converted from
CO2 -equivalents (reflected by the GWPs) into carbon- equivalents. Note
that the use of GWP is less appropriate for emission profiles that span
a very long period. It is used here, in the interest of readability of
the SPM in preference to a more detailed breakdown by the 27 substances
listed in Table 5-7. The method here is also
preferred over the even less desirable option to display weighted numbers
for the aggregate categories in this table.
|
|
|
|
|
|
|
|
|
|