Executive Summary
Agriculture is a worldwide critical strategic resource expected to double its
production in 30 years to feed the world. Yet, agriculture is most directly
affected by climate change through increased variability as well as temperature
and moisture changes. Agriculture's adaptation to climate change will require
new genetic stocks, improved irrigation efficiency, improved nutrient use efficiency,
and improved risk management and production management techniques.
Agriculture can contribute modestly to mitigation through carbon sequestration
in soils and in other ways. Emissions from manure can be turned into methane
(CH4) fuel. Methane from ruminants can be reduced
through straw ammoniation and increased feed efficiency, and methane from rice
paddies can be mitigated. Better nutrient management can reduce emissions of
nitrous oxide (NOx).
Adaptation to uncertainty such as climate change requires assembling a diverse
portfolio of technologies, and keeping the flexibility to transfer and adopt
needed technology. However, small farms and related businesses are risk-averse.
Lack of information, financial and human capital, and transportation; as well
as temporary (land) tenure and unreliable equipment and supplies discourage
transfer of technology. These hindrances can rarely be surmounted unless the
transferred technology profitably has high chances of quickly solving an evident
problem.
The effectiveness of technology transfer in the agricultural sector in the
context of climate change response strategies would depend to a great extent
on the suitability of transferred technologies to the socio-economic and cultural
context of the recipients, considering development, equity, and sustainability
issues. This is particularly relevant when applied to North-South technology
transfers in this sector.
Governments can facilitate transfer with incentives by regulating and by improving
institutions. For example, farmers need stronger incentives to adapt to a changing
environment. However, if subsidies and distortions of markets make farmers less
susceptible to fluctuations in yield and price, they will also tone down signals
of climate change, and thus slowing technology transfer. For example, cereal
prices have been almost exempt of the 5 to 6 times rise of prices for almost
everything in the course of the 55 years post wartime period.
The success of a response to an actual climate demonstrates that necessary
technology can be developed, transferred and adopted. A new rice variety was
developed in Sierra Leone to exploit seasonal rain and require less pesticide.
Once success of the variety became apparent, farmers themselves transferred
it to others. This transfer demonstrates the success of a policy that responds
to present need, concentrates researchers, devises cheap technology, and promptly
benefits farmers.
Some technologies will not be so easily transferred. Irrigation, a pre-eminent
adaptation to climate, costs millions and requires communities to take up unfamiliar
crops and methods. Nations must deal with scarce water and environmental impacts,
marshal capital to construct the dams and canals and assist in the marketing
of new crops. On the other hand, new crops (e.g., oil seeds), may require new
processing plants located near the production site, or else they require considerable
transportation to existing processing plants. To facilitate the transfer, banks
could extend credit to farmers and research and training could turn to irrigation
design, new crops, water use efficiency and prevention of salinity. Only an
integrated national effort that extends to the farm level succeeds.
Centuries of experience, much of it governmental, have demonstrated the value
of new plants and the useful genes of established ones. Breeding, testing and
demonstrating in the diverse locales and climates where farmers must cope with
drought, pests, and different lengths of season have had a high payoff and are
essential for adaptation to climate change.
Trade free of barriers facilitates technology transfer. Trade has exploited
comparative advantages among climates and will continue to do so if climate
changes. Free movement of innovations, knowledge and trained work forceswill
speed technology transfer. This was demonstrated in th past, during the Green
Revolution which showed the power of free movement of money, technicians, genes
and information. As governments and donors have economised, business has stepped
forward in research and innovation, but merely focusing on profitable areas.
Education lies at the heart of technological transfer. The public role in education
is pre-eminent and must be supported. Policies of practical demonstration have
proven the most helpful form of education. Private business can announce technology
in advertisements or demonstrate it at fairs. Governments have a role in monitoring
claims and educating broadly. For example, the "training and visit"
transfer requires both training technicians and getting them into the field
to educate farmers.
Although the transfer of new varieties proceeds quickly and easily, transferring
systems of management requires persistence. For example, America established
the Conservation Technology Information Center in 1982 to encourage conservation
tillage. Great progress has been made, but after 17 years, adoption is still
ongoing.
Uncertainties cloud the favourable outlook for the transfer of agricultural
technology. Because people transfer technology most readily to solve a problem
that is serious, certain and imminent, the uncertainty of climate change hinders
transfer. When, for example, climatologists assessing the climate for the next
few years cannot agree whether it will be wetter or drier, no farmer will pay
to mitigate emissions or invest in irrigation or drainage.
The growing role of private business and intellectual property rights introduces
unfamiliar rules. At the same time, slowing public research adds to the problem.
While the annual financial growth of the up-to-now-successful international
research establishment (CGIAR), which stimulated and initiated yearly crop yield
increases and aided in outgrowing the additional demand by the rising world
population, has fallen from 14% to near 0%, it has spread its activities over
new areas. Growth of national establishments has also slowed.
Despite uncertainties, past successes, established by embattled researchers
and trainers, and the incentive of feeding the world encourage hope. The aim
is reliable and adequate agricultural growth with less emission and more storage
of greenhouse gases (GHGs).
|