
Chapter 1 - Assessment of Observed Changes and Responses in Natural and Managed Systems

Coordinating Lead Authors
Gino Casassa (Chile), Cynthia Rosenzweig (USA)

Lead Authors
Anton Imeson (The Netherlands), David J. Karoly (Working Group I Liaison) (USA), Chunzhen Liu (China), Annette Menzel (Germany), Samuel Rawlins (Trinidad and Tobago), Terry L. Root (USA), Bernard Seguin (France), Piotr Tryjanowski (Poland)

Contributing Authors
Tarekegn Abeiku (Ethiopia), Mark Dyurgerov (USA), Martin Edwards (UK), Kristie L. Ebi (USA), Nicole Estrella (Germany), Andrew Githeko (Kenya), Vivien Gornitz (USA), Wilfried Haeberli (Switzerland), John Hay (New Zealand), Anne Henshaw (USA), Terrence Hughes (Australia), Ana Iglesias (Spain), Sari Kovats (UK), Joseph Lam (Hong Kong), Diana Liverman (UK), Dena P. MacMynowski (USA), Patricia Morellato (Brazil), Jeff T. Price (USA), Robert Muir-Wood (UK), Peter Neofotis (USA), Catherine O’Reilly (USA), Xavier Rodó (Spain), David Viner (UK), Marta Vicarelli (Italy), Ellen Wiegandt (Switzerland), Ma Zhuguo (China)

Review Editors
Lucka Kajfež-Bogataj (Slovenia), Jan Pretel (Czech Republic), Andrew Watkinson (UK)

Contents

Executive Summary 3

1.1 Introduction

1.1.1 Summary of observed changes in TAR 6
1.1.2 Scope and goals of chapter 7

1.2 Methods of detection and attribution of observed changes 8

1.2.1 Climate and non-climate drivers of change 9
1.2.2 Data 11
1.2.3 Methods and confidence 12

1.3 Systems and Sectors

1.3.1 Cryosphere 15
1.3.2 Hydrology and water resources 22
1.3.3 Coastal processes and zones 28
1.3.4 Marine and freshwater biological systems 32
1.3.5 Terrestrial biological systems 40
1.3.6 Agriculture and forestry 48
1.3.7 Human health 52
1.3.8 Disasters and hazards 56
1.3.9 Socio-economic indicators 59
<table>
<thead>
<tr>
<th></th>
<th>1.4 Larger-scale aggregation and attribution</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.4.1 Larger-scale aggregation</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>1.4.2 Joint attribution</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>1.4.3 Learning from current and observed responses – adaptation and vulnerability</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>72</td>
</tr>
</tbody>
</table>
Executive Summary

The IPCC WGII TAR found evidence that recent regional climate changes, particularly temperature increases, have already affected physical and biological systems. AR4 has analysed studies since the TAR showing changes in physical, biological and human systems mainly from 1970 to 2005 in relation to climate drivers and has found stronger quantitative evidence in a broader range of systems and sectors. The major climate factors are global and regional surface temperature increases, which have been strongly and widely documented in recent decades and which are like to influence many physical and biological processes.

Evaluation of evidence on observed changes related to climate is made difficult because the observed responses of systems and sectors are influenced by many other factors. Non-climatic drivers can influence systems and sectors directly and/or indirectly through their effects on climate variables such as reflected solar radiation and evaporation. Socio-economic processes, including land-use change (e.g., agriculture to urban area), land-cover modification (e.g., forest to grasslands), technological change, and pollution are of major importance in affecting change in multiple systems and sectors. As adaptation is itself a potential response to changing climate, it, too, can be expected to dampen observed impacts. Despite these complexities, significant changes in systems and sectors related to changes in regional climate are detectable through a variety of analytical methods.

Many of the climate-driven observed changes in physical and biological systems can now be attributed to temperature increase caused by greenhouse gas emissions (high confidence).

- Observed responses in multiple systems and sectors since 1970 have been jointly attributed to anthropogenic climate change through attribution of the responses to regional warming and attribution of the regional warming to anthropogenic climate change.

For physical systems, there is more and stronger evidence since the TAR that climate change is affecting natural and managed systems in the cryosphere, while there is emerging evidence in hydrology and water resources, oceans, and coastal processes and zones that some systems and sectors are being affected (high confidence).

Changes in the cryosphere are manifested in the following ways:
- Accelerating changes in sea level rise, landscape appearance, slope stability in mountain permafrost, thawing of buried ice and destabilisation of moraines damming glacier lakes, and runoff from snow and glaciers in mountain regions.
- Changes in Arctic mammals and Antarctic Peninsula fauna; and greening of the Arctic and the Antarctic Peninsula.
- Effects on permafrost-based infrastructure and indigenous livelihoods in the Arctic, ski centres affected by decreasing snow cover in lower-elevation alpine areas, and changes in living conditions and local tourism in many mountain regions around the world due to glacier retreat.

These changes parallel the abundant evidence that the cryosphere, including Arctic sea ice, freshwater ice, ice shelves, Greenland ice sheet, alpine and Antarctic Peninsula glaciers and ice caps, snow cover, and permafrost, is undergoing melting in response to global warming. Recent evidence in hydrology and water resources shows that since the TAR, there is more evidence that the hydrological cycle is intensifying in regard to runoff/streamflow, droughts and floods, thermal structure of lakes, and water quality:
- There is an increasing trend in runoff in large basins in the Eurasian Arctic which agrees with recent regional rainfall trends and permafrost melting.
• Areas most affected by increasing long-term droughts, decreasing runoff, and decreases in some lake levels related in some cases to human activities, are located in drier regions. However, in wetter areas there is no consistent pattern of trends.

• Lakes and rivers around the world are warming, with effects on thermal structure and lake chemistry.

Ocean acidification is occurring although the impacts, for example on corals and the marine biosphere are as yet uncertain.

• Evidence indicates that the average pH of surface sea water has fallen by 0.1 units in the last 200 years. This represents a 30% increase in the concentration of hydrogen ions in the surface oceans.

Coastal processes and zones indicate evidence that:

• Sea-level rise, enhanced wave heights, and increased intensity of storms are affecting some coastal regions distant from human modification, e.g., polar areas and barrier beaches, mainly through coastal erosion.

• Although local sea-level rise is contributing to losses of coastal wetlands and mangroves, and increased damages from coastal flooding in many areas, human modifications of coasts, such as increased construction in vulnerable zones, play an important role as well.

• In many coastal regions, local sea level rise exceeds the global trend of ~1.7mm/yr, due to both climate change (thermal expansion of seawater and meltwater additions) and local land subsidence. These areas are more vulnerable to coastal flooding, shoreline erosion, and losses of wetlands.

There is more evidence from a wider range of species and communities in terrestrial ecosystems that recent warming is already strongly affecting natural biological systems. There is substantial new evidence in marine and freshwater systems relating changes to warming. The evidence shows that both terrestrial and marine biological systems are now being strongly influenced by observed warming (very high confidence).

In terrestrial biological systems:

• The overwhelming majority of studies exhibiting significant warming impacts on terrestrial species reveal consistent responses to regional climate trends, including poleward and elevational range expansions of flora and fauna.

• Responses of terrestrial species to warming across the northern hemisphere are well documented by phenological changes, especially the earlier onset of spring events and lengthening of the growing season.

• Changes in abundance for certain species over the last few decades have been attributed to climate change, including a few key butterfly examples of disappearance.

In marine and freshwater biological systems:

• Many observed changes in phenology and distribution have been associated with rising water temperatures, as well as changes in salinity, oxygen levels, and circulation. The documented poleward movement of plankton and fish by 10 degrees latitude over a period of 4 decades in the North Atlantic is larger than any documented terrestrial study.

• Climate change and variability, in combination with human impacts, have already caused substantial damage to coral reefs.

• Warming lake and rivers are affecting abundance and productivity, community composition, phenology, distribution and migration.

Although responses to recent climate changes in human systems are difficult to detect due to
multiple non-climate driving forces and the presence of adaptation, effects are now detectable in a few agricultural and health systems (medium confidence).

Regarding agriculture and forestry:

- In temperate regions in large parts of North America and Europe, there is an advance in phenology, with limited evidence documenting management response to the shortening of crop-cycle duration. The lengthening of the growing season contributes to an observed increase in forest productivity.
- For arid regions such as the Sahel, reductions in precipitation and temperature increases on decadal scales have contributed to lower crop yields.
- The effects of gradual warming to-date are of limited consequence for crop production in comparison with other factors, except for viticulture, with documented improvement of grape quality in Europe and the U.S. However, both the agriculture and forestry sectors have shown vulnerability to recent extremes in heat, droughts, and floods.

Regarding human health:

- While there is little evidence of climate change currently having widespread significant detectable effects on human health, there is emerging evidence that there have been changes in the distribution of some vectors of human diseases, such as ticks in Sweden; and of changes in the seasonal production of pollens that cause allergenic diseases in Europe.
- An increase in high temperature extremes, which is an important exposure for human health, has been associated with excess mortality during the 2003 heatwave in Europe, although health effects related to increasing heatwaves elsewhere have not been demonstrated.

Global losses reveal rapidly rising costs due to extreme weather-related events since the 1970s. While the dominant signal remains that of the significant increases in the values of exposure at risk, once losses are normalised for exposure, there still remains an underlying rising trend (medium confidence).

- For specific regions and perils, including extreme floods on some of the largest rivers, there is evidence for an increase in occurrence.
- For tropical cyclones, in particular in the Atlantic Ocean and Northwest Pacific, over the past 30 years, significant increases have occurred in the proportion of storms at the highest intensity (Categories 4 and 5) as well as in the cumulative 'power dissipation' of storms (a combination of intensity and duration) that correlates with increases in sea surface temperatures in the main cyclone development regions.
1.1 Introduction

The IPCC Working Group II Third Assessment Report found evidence that recent regional climate changes, particularly temperature increases, have already affected many physical and biological systems, and preliminary evidence for effects in human systems (TAR Summary for Policymakers) (IPCC 2001). This chapter focuses on studies since the TAR that analyze significant changes in physical, biological, and human systems related to observed climate change. The studies are assessed in regard to current functional understanding of process-level responses to climate change and to factors that may confound such relationships, such as land-use change, urbanization, and pollution. Observations are also compared to simulated projections of impacts. The chapter considers the issue of ‘joint attribution,’ i.e., the determination of whether the observed changes may be related to anthropogenic climate forcing as well as natural forcings. Absence of evidence, i.e., cases where there is evidence of climate change without evidence of accompanying system or sector change, is also evaluated, since this is important for assessing whether responses to recent warming are systematic across regions, systems, and sectors.

