15.2.3.1.5. Role of changing water resources
Although several studies have examined the potential implications of climate
change for streamflows and water delivery reliability from reservoir systems
in regions where irrigated agriculture is now important (see Section
15.2.1), there have been few direct analyses of the economic impacts on
irrigated agriculture of changes in water availability. Some assessments of
the impacts of climate change on agriculture in North America have relied on
optimistic assumptions regarding the availability of irrigation water to offset
precipitation deficiencies (Mendelsohn et al., 1994). Other studies have attempted
to estimate the impacts of projected climate change on the potential use of
irrigation water. A study of potential climate change impacts on irrigation
water use in the United States concluded, "The greatest impact of a warmer climate
on the agricultural economy will be in the West where irrigators will be hard
put to maintain even present levels of irrigation" (Peterson and Keller, 1990).
That conclusion is based on first-order impacts of reduced water availability
and does not consider possible earnings from sale or lease of water rights.
Studies of the impacts of drought events may provide useful insights into the
impacts of substantial changes in seasonal streamflows that may result from
climate warmingparticularly in western North America, where mountain snowpacks
now sustain streamflows into the summer months (see Section
15.2.1). However, the impacts of short-term droughts are an imperfect analog
to long-term impacts of a drier climate because farmers are likely to adjust
crop choices and farming practices as they acquire experience with any new climate
regime.
Under some scenarios, demand for irrigation water declines (e.g., as a result
of more rapid crop maturation and/or increased growing-season precipitation).
Scenarios investigated for the U.S. National Assessment (Reilly et al., 2000)
suggest that demand for water resources by agriculture would decline nationwide
on the order of 5-10% by 2030 and 30-40% by 2090. Land under irrigation
showed similar magnitudes of decline. Crop yield studies generally favor rainfed
over irrigated production and show declines in water demand on irrigated land.
Such adaptations could help to relieve some of the stress on regional water
resources by freeing water for other uses (Hurd et al., 1999). However, the
interplay between changes in irrigation demand and changes in water supplies
has not been fully assessed.
15.2.3.1.6. Carbon sequestration
North American soils have lost large quantities of carbon since they first
were converted to agricultural systems, leaving carbon levels in agricultural
soils at about 75% of those in native soils (Bruce et al., 1999c). Because carbon
in agricultural soils is a manageable pool, it has been proposed that these
soils be managed to sequester carbon from atmospheric CO2.
The rate at which carbon is lost has subsided for most agricultural soils,
and carbon levels in some soils have been maintained or even begun to increase
as conservation farming practices have been adopted in the past 15-20 years.
On cultivated land, these practices include conservation tillage (i.e., reduction
or elimination of tillage) and residue management, use of winter cover crops,
elimination of summer fallow, and methods to alleviate plant-nutrient and water
deficiencies and increase primary production (Lal et al., 1998). Revegetation
of marginal lands and modified grazing practices on pastures can be used to
increase soil carbon levels. On degraded soils, preventing and controlling erosion
and reducing salinization help to maintain or increase soil carbon. Greater
adoption of these measures in the United States and Canada could result in agricultural
soils more effectively capturing carbon from atmospheric CO2.
However, these agricultural practices that are effective in building soil
carbon also may result in greater emissions of other GHGs (e.g., N2O).
Therefore, research is needed to weigh the positive and negative effects of
building up soil carbon with respect to the overall goals of reducing GHG emissions.
Moreover, implementation of such mitigation strategies and their effects on
adaptation need further evaluation from the perspective of practical economics
and land management decisions (see Box 15-1).
Some scenario studies suggest that interactions between soil and atmosphere
will occur under a positive feedback system as temperatures increase: Higher
temperatures will cause greater decomposition of soil carbon, in turn causing
greater emissions from soil of CO2, which will enhance the greenhouse
effect and cause even higher temperatures. However, there is evidence that negative
feedback mechanisms also exist. Some experiments indicate that more primary
production is allocated to roots as atmospheric CO2 rises (Schapendonk
et al., 1997), and these roots decompose more slowly than those grown at ambient
CO2 levels (Van Ginkel et al., 1997). Recent comprehensive analyses
of field data of forest soils suggests that increased temperature alone will
not stimulate decomposition of forest-derived carbon in mineral soil (Giardina
and Ryan, 2000).
Analysis of yield trends for 11 major crops over the period 1939-1994
indicates that the rate at which yield increased ranged from 1% on average to
more than 3% yr-1 (Reilly and Fuglie, 1998). Conservative extrapolation of yields
implies that the average annual increase in yield for the 11 crops between 1994
and 2020 would range from 0.7 to 1.3% yr-1. More optimistic
estimates of growth rates indicate that yield increases could be as high as
3% yr-1. These yield increases could lead to substantial
increases in soil carbon if crop residues are retained.
|