2.7. Decision Analytic Methods and Frameworks
This section presents basic principles of decision analytic frameworks that
have been or could be used in assessing adaptation decisions in sectors and
regions. Thus, it provides a common base for decision analysis-related discussions
in sectoral and regional chapters of this report.
2.7.1. Decision Analysis to Support Adaptive DecisionsIntroduction
to Frameworks and Principles
Decisionmakers who are responsible for climate-sensitive economic sectors (e.g.,
forestry, agriculture, health care, water supply) or environmental assets (e.g.,
nature reserves) face questions related to undertaking adaptation measures on
the basis of what impacts might be expected if global GHG emissions continue
unabated or as a result of globally agreed mitigation action at different levels
of control. The starting point for adaptation decisions is to explore the possible
range of impacts to which one would need to adapt. This is a complex task in
itself because it involves understanding possible regional patterns of climate
change, the evolution of key socioeconomic and biophysical components of the
sector or region under consideration, and the dynamics of the impacts of changing
climatic conditions on the evolving social system.
Adaptation decisions in private sectors operating under free-market conditions
will be made largely as part of a business-as-usual approach and will rely on
analytical frameworks that are compatible with the management culture. The emerging
literature on adaptation describes this as autonomous adaptation. The flexibility
of private-sector actors and thus the range of options they are able to consider
in adapting to any external impact (not only climatic ones) can be severely
constrained by market distortions or by a lack of resources to implement any
transformation. Under such circumstances, the potential for autonomous adaptation
is limited. Planned adaptation will be required, and the importance of public
policy is larger.
A standard example for autonomous adaptation is the farmer who switches from
one cultivar of a given crop to another or from one crop to another in response
to perceived changes in weather patterns, simultaneously considering changes
in relative prices of input factors and agricultural commodities, the evolving
technological and agronomic conditions behind them, and other factors affecting
his profits. However, if prices are distorted by a quota system or state subsidy,
decisions are excessively dominated by these considerations, which could lead
to maladaptation. Similarly, subsistence farmers in less-developed countries
are not profit maximizers, and they may not possess the resources required to
make even minor shifts in response to changes in their external conditions.
Under these conditions, the only possibility for them might be to give up their
livelihood altogether.
With a view to the already significant atmospheric load of GHGs since the industrial
revolution, as well as the huge inertia and long delays characterizing the atmosphere-ocean-biosphere
system, adaptation to anthropogenic climate change appears inevitable over the
coming decades. It is worth looking at some of the key differences in applications
of DAFs that deal with climate change mitigation (reducing GHG emissions) and
adaptation (managing and counterbalancing the impacts of climate change).
The most crucial difference between mitigation- and adaptation-oriented DAF
applications is to whom the benefits of action accrue. Except for "no-regret"
options, benefits of mitigation will become a globally shared public good. Adaptation
actions will predominantly benefit agents who adapt, in the case of private
actors, or gains will be shared by the community in the case of local/regional
public goods and services, such as flood protection.
The second important difference between mitigation and adaptation decisions
is related to the timing of policy options. If climate protection were needed,
as many scientists and policymakers maintain, policies and technologies that
help reduce GHG emissions at the lowest possible social costs would be required
immediately. On the adaptation side, in contrast, the bulk of more significant
impacts of climate change may be felt 30, 50, or 100 years from now. This leaves
a longer time period (compared to mitigation action) to steer the development
of climate-sensitive sectors so that their climate vulnerability will be lower
and, more important, to develop technologies that will help reduce remaining
negative impacts by the time they really happen. Nevertheless, forethought and
action might well be required in sectors with long-lived infrastructure and
large social inertia (e.g., changing institutions such as misallocated property
rights) to foster adaptation to future climate.
In terms of public policies, the foregoing analysis implies urgency on the
mitigation side to formulate and put in place appropriate measures; by contrast,
in general there is more time on the adaptation side to sort out potential impacts,
adaptation needs, institutional and technological options involved in various
adaptation measures, and public policies to develop and deliver them. At the
same time, however, in many countries around the world that suffer from current
climatic variability and extremes, there is an urgent need for appropriate adaptation
policies and programs to be designed and implemented now to lessen adverse impacts;
such actions also will help to build adaptive capacity for future climate changes.
Several other differences between mitigation and adaptation decisions must
be considered in framing DAFs appropriately. Mitigation decisions are to be
crafted globally, and their implementation may entail a global spread to reduce
costs, whereas adaptation decisions are more limited to nations or subnational
regions. The region in this context is intentionally defined loosely and given
a broad interpretation. In considering climate change impacts and adaptation
policies, a region typically would be a sociogeographical unit under the jurisdiction
of a legally recognized policy entity within a country. However, a region in
this sense also could correspond to a whole country, especially if it is relatively
small and geographically homogeneous. Moreover, regional climate impact and
adaptation studies also are conceivable (and in some cases have been undertaken)
at the level of a supranational region, provided it has a recognized policymaking
entity (e.g., the European Union).
Many market-sector impacts can be relieved at least partially by a combination
of regional adjustments and interregional trade (especially in the agriculture
and livestock sectors), but regions remain the prime focus of adaptation policies
even in these cases. In terms of the public policy agenda, mitigation decisions
have to be made today in the context of current short-term economic problems,
social challenges, and policy debates. Adaptation and adaptation-related analyses
will have to be developed in the context of long-term socioeconomic and technological
development, with a special view to economic and technological trends in climate-sensitive
economic sectors and environmental systems. This makes adaptation-oriented DAF
applications easier because options to factor them in are much broader, but
it also makes them more difficult because the future is difficult to predict
and there is a clear need for policies that will be successful across a broad
range of plausible futures (these policies commonly are called robust). The
information base for adaptation decisions will improve over time, whereas DAFs
to support near-term mitigation decisions must cope with current knowledge plagued
with enormous uncertainties.
|