1.1.1. Summary of observed changes in TAR

The WGI TAR described an increasing body of observations that gave a collective picture of a warming world and other changes in the climate system (IPCC 2001). WGII TAR documented methods of detecting observed changes, characterized the processes involved, and summarized the studies across multiple systems (Sections 2.2, 5.2.1, and 19.1) (IPCC 2001). Besides evidence in physical and biological systems related to warming, the IPCC WGII TAR also found preliminary indications that some human systems had been affected by recent increases in floods and droughts in some regions.

Changes in physical systems:

- **Sea ice:** Arctic sea-ice extent had declined by about 10-15% since the 1950s. No significant trends in Antarctic sea-ice extent were apparent.
- **Glaciers and Permafrost:** Mountain glaciers and ice caps were receding on all continents, and Northern Hemisphere permafrost was thawing.
- **Snow cover:** Extent of snow cover in the Northern Hemisphere had decreased ~10% since the late 1960s and 1970s.
- **Snowmelt and runoff:** Snow and runoff had occurred increasingly earlier in California since the late 1940s.
- **Lake and river ice:** Annual duration of lake- and river-ice cover in Northern Hemisphere mid and high latitudes had been reduced by about 2 weeks and become more variable.

Changes in biological systems:

- **Range:** Plant and animal ranges had shifted poleward and higher in elevation.
- **Abundance:** Within the ranges of some plants and animals, population sizes had changed, increasing in some areas and declining in others.
- **Phenology:** Timing of many lifecycle events, such as blooming, migration, and insect emergence, had shifted earlier in the spring and often later in the fall.
- **Differential change:** Species changed at different speeds and in different directions, causing a decoupling of species interactions (e.g., predator-prey relationships).

Preliminary evidence for changes in human systems:

- **Damages due to droughts and floods:** Damages had been related to persistent low rainfall in the Sahelian region of Africa and to increased precipitation extremes in North America.
1.1.2 Scope and goals of chapter

The aim of this chapter is to assess studies of observed changes in systems and sectors related to recent climate change, particularly temperature rise from 1970 to 2005, in order to advance understanding of the effects of climate change. Temperature rise is selected because it has a strong and widespread documented signal in recent decades and because it is an important influence on many physical and biological processes. The chapter evaluates the accumulating body of evidence with regard to the following questions:

1. Can changes in systems and sectors related to changing regional climate be detected?
2. Are observed changes consistent with functional understanding and modelled predictions of climate impacts?
3. Are observed changes prevalent across diverse systems, multiple sectors, and geographic regions and are there coherent patterns of change?
4. Do observed changes provide information about adaptation and vulnerability?
5. Can the observed changes be attributed to anthropogenic climate forcing?

The chapter reviews data sources and methods of detection of observed changes, investigating the roles of climate (including climate extremes and decadal climate variability) and non-climate drivers of change. A key focus is the analysis of evidence of no change, i.e., regions with documented warming trends, but with little or no documented changes or responses in systems or sectors. Evidence is then assessed regarding recent observed changes in sectors and systems relevant to Working Group II: cryosphere, hydrology and water resources, coastal processes and zones, marine and freshwater biological systems, terrestrial biological systems, agriculture and forestry, human health, and disasters and hazards. Evidence regarding other socio-economic effects, including energy use and tourism, is also assessed.

After assessing the state of knowledge on observed changes in the individual systems and sectors, we then assess studies that use techniques of larger-scale aggregation, including meta-analyses. Such studies relate observed changes in systems and sectors to regional climate trends, and analyze possible relationships to large-scale natural climate variations systems, such as ENSO and the NAO, and to anthropogenic climate change at the global scale. From the studies assessed in individual systems and sectors, a subset is selected that fits criteria in regard to length of study and statistically significant trends in change in system or sector related to recent changes in temperature or other climate variables in order to assess the potential for ‘joint attribution’ of observed changes in systems and sectors to anthropogenic climate forcing.

In the chapter, the term ‘response’ is used to connote processes by which both natural and human systems react to the stimuli of changing climate conditions; ‘sensitivity’ is the degree to which a system is affected by climate-related stimuli. Where there are relevant studies, we evaluate the role of adaptation of human systems and their vulnerability to observed changes. The term ‘adaptation’ is used only for human systems; a related term in biological systems is ‘acclimation.’

Indigenous knowledge of observed changes is considered; sources of indigenous knowledge include the Arctic Climate Impact Assessment (ACIA 2004) and the Snowchange Project, a multi-year research and education project of the Circumpolar North (Helander and Mustonen 2004).

We recognize that there is a notable lack of geographic balance in literature on observed changes in systems and sectors, with marked paucity of studies in developing countries. Possible reasons for this imbalance are lack of access by IPCC authors to studies carried out in developing countries, lack of research and published studies, lack of knowledge of system sensitivity, differing system-
responses to climate variables (e.g., the predominance of systems that may be less sensitive to temperature), lag effects in responses, resilience in systems, and the presence of adaptation. There is an urgent need to improve the observation networks of observed changes and to enhance data sets for physical and biological systems and socio-economic sectors, particularly in developing countries.

1.2 Methods of detection and attribution of observed changes

Detecting significant changes in observed climate and attributing these changes to specific causes has been discussed in earlier assessments by the IPCC (IPCC 2001). The detection and attribution of climate change is essentially a signal-to-noise problem, for which methods have been developed to enhance possible forced climate change signals and to reduce the noise associated with the natural variability of the climate system. Following usage in the TAR (Mitchell et al. 2001), detection is the process of demonstrating that an observed change is significantly different (in a statistical sense) than can be explained by natural internal variability. However, the detection of a change does not necessarily imply that its causes are understood.

As noted in the TAR (Mitchell et al. 2001), attribution of climate change to anthropogenic causes (i.e., the isolation of cause and effect) involves statistical analysis and the assessment of multiple lines of evidence to demonstrate, within a pre-specified margin of error, that the observed changes are

- unlikely to be due entirely to internal variability;
- consistent with the estimated responses to the given combination of anthropogenic and natural forcing; and
- not consistent with alternative, physically-plausible explanations of recent climate change that exclude important elements of the given combination of forcings.

Chapter 9 in AR4 Volume 1 (Hegerl et al. 2007) provides the most recent assessment of attribution of climate change to anthropogenic causes, concentrating on observed changes in climate variables that can be directly simulated by climate models.

Detecting significant observed changes in natural and managed systems and attributing these as probable responses to changes in climate, such as regional warming, are even more complex. Attribution of observed changes and responses in systems to anthropogenic forcing is usually a two-stage process (IPCC 2003). First, the observed change in a system must be demonstrated to be associated with an observed regional climate change with a specified degree of confidence, and not to some other local driving factor. The confounding influences of multiple drivers make attribution of observed responses to regional climate change more difficult. Second, the observed regional climate change must be attributed to anthropogenic causes with a similar degree of confidence.

Following the definition of climate change attribution above, the attribution of changes in these systems to regional climate change involves statistical analysis and the assessment of multiple lines of evidence to demonstrate that the observed changes are:

- unlikely to be due entirely to natural internal climate variability or natural variability of the system;
- consistent with the estimated biophysical response to a given regional climate change; and
- not consistent with alternative, plausible explanations of the observed change that exclude regional climate change.

Then joint attribution of the observed change in natural or managed systems to anthropogenic climate change involves both the attribution of the observed change to regional climate change and the attribution of the regional climate change to anthropogenic causes. This process usually
involves linking regional climate change simulations from climate models with the expected response in the system, either through biophysical or statistical models or statistical assessment. Confidence in joint attribution statements must be lower than the confidence in either of the individual attribution steps alone due to the combination of the two separate statistical assessments.

1.2.1 Climate and non-climate drivers of change

Both climate and non-climate drivers affect sectors and systems. While climate is an important factor in some systems, a large number of non-climatic drivers influence observed responses of sectors and systems to climate variations, making analysis of the role of climate in observed changes challenging. Non-climatic drivers can influence systems and sectors directly and/or indirectly through their effects on climate variables such as albedo and soil-moisture regimes. Socio-economic processes, including land-use change (e.g., forestry to agriculture; agriculture to urban area) and land-cover modification (e.g., ecosystem degradation or restoration) are of major importance in affecting change in multiple systems and sectors. Furthermore, many systems and sectors are affected by various aspects of pollution (e.g., in the atmosphere, soil, and water).

1.2.1.1 Climate drivers of change

Climate is a key factor determining the characteristics and distributions of natural and managed systems, including the cryosphere, hydrology and water resources, marine and freshwater biological systems, terrestrial biological systems, agriculture, and forestry. For example, temperature is known to strongly influence the distribution and abundance patterns of both plants and animals, due to the physiological constraints of each species (Parmesan and Yohe 2003; Thomas et al. 2004). The dramatic changes in the distribution of plants and animals during the ice ages illustrate the way that climate can determine the distribution of species. Similarly, the geographical distribution of plants and animals in the current climate can vary greatly over short distances where there are large spatial variations of temperatures, such as cooler regions at higher elevations. Equivalent effects can be observed in other systems and sectors, such as the cryosphere. Hence, changes in temperature due to climate change are expected to be one of the important drivers of change in natural and managed systems.

Many aspects of climate are important in determining the characteristics and distributions of systems, including temperature and rainfall, and their variability on all time scales from days to the seasonal cycle to interannual variations. While changes in all of these aspects of climate may drive changes in systems, we focus on the climate parameters for which it is easiest to identify changes as a possible response to anthropogenic forcing (with the largest signal-to-noise). Mean temperature (including daily maximum and minimum temperature) and the seasonal cycle in temperature over relatively large spatial areas show the clearest signals of change in the observed climate (IPCC 2001). Precipitation has much larger variability than temperature on most space and time scales, and it is therefore much more difficult to identify as a clear driver of changes in systems.

The climate in many regions has large multi-decadal variations, such as the Pacific decadal oscillation (PDO and decadal variations of El Niño-Southern Oscillation (ENSO)), or the Atlantic multi-decadal oscillation (AMO and decadal variations of the North Atlantic Oscillation (NAO)). These are associated with temperature and rainfall variations that may lead to changes in natural and managed systems. Hence, studies of observed changes that only span several decades may be able to attribute these changes to regional climate variations, but may not be able to separate the response to multi-decadal climate variations from that due to longer-term climate change.
There are a number of other possible climatic drivers of changes in natural and managed systems. These include increases in carbon dioxide concentration in the atmosphere, which aids growth in a large group of plants but also leads to increased acidity in the oceans, and changes in solar radiation due to changes in clouds or aerosol amounts, which affect photosynthesis. Global dimming, related to observed reductions in solar irradiance at the surface, has been assessed by Working Group I (Jones et al. 2007) and has not continued after about 1990 (IPCC, 2007, Vol. 1).

1.2.1.2 Non-climate drivers of change

Non-climate drivers, such as land use, land degradation, urbanization, and pollution, affect systems and sectors directly and indirectly through their effects on climate (Table 1.1). These drivers can operate independently or also in association with one another (Lepers et al. 2004). Complex feedbacks and interactions occur on all scales from local to global.

Table 1.1: Examples of direct and indirect effects of non-climate drivers.

<table>
<thead>
<tr>
<th>Non-climate driver</th>
<th>Examples</th>
<th>Direct effects on systems</th>
<th>Effects on climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological processes</td>
<td>Volcanic activity, earthquakes, tsunamis</td>
<td>Lava flow, mudflows (lahars), ash fall, shock waves, coastal erosion, enhanced surface and basal melting of glaciers, rockfall and ice avalanches</td>
<td>Cooling from stratospheric aerosols, change in albedo</td>
</tr>
<tr>
<td>Land-use change</td>
<td>Conversion of forest to agriculture</td>
<td>Declines in wildlife habitat, biodiversity loss, increased soil erosion, nitrification</td>
<td>Change in albedo, lower evapotranspiration, altered water and heat balances (e.g. Bennett and Adams 2004)</td>
</tr>
<tr>
<td>Urbanization and</td>
<td>Urbanization and transportation</td>
<td>Ecosystem fragmentation, deterioration of air quality, increased runoff and water pollution</td>
<td>Change in albedo, urban heat island, local precipitation reduction, downwind precipitation increase, lower evaporation (e.g. Weissflog et al. 2004)</td>
</tr>
<tr>
<td>transportation (e.g.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalnay and Cai 2003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afforestation (e.g.</td>
<td>Afforestation</td>
<td>Restoration of vegetative cover</td>
<td>Change in albedo, altered water and energy balances, carbon sequestration</td>
</tr>
<tr>
<td>Rudel et al. 2005)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land-cover modification</td>
<td>Ecosystem degradation (desertification)</td>
<td>Reduction in ecosystem services, reduction in biomass</td>
<td>Changes in microclimate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(e.g. Nyssen et al. 2004)</td>
<td>(e.g., Su et al. 2004)</td>
</tr>
<tr>
<td>Invasive species</td>
<td>Eucalyptus (Australia), tamarisk (US), Alaska lupin (Iceland)</td>
<td>Reduction of biodiversity, salination</td>
<td>Change in water balance (e.g. Ladenburger et al. 2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution</td>
<td>Tropospheric ozone, toxic waste, oil spills,</td>
<td>Reduction in breeding success, species mortality, reduction in biodiversity, health impairment</td>
<td>Direct and indirect aerosol effects on temperature and albedo</td>
</tr>
<tr>
<td></td>
<td>exhaust, pesticides and herbicides (e.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pagliosa and Barbosa 2006)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Socio-economic processes that drive land-use change include population growth, economic development, trade, and migration; these processes can be observed and measured at global, #103

Deadline for submission of comments: 21 July 2006
regional, and local scales (Goklany 1996). Earth observations from satellite and published statistical
data demonstrate that land-use change, including that associated with the current rapid economic
development in Asia and South America, is proceeding at an unprecedented rate (Rindfuss et al.
2004). Land-use changes influence albedo, energy budget and evaporation, which can be quantified
in terms of radiative forcing. Some studies have linked land-use change with changes in the
planetary energy and water balances, as well as to changes in air quality and pollution that affect
report that the impact of land-use changes on climate is greatest in Southeast Asia and in parts of
Central and South America. Land-use and land-cover change can also strongly magnify the effects
of extreme climatic events, both on direct health outcomes (e.g., heat mortality, injuries/fatalities
from storms, and ecologically mediated infectious diseases (Patz et al. 2005). Intensification of land
use, as well as the extent of land-use change, is also affecting the functioning of ecosystems and
hence on emissions of greenhouse gases from soils, such as carbon dioxide and methane (NASA
2004).

There are also a large number of socioeconomic factors that can influence, obscure or enhance
observed impacts of climatic change and must be taken into account when seeking the climatic
signal or explaining observations of impacts and even adaptations. For example, the effects of sea
level rise and extreme events are much greater when they occur in regions with growing
populations, inadequate infrastructure, or high property prices (Pielke et al. 2003). The observed
impacts of climate change on agriculture are largely determined by the ability of producers to
access or afford irrigation, alternate varieties, markets, insurance, chemicals and agricultural
extension, or to abandon agriculture for alternate livelihoods (Eakin 2000). The health impacts of
climate change are influenced by demography (the elderly and very young), poverty (access to air
conditioning), preventive technologies (pest control, immunization) and healthcare institutions.

1.2.2 Data

Records typically decades in length are preferable for obtaining reliable findings of observed
changes related to climate trends.

Ground-based observations. Depending on the sector and system assessed (see 1.3), variable
quantities of data in time and space are available in different locations around the globe, some of
which have been collected for other purposes. The availability of suitable long-term geophysical
and biological data is unbalanced, leading to reported examples predominantly from the Northern
Hemisphere. Many data sources have not been fully tapped, such as fishery by-catch records,
observations from botanical gardens and agricultural research stations, photographic archives
(including aerial photography), and indigenous knowledge. Often these sources are not widely
accessible as the records are not archived, or exist only on paper or in restricted formats, rather than
in digital and easily-accessed form. However, in the last five to seven years, the number of studies
investigating evidence of climate-related changes has markedly increased.

Systematically collected network data (e.g., plant data from >120 000 locations monitored
throughout Europe (Menzel et al. 2006) allow simultaneous analysis of responses and non-
responses of many species or indicators over large areas. Investigating a suite of processes or
species at numerous locations, such as all species of a given taxa in one area (e.g. Parmesan and
Yohe 2003), also allows analysis of indicators or species with and without change. Examining one-
to several species or indicators at one or various locations provides understanding of how those
species that are changing are shifting relative to warming (e.g. Root et al. 2003). Data from
individual sites tend to have longer time series, whether continuously or intermittently monitored.
Together, these methods provide information on how a wide array of species from many regions are responding to climate warming

Remote sensing. Remote sensing, mainly by satellite (but also by conventional air photography) is a significant tool for observing changes in various systems and sectors at regional and global scales. Beginning with Landsat in 1973, time series of remote sensing data are now long enough to detect significant changes in terrestrial vegetation and marine productivity. Remote sensing is also used to characterize changes in glacier, snow, sea ice and freshwater ice extent from passive microwave data, radar observations from Radarsat or ERS and more recently from airborne and satellite-based laser altimetry (IceSat). High-resolution satellite imagery combined with geoinformatics are increasingly used now for observing, anticipating and assessing rapidly changing hazards related to snow, glaciers and permafrost in cold mountain regions (Huggel et al. 2004; Huggel et al. 2005; Kaab et al. 2005). Land-use changes are also observable from low-resolution sensors such as VEGETATION on SPOT 4 and 5, MODIS on Aqua and Terra, and MERIS on ENVISAT. However, time-series from these systems are only several years at present. Over time, they will allow quantification of geographical shifts in vegetation and temporal changes in phenology, productivity, forest fires, etc.

A common application is the estimation of net primary productivity (through vegetation indices derived from reflectances in different wavelengths) (Fig. 1.1a) and the derivation of the mean absorbed fraction of Photosynthetic Active Radiation (PAR) (Nemani et al. 2003). These often rely on data from the NOAA-AVHRR satellites in operation from about 1980. A limitation in remotely sensed data lies in the lack of continuity and consistency in spatial and spectral resolution from successive sensors. This makes quantitative direct inter-comparison and calibration among sensors difficult and requires careful implementation of data processing and spectral normalization techniques (Trishchenko et al. 2002; Trishchenko et al. 2002; Cihlar et al. 2004). Significant progress in this direction has enabled an assessment of changes in Northern Hemisphere forest productivity (Zhou, Tucker et al. 2001) (see 1.3.6), although additional analyses are still required to determine the magnitude of changes more precisely (Lanfredi et al. 2003; Simoniello et al. 2004; Stockli and Vidale 2004).

To measure changes in the marine biological systems, the historical Coastal Zone Colour Scanner (CZCS) record (1972-1986) was reconstructed (Gregg and Conkright 2002) to achieve compatibility with the modern Sea-viewing Wide Field-of-view Sensor (SeaWiFS; 1997-present. Application of blending methodologies (Gregg and Conkright 2001; Gregg and Conkright 2002) where in situ data observations are merged with the satellite data, provide improvement of the residual errors of both the CZCS and SeaWiFS. The re-analyzed, blended satellite-in situ chlorophyll data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production from the early-to-mid 1980s to the present (Fig. 1.1b)(Gregg et al. 2003).

1.2.3 Methods and Confidence

Where long data series exist, detection of trends or changes in systems or sectors attributes that are beyond natural variability has most commonly been made with regression, correlation, and time-series analyses. When data exist from two (or more) discontinuous time periods, two-sample tests have frequently been employed. Testing is also done for abrupt changes and discontinuities in a data series. Regression and correlation methods are frequently used in the detection of a relationship of the observed trend with climatic variables. Methods also involve studies of process-level understanding of the observed change in relation to a given regional climate change, and the examination of alternative explanations of the observed change, such as land-use change. The analysis of process-level
understanding sometimes involves comparison of observations to climate-driven model simulations.

1.2.3.1 Statistical techniques

Continuous and discontinuous data series, collected or summarised on an annual basis, are typically examined for evidence of trend using statistical analysis, with calculation of a significance level, i.e., the confidence of a real trend being present rather than occurring by chance from random data. These types of studies include those reporting data on species over long periods (e.g., Abu-Asab et al. 2001; Visser et al. 2003), covering wide geographic areas (e.g. Menzel and Fabian 1999; Sanz 2003), and spanning a number of different variables such as multi-taxa (e.g. Bradley et al. 1999; Ledneva et al. 2004). Autocorrelation in data series can be overcome by using time-series analyses that specifically take into account the dependencies between successive data values. Abrupt change in a data series can be identified by change-point analysis, including Bayesian techniques (Dose and Menzel 2004).

Figure 1.1: (a) Estimated Changes in Net Primary Productivity (1982-1999) derived from independent NDVI data sets from the Global Inventory Monitoring and Modelling Studies (GIMMS) and Pathfinder Advanced Very high Resolution Radiometer Land (PAL). (b) Global Ocean Productivity, from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) era (1997-mid 2002), the Coastal Zone Colour Scanner (CZCS) era (1979-mid 1986), and the difference. White indicates missing data. Units for both are g C m⁻² y⁻¹ (Gregg et al. 2003; Nemani et al. 2003).
Even when data exist as a series, researchers have sometimes chosen to compare results from an early group of years with a more recent group of years, when a step change in the recorded variables may have been consistent with a step change in temperature (Fitter and Fitter 2002; Butler 2003). When data do not form a series of observations but derive from two time points, typically recent and older in time, two sample comparisons as noted above may still be possible. An alternative approach is to count the number of changes in a certain direction. If no change has occurred then equal numbers of positive and negative changes would be expected.

For evidence of climatic response, methods include (i) correlation with multiple climatic variables, (ii) examining trends through time and (iii) a comparison between two different periods in time. Some authors suggest an approach that combines empirical and process-based evidence for detecting a climate influence on living organisms (Sparks and Tryjanowski 2005). While many phenological models are based on regressing an observed phenological event against temperature measured over a fixed period, such models are unable to represent within-population variation in phenology. Gienapp (Munich Re Group 2005) have proposed a ‘proportional hazards model’ to describe phenology and illustrate it with an example from breeding time in birds.

1.2.3.2 Analysis of evidence of no change

In many biological field studies, species within an area are not fully surveyed, nor is species selection typically based on systematic or random sampling. Thus analyses of those species showing no change are incomplete. An exception are studies that rely on network data (an example analysis might be change in spring green-up of a number of species recorded in botanical gardens across a continent (Menzel and Fabian 1999)). Analysis of change and no-change within network data provides (1) a check on the accuracy of the use of the indicator for global warming and (2) the ability to check for ‘false positives,’ i.e., changes observed where no significant temperature change is measured. The latter can help to elucidate the role of non-climate drivers in the observed changes.

Such tests are useful for joint attribution studies (1.4.2.3), where changes are classified into expected/unexpected direction/no change, and related to the warmer/cooler/no change of regional temperature. The accuracy rate of the indicators can also be assessed quantitatively by comparing direction and degree of change. A recent global meta-analysis of studies of one or many species exhibiting significant changes applied this approach of systematically comparing directions of species’ and climate changes (Root et al. 2003). Comparison of degrees of change (including no change) have been performed, for example, in two large continental phenology studies for Europe, where variations in spring temperature trends were mirrored by varied advancement of different plant characteristics (Menzel et al. 2006) and by varied advancement of egg laying in flycatchers (Both et al. 2004).

The analysis of evidence of no change is also related to the question of publication or assessment bias: Studies may be more likely to be submitted and published when a significant, directional effect is found and less likely when no changes are found, with a result that the ‘no change’ case may be underrepresented in the published literature. However, in contrast to single-species in single-location studies, multiple species in a single location and single or multiple species in larger-scale studies are less likely to focus only on species showing change. The latter studies systematically include sub-regions with no-change (e.g., no change in the number of frost days in the south-eastern USA(Feng and Hu 2004), little or no change in spring onset in continental eastern Europe (Ahas et al. 2002; Schleip et al. 2005) or sub-groups of species with no change (Butler 2003; Strode 2003)).

The percentage of sites exhibiting ‘no change’ can be assessed by large-scale network studies (e.g., see 1.4.1.1 Menzel et al. 2006), although site selection depends on network characteristics. For investigations of a suite of processes or species at numerous locations, the reported ratio of how
many species are changing over the total number of species rests on the assumptions that all species in the area have been examined and that species showing no change do not have a higher likelihood of being overlooked. Both multi-species network data and studies on groups of species may be used to investigate the resilience of systems and possible time-lag effects. These are important processes in the analysis of evidence of no change.

1.3 Observed Changes in Systems and Sectors

The following sections assess studies that have been published since the TAR of observed changes in the cryosphere, hydrology and water resources, coastal processes and zones, freshwater and marine biological systems, terrestrial biological systems, agriculture and forestry, human health, and disasters and hazards. In some cases, studies published before the TAR have been included, either because they have not been cited in the TAR, or because they have been considered to contain relevant information. The sections describe climate and non-climate driving forces for the system or sector, assesses the evidence regarding observed changes in key processes, highlights issues regarding the absence of observed changes and conflicting evidence, and considers how the evidence of change relates to adaptation and vulnerability.

1.3.1 Cryosphere

The cryosphere reacts sensitively to present and past climate changes. The main components of the cryosphere are mountain glaciers and ice caps, floating ice shelves and continental ice sheets, seasonal snow cover on land, frozen ground, sea ice and lake and river ice. In Chapter 4 of WGI, the changes in the cryosphere since the TAR are described in detail, including the description of climate and non-climate forcing factors and mechanisms. Here we concentrate on the effects of recent cryospheric changes on the environment and on human activities.

There is abundant evidence that the vast majority of the cryospheric components are undergoing generalised shrinkage in response to warming. Moreover, in several cases the shrinkage shows an accelerated trend in recent decades, consistent with the enhanced observed warming. A few cases where cryospheric components show current growth are also described (e.g., in the interior of the ice sheets and in a few maritime glaciers). Here only brief description is made of sea level rise due to cryosphere reduction. Its detailed characteristics, trends and effects are found in Section 1.3.3 (Coastal processes and zones), in Chapter 6, in the regional chapters (e.g. Chapter 15), and in WGI (Chapter 4 and Chapter 5).

1.3.1.1 Effects of changes in mountain glaciers and ice caps

Mountain glaciers and ice caps show a generalised recession and shrinkage in response to warming, in many cases with accelerated trends in the last 2 decades (Box 1.1). In the case of the retreat of mountain glaciers and ice caps there is ample evidence suggesting that the 20th century recession is outside the range of normal climate variability of the last several millennia (e.g. Haeberli 2003; EEA 2004). A few maritime glacier areas are advancing due to increased local and regional precipitation in Norway and New Zealand (Chinn et al. 2005), although in the last few years the mass balance of small Norwegian glaciers started diminishing, while that of larger glaciers still increases, suggesting a reversal. In southern South America, a few glaciers are also advancing, presumably related to increased precipitation, (Holmlund and Fuenzalida 1995; Skvarca and Naruse 1997; Rivera et al. 2002). Effects of changes in mountain glaciers and ice caps have been documented, for example, in runoff, ocean freshening, sea level rise, and changing hazard conditions (Haeberli 2002).
Box 1.1: The Retreat of Chacaltaya Glacier and its Effects

The observed general glacier retreat in the warming tropical Andes has accelerated significantly in the last decades (Coudrain et al. 2005). The retreat is particularly dramatic for the small-sized glaciers, such as the Chacaltaya Glacier in Bolivia (16°S), whose area in 1962 was 0.20 km², and has reduced presently (2005) to less than 0.04 km² (Fig. 1.2) (Ramírez et al. 2001; Coudrain et al. 2005). Current estimates show that Chacaltaya Glacier may disappear completely before 2010. In the period 1992-1998 the glacier suffered the loss of 40% of its average ice thickness, and 67% of its volume, with a surface area reduction >40%. The equilibrium line altitude is located now above the upper reaches of the glacier (>5360 m), resulting in a continuous year-round exposure to ablation. About 80% of the glaciers in Bolivia have an area <0.5 km² (Jordan 1991), so a rapid shrinkage of these glaciers similar to Chacaltaya can be expected.

The link of glacier mass balance changes to meteorological conditions is more complex for tropical glaciers than for glaciers located in mid- and high-latitudes, since factors controlling albedo such as the duration of dry events, precipitation and humidity, might be equally or more important than local temperature (Sicart et al., 2003). However, the fast glacier shrinkage in the tropics seems to be consistent with an upward rise of the 0°C isotherm and thus of the equilibrium line.

Ice melt from Chacaltaya Glacier, located in Choqueyapu basin, provides part of the water resources to the nearby city of La Paz, allowing release of water stored as ice throughout the long and dry winter season (April-September). Many basins in the tropical Andes have experienced an increase in runoff in recent decades, while precipitation has remained near-constant, or with a tendency to decrease (Coudrain et al. 2005). This short-term increase in runoff is interpreted as the consequence of glacier retreat, but in the long-term there will be a reduction in water supply as the glaciers shrink beyond a critical limit (Janssens et al. 2003).

Chacaltaya Glacier, with a mean altitude of 5260 m above sea level, was until very few years ago the highest skiing station in the world. After the accelerated shrinkage of the glacier during the 1990s, Bolivia lost its only ski area directly affecting the development of snow sports and recreation in this part of the Andes where glaciers are an important part of the cultural heritage.
Increased glacial runoff. Many small glaciers in mid and low latitudes are disappearing, with consequences for water resources (e.g., in the Alps, Andes, central Asia, and the Arctic – see Chapter 4 in WGI). Increases in glacial melt lead at first to increased river runoff and discharge peaks and increased melt season (Boon 2003; Juen 2003; Hock 2005; Hock 2005), which can be sustained in the medium term (years-to-decades) depending on glacier size. In the longer range (decadal-century scale), glacier wasting is amplified by positive feedback mechanisms and glacier runoff starts decreasing (Janssens et al. 2003), although there is no significant evidence for this yet. Enhanced glacial melt can produce increased glacier lubrication at the bed and subsequent glacier flow acceleration, which can result in glacier creep thinning. This may be happening already for example in Patagonia and Alaska (Arendt 2002; Rignot 2005).

Glacier hazards. Formation of large lakes is occurring as glaciers retreat from prominent Little Ice Age moraines, especially in the steep Himalayas (Yamada 1998; Mool et al. 2001; Mool et al. 2001) and the Andes (Ames and et al 1989; Kaser 2001; Kaser and Osmaston 2002). At the same time, thawing of buried ice is destabilizing these moraines. These lakes thus have a high potential for Glacier Lake Outburst Floods (GLOFs). Governmental institutions in the respective countries (Nepal, Bhutan, Peru) have provided extensive safety work and many of the lakes are now either solidly dammed or drained. It is estimated that 20 potentially dangerous glacial lakes still exist in Nepal and 24 in Bhutan (Yamada 1998), several in the Cordillera Blanca and other Peruvian Cordilleras, recommending vigilance. The temporary increase in glacier melt can also produce enhanced GLOFs, as has been reported in Chile (Peña and Escobar 1985). High-resolution satellite imagery combined with geoinformatics are increasingly used now for observing, anticipating and assessing rapidly changing hazards related to snow, glaciers and permafrost in cold mountain regions (e.g. Huggel et al. 2004; Huggel et al. 2005; Kaab et al. 2005).

Sea level rise. Global glacier volume losses show significant acceleration since the end of 1980s (Meier et al. 2003), including Alaska (e.g. Arendt 2002), Patagonia ice fields (e.g. Rignot 2003), North Western USA and Canada (e.g. Bidlake et al. 2005), High Mountain Asia (e.g. Aizen et al. 2006) and in the Arctic (e.g. Abdalati et al. 2004). For a global dataset of ~30 glaciers in 9 mountain ranges, the average annual glacier thinning in 1993/2003 was ~0.75 m/y of water equivalent (w.e.), which is about three times the average thinning in the period 1980-1993 (WGMS 2005). In Chapter 4, WG1, the best estimation of the contribution of glaciers and ice caps to sea level rise, including the peripheral ice masses around Greenland and Antarctica, is 0.35 ± 0.26 mm/yr in 1960/61-1991/1992, rising to 0.81 ± 0.43 mm/yr in the period 1992/93-2002/2003 (Ohmura 2004; Cogley 2005; Dyurgerov and Meier 2005). Recent sea level estimates for the ice sheets show an increased contribution in Greenland from 0.23 ± 0.08 mm/year in 1996 to 0.57 ± 0.1 mm/year in 2005 (Rignot and Kanagaratnam 2006), and a positive overall contribution from Antarctica of 0.4 ± 0.2 mm/year (Velicogna and Wahr 2006). In Chapter 5, WGI, total sea level rise reported during 1961-2003, including thermal expansion and other causes, is 1.8 ± 0.5 mm yr⁻¹, while in 1993-2003 it is 3.1± 0.8 mm yr⁻¹ (95% confidence intervals). That is, glaciers, ice caps and ice sheets have contributed during the last decade a total of 1.78 ± 0.73 mm yr⁻¹, equivalent to ~57% of global sea level rise.

Impact on Earth’s gravitational field and crustal uplift. The main component of the Earth’s obliquity, known as J2, is decreasing on a secular time frame, due to tidal friction, post-glacial rebound and other causes (e.g. Munk 2002), which causes an acceleration of the Earth’s rotation rate. In 1998 J2 began to increase, which has been suggested to be partially due to accelerated melting of northern hemisphere mountain glaciers, ice caps and the Greenland ice sheet (Dickey 2002; Ivins and Dyurgerov 2004). Recent glacier melting is also resulting in local and regional crustal uplift in Alaska and other mountain regions (Larsen 2005).
Obliteration of paleoclimatic records. Stable isotope oxygen species from high altitude records in Tibet and the Andes have enriched significantly after 1800, showing that the last 50 years have been warmer than anytime during the last 1000 years. In Quelccaya Ice Cap, Peru, firn and ice melting after the 1970s has resulted in water percolation and mixing of chemical species that is destroying a valuable climate record of ~1500 years of past climate (Thompson et al. 2003).

Plant and animal colonisation. Enhanced colonisation of plants and animals in deglaciated terrain is a direct effect of glacier and also snow retreat (e.g. Jones 2003). Although changes due to other causes such as introduction by human activities, increased UV radiation, contaminants and habitat loss might be important (e.g. Frenot et al. 2005), a widespread “greening” has been reported in relation to warming in the Arctic and also in the Antarctic Peninsula, which is discussed in more detail in 1.3.5.

Landscape alteration, tourism and mountain sports. Glacier retreat causes striking changes in the landscape, which has affected living conditions and local tourism in many mountain regions around the world (Watson and Haeberli 2004; Mölg et al. 2005). A loss of ice climbs and associated reduction in sport has been reported in several mountain ranges in the Andes and the Alps, and in Africa (Bowen 2002).

1.3.1.2 Effects of changes in ice shelves

The ice shelves of the Antarctic Peninsula and in the Canadian Arctic, most of which are several thousand years old, are not just retreating but are also undergoing rapid collapse (Scambos 2004) and (Mueller et al. 2003) in response to regional warming. Because they are already floating, melting of ice shelves does not contribute to sea level rise. However, the collapse of ice shelves has resulted in many cases in significant flow acceleration of inland glaciers (Scambos 2004) which can contribute to sea level rise.

1.3.1.3 Effects of changes in ice sheets

There is evidence for increased snow accumulation in both the interior of Greenland (Johannessen et al. 2005) and East Antarctica (Davis et al. 2005). In spite of this increased accumulation, Greenland is overall losing mass due to glacier flow acceleration (Rignot and Kanagaratnam 2006) and peripheral thinning (Krabill et al. 2004). A large part of West Antarctica in the Amundsen Sea sector is rapidly losing mass (Thomas et al. 2004), and there is recent evidence that a significant mass reduction of the Antarctic ice sheet is occurring, largely as a result of thinning and acceleration near the coast, with a major contribution from West Antarctica (Velicogna and Wahr 2006). Sea level rise estimates for the ice sheets are summarised in section 1.3.1.1. The enhanced flow of the ice streams and glacier systems in Greenland and Antarctica is most probably a result of a combination of the collapse of their respective ice shelves and increased basal water lubrication (Zwally et al. 2002; Thomas et al. 2003; Rignot et al. 2004; Rignot and Kanagaratnam 2006). This can result in increased production of iceberg calving, which can in turn affect sea navigation, although no clear evidence for this exists yet.

1.3.1.4 Effects of changes in snow cover

There is a general worldwide decrease in recent decades of snow cover extent in spring, which is well reported for the Northern Hemisphere, including western North America (Armstrong and Brodzik 2001), Eurasia (Ueda 2003) and the Alps (Laternser and Schneebeli 2003). Snow-cover depth in western North America also shows a spring reduction at 75% of the sites measured since
1950 (Mote et al. 2005). There are a few high-latitude areas, such as Finland and the former Soviet Union, where increases in winter precipitation have resulted in a larger snow-cover extent in mid-winter (Kitaev et al. 2002; Hyvärinen 2003). In the Southern Hemisphere, a substantial decline in snow cover and snow depth has been measured in Australia, particularly in spring (Nicholls 2005), and an increase in the zero-degree isotherm altitude has been reported in central Chile, which is thought to have resulted in a corresponding snowline rise (Carrasco et al. 2005).

Earlier snow melt. A direct consequence of the reduced snow cover is that spring peak river flows are occurring earlier, which is well reported for Western United States (Cayan 2001; Regonda et al. 2005), for western North America in general (Stewart et al. 2005), Alaska (Stone et al. 2002; Hodgin et al. 2003), central Canada (Dery and Wood 2005), and northern Eurasia (Yang et al. 2002; Ye and Ellison 2003). There is also evidence for increase of winter base flow in northern Eurasia and North America (e.g. Yang et al. 2002). More detailed references are presented in section 1.3.2.

Ski areas. There is a measured trend towards less snow at low altitudes which is affecting ski areas, including the Alps of Switzerland and Austria, (Breiling 1998; Elsasser and Messerli 2001; Steininger et al. 2002; Beniston 2003; Beniston 2004), the eastern US (Hamilton et al. 2003), southern Canada (Scott et al. 2003), Australia (Nicholls 2005) and central Chile (Casassa et al. 2003).

1.3.1.5 Effects of changes in frozen ground

Frozen ground includes permafrost, near-surface soil affected by short-term freeze-thaw cycles, and seasonally frozen ground. Permafrost shows a general warming trend and degradation (i.e., decrease in thickness and areal extent) during the last century (Romanovsky 2002; Harris 2003), mainly in response to climate warming, in many cases with evidence for acceleration (Camill 2005). Strong evidence for this warming is provided by temperature increase in deep borehole records in the Northern Hemisphere (Chapter 4, WGI). The active layer, that is, the ground above permafrost that seasonally thaws and freezes, has shown a significant thickening in many regions (Frauenfeld 2004). Large degradation has been detected in permafrost in Alaska since 1982, in areas that have been previously stable for thousands of years (Jorgenson et al. 2006). In areas with no permafrost, the thickness of seasonally frozen ground has decreased in many regions of northern Russia (Frauenfeld 2004). In the Southern Hemisphere no conclusive data are yet available.

Impacts on surface runoff. Degradation of seasonally frozen ground and permafrost and increase in active-layer thickness should result in increased importance of surface water (for example, in wetlands and pond formation in thermokarst and groundwater in the local water balance (McNamara et al. 1999), as has been detected in Alaska (Yoshikawa and Hinzman 2003), and in Siberia (Smith et al. 2005). Thickening of the active layer is thought to be partly responsible for increased river runoff in central Asia (Zhang et al. 2004). More details are presented in 1.3.2.

Vegetation and wetland changes. Permafrost and frozen ground degradation are resulting in an increased areal extent of wetlands in the Arctic, with an associated “greening”, i.e. plant colonization (see 1.3.1.1 and 1.3.5). Wetland increase might produce increased release of carbon to the atmosphere in the future (e.g. Lawrence and Slater 2005), but this has not been documented. Wetland changes also affect the fauna (refer to 1.3.5).

Infrastructure damage. Permafrost warming and degradation together with an increasing depth of the active layer cause mechanical weakening of the ground, and ground subsidence and formation of thermokarst have a weakening effect on existing infrastructure such as buildings, roads, airfields and pipelines (Couture 2000; Nelson 2003). There is significant evidence of structures in North
America and Siberia that have already been affected by thawing, for example in Alaska (USARC 2003), in Canada (e.g. Allard et al. 2002), and in Russia (e.g. Nelson et al. 2002) although in a few cases at least part of the thawing may be attributed to urbanization and heat-island effects (Tutubalina and Ree 2001; Hinkel et al. 2003). Permafrost melting has also produced increased coastal erosion in the Arctic (e.g. Beaulieu and Allard 2003). This is described in detailed in section 1.3.3.

Slope stability problems. Thawing and deepening of the active layer in high-mountain areas can produce slope instability and rock falls (Watson and Haeberli 2004), which in turn can trigger outburst floods. A reported case is the exceptional rock fall activity in the Alps during the 2003 summer heat wave, when the active layer in the Alps deepened significantly, from 30% to 100% of the depth measured before the heat wave (Noetzli J. 2003; Gruber et al. 2004; Schar et al. 2004). In the Andes, rockfall activity has occasionally triggered outburst floods (Casassa 1993; Carey in press), but there is no evidence of increased activity in the last few decades.

1.3.1.6 Effects of changes in sea-ice

Arctic sea ice has reduced significantly in the last few decades, with a decline of ~3% per decade in the annual mean extent since 1978 (Comiso 2003), which is consistent with the observed atmospheric warming. In the Antarctic as a whole, although there are regional variations, with some regions showing reductions, sea-ice coverage has increased somewhat since the late 1970s, although at a much lesser rate than the Arctic sea-ice reduction (Comiso 2003).

Reduced sea ice will probably result in increased navigation and possibly a rise in offshore oil operations (ACIA 2004), but there are no quantitative data to support this. Geopolitical interest in the Arctic Ocean has increased in recent years as a result of sea ice reduction and increased shipping access, as is the case for example of the Danish and Canadian territorial claims over Hans Island in Nares Strait, off the north-western coast of Greenland. Together with the reduction in sea ice, previously unchartered islands have been discovered (Mohr and Forsberg 2002), which can be relevant for territorial and ocean claims.

Ecosystem impacts

There are several changes in the polar marine ecosystems which have been related to reduction of sea ice and ocean freshening. For example, a reduction of krill biomass and increase in salps has been reported near the Antarctic Peninsula region and linked with sea ice reduction (Loeb et al. 1997; Atkinson 2004). In the Arctic, marine algae have died in the period 1970-late 1990s and have been replaced by less productive algae species usually associated with freshwater (ACIA 2004). There are also impacts on Arctic mammals (ACIA 2004). More detailed description of impacts in given in Section 1.3.4.5.

Ocean freshening and circulation

There is some evidence for freshening of North Atlantic waters (Curry et al. 2003; Curry and Mauritzen 2005), which is probably a combination of reduced sea-ice formation and sea-ice melting, glacier, ice sheet and ice shelf melt, increased precipitation, and increased river runoff to the Arctic ocean (Dickson et al. 2002). In the Ross Sea there is also evidence for freshening (Jacobs et al. 2002). The Atlantic meridional overturning circulation (MOC) has weakened by ~30% in 1985-1995 (Bryden et al. 2005), which also suggests that a reduced thermohaline circulation (THC) is occurring in the North Atlantic. This in turn may imply a reduced inflow of warm Atlantic water to the Nordic seas, which could result in colder climate in the North Atlantic. However, the slow-down of the THC might also be expected to give rise to an increase in salinity difference, thus enhancing the THC (Wu et al. 2004).

1.3.1.7 Effects of changes in lake and river ice
Seasonal variations in lake and river ice are relevant in terms of freshwater hydrology, freshwater ecosystems and human activities such as ice skating, winter transportation, bridge and pipeline crossings. In addition to the forcing caused by temperature changes, lake and river ice is very sensitive to changes in snow cover which acts as a natural thermal insulator. There is abundant evidence for a spatial reduction of lake and river ice for North America and Siberia (Prowse 2002; ACIA 2004).

The freezing season of lakes and rivers has been reduced by one to three weeks in the Arctic over the past 100 years (ACIA 2004), with evidence of earlier timing of freshwater ice break-up (Bonsal and Prowse 2003). In the Southern Hemisphere there is some historical knowledge of reduction of lake ice, but there is a lack of scientific evidence. Over the last 150 years, spring breakup dates for large lakes and rivers in North America, Europe, and Asia are around 10 days earlier and freeze dates are around 9 days later, with reduced thickness and areal ice cover (Schindler et al. 1990; Magnuson et al. 2000; Hodgkins et al. 2002; Yoo and D’Odorico 2002; Assel et al. 2003; Huntington et al. 2003; Todd and Mackay 2003; Hodgkins et al. 2005; Schindler et al. 2005).

Impacts due to changes in lake ice and river ice. Lake thermal structure and quality/quantity of under-ice habitation lakes have been reported, as well as changes in suspended particles and chemical composition (Wrona 2005). Changes in earlier ice-out date have been reported which can have relevant effects on lake ecology, such as summer oxygen depletion rate (Stewart 1976), abundance and productivity of phytoplankton (Maeda and Ichimura 1973), and organisms at higher trophic levels (Porter et al. 1996). In rivers, earlier and more intense melt conditions can result in significant breakup events due to ice jamming, which can, in turn, result in severe flooding (Prowse 2002), but there is a lack of scientific evidence that this is already happening. Changes in river ice dynamics may have ecological effects on aquatic biota (Scrimgeour et al. 1994) and on riparian vegetation (Prowse 2002). More detailed discussions are presented in 1.3.2 and 1.3.4.

1.3.1.8 Evidence of adaptation and vulnerability in the cryosphere

Modes of human response to climate change, including warming, are just beginning to be systematically documented in the cryosphere (MacDonald et al. 1997; Krupnik and Dyanna 2002; Huntington and Fox 2004). The impacts associated with these changes are both positive and negative, and are most pronounced in relation to the migration patterns, health, and range of animals, plants and birds that indigenous groups depend on for their livelihood and cultural identity. Responses vary by community and are dictated by particular histories, perceptions of change and the viability of options available to groups (Ford and Smit 2004; Helander and Mustonen 2004). In Sachs Harbor, Canada, responses include individual adjustments to the timing, location and methods of harvesting animals as well as adjusting the overall mix of animals harvested to minimize risk (Berkes and Jolly 2002). Communities particularly vulnerable to coastal erosion such as Shishmaref, Alaska, are faced with relocation. Many communities in the north are stepping up monitoring efforts to watch for signs of change so they can respond accordingly in both the long and short term (Fox 2002). The International Polar Year (2007-2009) is designed to help coordinate and facilitate these monitoring efforts on a circumpolar scale. The use of new GPS technologies are helping some hunters manage the dangers of sea ice travel while leaving others to assume more risk without adequate experiential knowledge (George et al. 2004; Aporta and Higgs 2005). Agent-base simulation models are also being developed to assess adaptation and sustainability in small-scale Arctic communities (Berman et al. 2004). Effective responses will be governed by increased collaboration between indigenous groups, climate scientists, and resource managers (Huntington and Fox 2004).
1.3.1.9 Summary

There is abundant evidence that most of the cryospheric components in polar regions and in mountain areas are undergoing generalised shrinkage in response to warming, although there are a few cases of both shrinkage and growth related mainly to changes in precipitation. The observed impacts of cryosphere reduction include snowmelt advance and increased winter base flow due to enhanced snow melt; formation of thermokarst terrain and disappearance of surface lakes in thawing permafrost; infrastructure damage in regions under permafrost degradation; enhanced glacier hazards and slope instability due to mechanical weakening driven by ice and permafrost melting; regional ocean freshening and changes in thermohaline circulation which are probably related to the freshening; sea level rise due to ice mass reduction; biotic colonization and faunal changes in deglaciated terrain; changes in lacustrine and marine ecosystems affected by lake-ice and sea-ice reduction; changes in living conditions and reduced outdoor and tourism activities related to skiing; ice climbing and scenic activities in cryospheric areas affected by degradation; and indigenous livelihoods in the Arctic. Responses to climate change, including warming, vary by community and are beginning to be systematically documented.

1.3.2 Hydrology and water resources

This section focuses on the relationships of runoff, lake levels, groundwater, floods and droughts, and water quality with observed climate variability, climate trends, and land-use and land-cover changes reported since the TAR. The time period of consideration is 1970-2005, with many studies extending to earlier decades. Both climate and non-climate factors influence the hydrological cycle and in turn influence surface and groundwater water resources. Climate variables important for surface and groundwater systems are precipitation, temperature and evaporation. These variables are often influenced at regional scales by larger-scale atmosphere circulations associated with ENSO, NAO, and other patterns of variability that operate at within-decadal and multi-decadal timescales (Chapter 3 WGI). Non-climatic factors important for changes in hydrological variables are human interventions in water catchments, such as land-use and land-cover changes, and changes in rates of water consumption for agricultural, industrial, commercial, and domestic uses. These in turn affect evaporation and transpiration, soil moisture storage, infiltration and percolation into soil and groundwater, as well as runoff quantity and timing, and water quality.

1.3.2.1 Changes in surface water and groundwater systems

An increasing trend in average annual runoff in large basins in the Eurasian Arctic has been related to permafrost melting (Peterson et al. 2002). One global study found that continental river runoff has increased in the 20th century, and attributes this to both climate warming and the effect of increased atmospheric carbon dioxide, the latter resulting in decrease of plant transpiration and increase in runoff (Gedney et al. 2006). However, other evidence for such a CO2-runoff relationship is difficult to find. There is abundant evidence of the earlier occurrence of spring peak river flows and an increase in winter base flow in North America and northern Eurasia, in agreement with local and regional climate warming in those areas (Table 1.2a). These have been related to both NAO changes and climate trends and agree both with recent regional rainfall increments and also a reported increase in permafrost melting. The early spring shift in runoff leads to a shift in peak river runoff away from summer and autumn, which are normally the seasons with highest water demand, resulting in possible consequences for future water availability (see WGII Chapter 3).

A key determinant of annual runoff is the relationship between changes in annual precipitation and evapotranspiration. A decreasing trend in pan evaporation (ETpan) over the past 50 years has been
observed in many countries (Chattopadhyay and Hulme 1997; Golubev et al. 2001; Roderick and Farquhar 2002; Roderick and Farquhar 2004; Tebakari et al. 2005). In contrast, a recent reassessment of evaporation data from the United States (Walter et al. 2004) and the former Soviet Union (Golubev et al. 2001) suggests an increasing trend in actual evaporation (ET) during the last forty years in spite of decreases in ETpan. In most, but not all, regions the net result has been an increase in ET but a decrease in ETpan (Chapter 3 WGI). Differences in interpretation regarding the “pan evaporation paradox” depend on differences in regional climates and methodologies, as well as on limited observations (Chattopadhyay and Hulme 1997; Milly et al. 2002; Roderick and Farquhar 2004; Walter et al. 2004; Tebakari et al. 2005; Gedney et al. 2006). It can be concluded that no significant trends in ET can be detected globally.

Groundwater. Groundwater in shallow aquifers is linked to the hydrological cycle and is affected by climate variability and change through recharge processes, as well as by human interventions in many locations. Over the last 20 years in some but not all areas of drying, groundwater water levels have been dropping in aquifers (Chen et al. 2002; Ferguson and George 2003). In some regions, such as the North China Plains, the combination of intensive pumping for irrigation and several years of below-normal precipitation and rising temperature since the 1980s accelerated the downward trend in water levels and has caused groundwater depression, land subsidence, disappearance of wetlands, and intrusion of seawater in coastal zone (Zhang 2001).

Lakes. At present, no globally consistent trend in lake levels has been found (Table 1.2b). While some lake levels have risen in Mongolia and China (Xinjiang) in response to increased snow and ice melt, other lake levels in China (Qinghai), Australia, Africa (Zimbabwe, Zambia, and Malawi), North America (North Dakota), and Europe (Central Italy) have declined due to the combined effects of drought, warming and human activities. Within permafrost areas in the Arctic, recent warming has resulted in the temporary formation of lakes due to the onset of melting, which then drain rapidly due to permafrost degradation (e.g. Smith et al. 2005). A similar effect has been reported for a lake formed over an Arctic ice shelf (i.e., an epishelf lake), which disappeared when the ice shelf collapsed (Mueller et al. 2003). Permafrost and epishelf lakes are treated in detail in Section 1.3.1.

Table 1.2: Observed changes in (a) runoff/streamflow; (b) lake levels.

(a) Runoff/streamflow

<table>
<thead>
<tr>
<th>Location</th>
<th>Time period</th>
<th>Observed change</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic Ocean</td>
<td>1936-2002</td>
<td>Increasing annual discharge from six largest Eurasian river to Arctic Ocean by 7% due to NAO and warming climate</td>
<td>(Peterson et al. 2002; Shiklomanov 2003)</td>
</tr>
<tr>
<td>Northern Eurasia</td>
<td>Last 15-20 years</td>
<td>Increasing annual runoff (5%) due to snow and ice melt</td>
<td>(Lammers et al. 2001; Frenkel 2004; Vishnevsky and Kosovets 2004)</td>
</tr>
<tr>
<td>Arctic Drainage: Ob, Lena, Yenisey, Mackenzie watersheds</td>
<td>1935-1999</td>
<td>Significant increase (25-90%) in winter season streamflow and decrease in river ice thickness due to warmer winter, melt of ground ice and thawing permafrost</td>
<td>(Serreze et al. 2002; Yang et al. 2002)</td>
</tr>
<tr>
<td>United States</td>
<td>1939-2002</td>
<td>Increase in annual runoff 26% due to increase in precipitation 7%</td>
<td>(Lins and Slack 1999; Parel 2004; Walter et al. 2004; Milly et al. 2005)</td>
</tr>
<tr>
<td>La Plata, Paraná and Paraguay</td>
<td>Last 30 years</td>
<td>Increased streamflow 20% in</td>
<td>(Berri et al. 2002; Barros)</td>
</tr>
<tr>
<td>Location</td>
<td>Period</td>
<td>Observed Changes</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Uruguay basins in South-eastern South America</td>
<td></td>
<td>accordance with increased rainfall 10% due to ENSO effects</td>
<td>et al. 2004</td>
</tr>
<tr>
<td>Sweden</td>
<td>1807-2002</td>
<td>No trend in runoff due to increasing temperature offsetting the increasing precipitation</td>
<td>(Lindstrom and Bergstrom 2004)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Last 50 years</td>
<td>No trend in annual runoff</td>
<td>(Hannaford and Marsh 2005)</td>
</tr>
<tr>
<td>Southern British Columbia and Yukon Territory Canada</td>
<td>1947-1996</td>
<td>Decreasing annual runoff (14.9%) due to temperature rise under no change in precipitation</td>
<td>(Zhang et al. 2001)</td>
</tr>
<tr>
<td>North America</td>
<td>1910-2002</td>
<td>Decline in annual discharge (0.22%/year-0.5%/year) for 31 rivers to Pacific, Arctic and Atlantic Oceans associated with decreased precipitation, increased evaporation and PDO effects</td>
<td>(Stewart et al. 2005)</td>
</tr>
<tr>
<td>Heihe and Yellow River China</td>
<td>1950-2000</td>
<td>Annual runoff decreased ~25%, rainfall decreased ~10%, temperature increase 1.2°C in Heihe; decline in annual flux of Yellow river into sea due to decreased rainfall (41.3%), temperature increase (11.4%), increased water diversion and consumption (40.8 %), erosion and sedimentation 6.5%</td>
<td>(Liu and Liu 2004; Jiongxin 2005)</td>
</tr>
<tr>
<td>Southwest Australia</td>
<td>Last 50 years</td>
<td>Significant drop in annual inflow to reservoirs by 5% due to decline in May-July rainfall</td>
<td>(IOCI 2002)</td>
</tr>
<tr>
<td>Alaska, Western, and New England, US; Canada; northern Eurasia</td>
<td>1936-2000</td>
<td>Shift in peak streamflow 1-2 weeks due to earlier snowmelt</td>
<td>(Cayan 2001); (Regonda 2005), (Hodgkins et al. 2003), (Stewart et al. 2005), (Stone et al. 2002), (Hodgkins et al. 2003), (Dery and Wood 2005), (Ye and Ellison 2003), (Yang et al. 2002)</td>
</tr>
<tr>
<td>Lake Hovsgol, Mongolia</td>
<td>1970-2000</td>
<td>Rise in water level 9.22m due to increased glacier or permafrost melting</td>
<td>(Kumagai et al. 2003)</td>
</tr>
<tr>
<td>Bosten Lake Xinjiang China</td>
<td>1980-2000</td>
<td>Rise in lake level ~4m due to increasing precipitation and snow - ice melt flow from 3.08×10^8 m^3 to 9.6×10^8 m^3</td>
<td>(Yuan et al. 2003)</td>
</tr>
<tr>
<td>Qinghai Lake, China</td>
<td>1975-2000</td>
<td>Lake area decreased 149.6 km^2 due to combination effect of drought and human activities</td>
<td>(Feng and Dingbo 2003)</td>
</tr>
<tr>
<td>Daihai Lake, China</td>
<td>1700-1996</td>
<td>From 1960-1996 Lake level decreased 3.85m due to combination effects from drought and human</td>
<td>(Zhang and Ruijin 2001)</td>
</tr>
</tbody>
</table>
1.3.2.2 Changes in floods and droughts

Documented trends in floods (frequency of floods, highest flow quantiles and annual maximum daily streamflow), and droughts (low river flows and annual minimum daily streamflow) show that dry areas are tending to become drier and are expanding, while in wetter areas there is no consistent pattern of trends (Table 1.3a and b). These changes indicate that there is an ongoing intensification of the water cycle over the past 50 years at regional to continental scales (Huntington 2005).

Globally, very dry areas (PDSI<-3.0) have more than doubled since the 1970s due to a combination of ENSO events and surface warming, while very wet areas (PDSI>+3.0) declined by ~5%, with precipitation as the major contributing factor during the early 1980s and temperature more important thereafter (Dai 2004). The main area where a significant drying trend has been reported is the Sahel region of Africa. The areas of increasing wetness include the Northern Hemisphere high latitudes and equatorial regions. However, the use of the Palmer Drought Severity Index is limited by its lack of effectiveness in tropical regions. Discrepancies in results for hydrological extreme events related to global warming are related to differences in record lengths (Vogel et al. 2001; Mudelsee et al. 2003) and methodologies (Douglas 2000; McCabe and Wolock 2002; Pekarova 2003). Although major floods have occurred in the least few decades, no significant trends were found for flood events.

<table>
<thead>
<tr>
<th>Table 1.3a: Floods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Global</td>
</tr>
<tr>
<td>Elbe and Dresden, Germany</td>
</tr>
<tr>
<td>Russian Arctic rivers</td>
</tr>
</tbody>
</table>
Table 1.3b: Droughts

<table>
<thead>
<tr>
<th>Location</th>
<th>Time period</th>
<th>Observed change</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western two-thirds of Canada</td>
<td>1940-2002</td>
<td>Warm ENSO events lead to summer droughts</td>
<td>(Shabbar 2004)</td>
</tr>
<tr>
<td>Western United States.</td>
<td>1998-2004</td>
<td>One of the longest droughts in the last 105 years due to dry and unusually warm summers related to warming of western tropical Pacific and Indian Oceans</td>
<td>(Andreadis et al. 2005; Pagano 2005)</td>
</tr>
<tr>
<td>Niger and Senegal, Blue and White Nile, Congo Rivers, Africa</td>
<td>1950-1995</td>
<td>Decreasing trend in flow and high interannual variability of river flows associated with ENSO</td>
<td>(Jury et al. 2003; Conway et al. 2005)</td>
</tr>
<tr>
<td>Much of Europe and UK</td>
<td>1911-1995</td>
<td>No evidence of significant increase in droughts (defined as streamflow below a certain threshold)</td>
<td>(Hisdal et al. 2001; Hannaford and Marsh 2005; Hodgkins et al. 2005; Schrier Van der and et al 2005)</td>
</tr>
<tr>
<td>Eastern United States</td>
<td>1941-1999</td>
<td>Significant increase in annual minimum (202 out of 395 sites) and median (219 sites) daily streamflow around 1970 as a step change related to precipitation increase and NAO</td>
<td>(Groisman 2004; Douglas 2000; McCabe 2002)</td>
</tr>
</tbody>
</table>

1.3.2.3 Changes in thermal structure and water quality

There have been many observed changes in water quality related to thermal and chemical properties that have been attributed to warming (Gerten and Adrian.R. 2002) (Tables 1.3c and 1.7).

Thermal Structure. Higher water temperatures and shorter periods of ice-cover (see 1.3.1.7) and stagnation were common trends for lakes across the hemisphere in response to warmer conditions. Phytoplankton dynamics and primary productivity have also been altered in conjunction with changes in lake physics (see 1.3.4.4). Since the 1960s, surface water temperatures have warmed by 0.2 to 2°C in lakes and rivers in Europe, North America, and Asia. Along with warming surface waters, deep water temperatures (which reflect long-term trends) of the large East African lakes (Edward, Albert, Kivu, Victoria, Tanganyika, Malawi) have warmed by 0.2 to 0.7°C since the early 1900s. Increased water temperature and longer ice-free seasons influence thermal stratification and...
internal hydrodynamics of lakes. In warmer years, epilimnetic water temperatures are higher,
evaporative water loss increases, summer stratification occurs earlier in the season, and
thermoclines become shallower. In several lakes in Europe and North America, the stratified period
has advanced by up to 20 days and lengthened by 2-3 weeks, with increased thermal stability.

Chemistry. Increased stratification reduces water movement across the thermocline, inhibiting
upwelling and mixing that provide essential nutrients to the food web. There have been decreases in
nutrients in the surface water and corresponding increases in deep water concentrations of European
and East African lakes because of reduced upwelling due to greater thermal stability. Many lakes
and rivers have increased concentrations of sulphate, base cations, silica, alkalinity, and
conductivity related to increased weathering of silicates, calcium and magnesium sulphates, or
carbonates in their catchment. In contrast, when warmer temperatures enhanced vegetative growth
and soil development in some high alpine ecosystems, alkalinity decreased because of increased
organic acid inputs (Karst-Riddoch et al. 2005). Glacial melting increased the input of
organocholines (that had been atmospherically transported to and stored in the glacier) to a sub-
alpine lake in Canada (Blais et al. 2001).

Increased temperature also affects in-lake chemical processes. There have been decreases in
dissolved inorganic nitrogen from greater phytoplankton productivity (Sommaruga-Wograth et al.
1997; Rogora 2003) and greater in-lake alkalinity generation and increases in pH in soft water lakes
(Psenner and Schmidt 1992). Decreased solubility from higher temperatures significantly
contributed to 11-13% of the decrease in aluminium concentration (Vesely et al. 2003), whereas
lakes that had warmer water temperatures had increased mercury methylation and higher mercury
levels in fish (Bodaly et al. 1993). A decrease in silicon content related to regional warming has
been documented in Lake Baikal Russia. River water quality data from 27 rivers in Japan also
suggest a deterioration of both chemical and biological features due to increase in air temperature
(Table 1.3c).

Table 1.3c: Water quality

<table>
<thead>
<tr>
<th>Location</th>
<th>Time period</th>
<th>Observed change</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakes in Europe and North America</td>
<td>Recent decades</td>
<td>Higher lake temperatures, shorter periods with ice cover, shorter stagnation periods, altered phytoplankton dynamics and primary productivity</td>
<td>(Gerten and Adrian 2002)</td>
</tr>
<tr>
<td>64 studied lakes/rivers in Europe, North America and Asia</td>
<td>Last 40 years</td>
<td>Surface water temperature warming by 0.2-1.5°C for 17 lakes. Stratified period has advanced by up to 20 days and lengthened by 2-3 weeks with increased thermal stability.</td>
<td>(Adrian and Deneke 1996; King et al. 1998; Livingstone and Dokulil 2001; Carvalho and Kirika 2003; Livingstone 2003; Straile et al. 2003; Arhonditsis et al. 2004; Dabrowski et al. 2004; Winder and Schindler 2004)</td>
</tr>
<tr>
<td>6 studied lakes in East Africa</td>
<td>1939-2000</td>
<td>Long-term temperature increase 0.2-0.7°C in deep water below 300m due to reduction of cold-water deep convection associated with milder winters</td>
<td>(Hecky 1994; O’Reilly 2003; Verburg 2003; Lorke 2004; Vollmer 2005)</td>
</tr>
<tr>
<td>8 studied lakes/rivers in North America, Europe , East</td>
<td>1991-2003 1939-2000</td>
<td>Decreases in nutrients in surface water and corresponding increases in deep-water concentration because of reduced upwelling due to greater</td>
<td>(Hambright et al. 1994; Adrian and Deneke 1996; Straile et al. 2003; O’Reilly 2006)</td>
</tr>
</tbody>
</table>
Africa

88 studied lakes and rivers in North America, Europe
Last 10 to 20 years
Increased catchment weathering or internal processing

Lake Baikal, Russia
Recent decades
Decrease in silicon content of 30% related to regional warming
(Shimaraev et al. 2004)

27 rivers, Japan
Last decades
Increase in biological oxygen demand and suspended solids, and decrease in dissolved oxygen due to increase in air temperature
(Ozaki et al. 2003)

1.3.2.4 Summary

Changes runoff and streamflow, as well as in droughts and floods, indicate that there is an ongoing intensification of the water cycle over the past 50 years at regional to continental scales due to warming. Significant trends in floods and in evaporation and evapotranspiration have not been detected globally. Some local trends in reduced groundwater and lake levels have been reported, but these are likely to be due to human activities rather than climate change. Climate change signals related to increasing runoff and streamflow have been observed over the last century in many regions, particularly in basins fed by glaciers, permafrost, and snowmelt. Evidence includes increases in average runoff of Arctic rivers in Eurasia, which has been at least partly correlated with climate warming, and earlier spring snowmelt and increase in winter base flow in North America and Eurasia due to enhanced seasonal snow melt associated with climate warming. There are also indications of intensified droughts in drier regions, particularly the Sahel region in Africa. Freshwater lakes and rivers are experiencing increased water temperature environments and changes in water chemistry. Surface and deep lake-waters are warming, with advances in and lengthening of periods of thermal stability in some cases associated with physical and chemical changes such as increases in salinity and suspended solids, and decrease in nutrient content. Lake formation and subsequent disappearance in permafrost have been reported in the Arctic.

1.3.3 Coastal processes and zones

Many coastal regions are already experiencing the effects of relative (local) sea level rise, from a combination of climate-induced sea level rise, land subsidence, anthropogenic, and other local factors (Table 1.4). A major challenge, however, is to separate the different meteorological, oceanographic, geophysical, and anthropogenic processes affecting the shoreline in order to identify and isolate the contribution of global warming. These processes operate independently and can also interact with each other in complex feedback loops that cover a range of spatial and temporal scales. Therefore, an unambiguous attribution of current sea level rise as a primary driver of shoreline change is difficult at present.

Global sea level has been rising at a rate of ~1.7-1.8 mm/yr over the last century, with a possible acceleration during the last decade (Church et al. 2004; Holgate and Woodworth 2004; Church and White 2006). The effects of global sea level rise vary spatially because of local vertical land

Deadline for submission of comments: 21 July 2006

28 of 103
motions (e.g., glacial isostatic adjustments, neotectonics, and/or subsurface fluid withdrawal), long-shore currents, and cyclonicity (Church et al., 2004). The worldwide increase in extreme high-water levels since 1975 is closely linked to mean sea level rise and to indices of regional inter-annual to inter-decadal climate variability such as the El Nino Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), Antarctic Oscillation (AAO), and Indian Ocean Dipole (IND) (Woodworth and Blackman 2004). For example, anomalously high sea surface temperatures and sea level in the Pacific Ocean were closely correlated during the major 1997-1998 El Nino event (Nerem and Mitchum 2001).

Table 1.4: Changes in coastal processes.

<table>
<thead>
<tr>
<th>Location</th>
<th>Period</th>
<th>Type of Change</th>
<th>Observed changes</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>1950-2000; 1993-2000</td>
<td>Sea level rise</td>
<td>1.8 +/-0.3 mm/yr (tide gauges)</td>
<td>Church et al., 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.6-2.7 +/-0.7 mm/yr (TOPEX/Poseidon)</td>
<td></td>
</tr>
<tr>
<td>Global</td>
<td>1948-2002; 1993-2000</td>
<td>Sea level rise</td>
<td>1.7 +/-0.2 mm/yr (tide gauges)</td>
<td>Holgate and Woodworth, 2004</td>
</tr>
<tr>
<td>East Coast USA, Long Island, NY to South Carolina</td>
<td>mid-1800s to 2000</td>
<td>Shoreline erosion</td>
<td>75% of the shoreline, uninfluenced by inlets and structures, is eroding</td>
<td>Zhang et al., 2004</td>
</tr>
<tr>
<td>Louisiana, USA</td>
<td>1855-2002; 1988-2002</td>
<td>Shoreline erosion</td>
<td>0.61m/yr;</td>
<td>Penland et al., 2005</td>
</tr>
<tr>
<td>Fiji</td>
<td>1960s-1990s</td>
<td>Shoreline erosion</td>
<td>Beach erosion prevalent, due to sea level rise and mangrove clearance</td>
<td>Mimura and Nunn, 1998</td>
</tr>
<tr>
<td>Tropics--Southeast Asia, Indian Ocean, Australia, Barbados</td>
<td>c. 1950s-2000</td>
<td>Shoreline erosion</td>
<td>Beach erosion due to coral bleaching, mangrove clearance, sand mining, structures</td>
<td>Wong, 2003</td>
</tr>
<tr>
<td>Manitouk Strait, Quebec, Canada</td>
<td>1950-1995</td>
<td>Shoreline change</td>
<td>19% of the studied shoreline is retreating, in spite of land uplift, due to thawing of permafrost</td>
<td>Beaulieu and Allard, 2003</td>
</tr>
<tr>
<td>Chesapeake Bay, USA</td>
<td>1938-1989</td>
<td>Wetland losses</td>
<td>~1700 ha degraded marshes in study area became open water; non-degraded marshes decreased by 1200 ha</td>
<td>Kearney et al., 2002</td>
</tr>
<tr>
<td>Long Island, NY; Connecticut, USA</td>
<td>1920s-1999</td>
<td>Wetlands losses</td>
<td>Decreases in salt marsh area due to regional sea level rise and human impacts</td>
<td>Hartig et al., 2002; Hartig and Gornitz, 2004</td>
</tr>
<tr>
<td>Normandy, France</td>
<td>1880-2000</td>
<td>Wetlands gains</td>
<td>Salt marshes keep up with sea level rise with sufficient sediment supply</td>
<td>Haslett et al., 2003</td>
</tr>
<tr>
<td>Rhode Island, USA</td>
<td>1995-1999; late 20th century</td>
<td>Wetlands changes</td>
<td>Landward migration of cordgrass (Spartina alterniflora) due to sea level rise and excess nitrogen</td>
<td>Donnelly and Bertness, 2001; Bertness et al., 2002</td>
</tr>
<tr>
<td>Southeast Florida, USA</td>
<td>1940-1994</td>
<td>Coastal vegetation changes</td>
<td>Grassy marshes replaced by mangrove due to sea level rise and changing water tables</td>
<td>Ross et al., 2000</td>
</tr>
</tbody>
</table>
Western Florida, USA | 1992-1998 | Coastal vegetation changes | Loss of Southern red cedar (*Juniperus virginiana*) due to storms, droughts and sea level rise | Williams *et al.*, 2003

1.3.3.1 Changes in coastal geomorphology

Beach erosion already affects an estimated 70% of the world’s sandy beaches (Bird 1985; Bird 1993). Long-term beach erosion has been linked to historic rates of sea level rise on shorelines far from inlets and structures, (Zhang *et al.* 2004). However, in addition to sea level change, coastal erosion is driven by other geophysical factors such as wave energy, sediment supply, or local land subsidence (Stive 2004). In Estonia, the most active periods of shoreline displacement are associated with extreme climate events such as severe storms and high surge levels, which have been increasing in recent decades (Orviku *et al.* 2003). Reduction in sea ice cover, due to milder winters, has further exacerbated coastal damage there. Coastlines that are rising because of ongoing glacial rebound and that would otherwise be accreting have significant sections that are eroding, as for example along Hudson Bay, Canada (Beaulieu and Allard 2003). Degradation and melting of permafrost due to climate warming are contributing to rapid retreat of Arctic coastlines in many regions, such as the Beaufort and Laptev Seas coasts.

Historic sea level rise is likely contributing to coastal erosion in many places (Leatherman *et al.* 2000; Zhang *et al.* 2004). Along the East Coast of the United States, 75% of the shoreline removed from the influence of spits, tidal inlets, and engineering structures are nonetheless eroding (Zhang *et al.* 2004). The high average annual erosion rate in the beach communities of Delaware’s Atlantic coast (0.6-1.2 m/yr) is threatening the sustainability of the area as a major summer recreation attraction (Daniel 2001). The average rate of shoreline erosion in Louisiana was 0.61 m/yr between 1855 and 2002; since 1988, rate of shoreline erosion have accelerated to 0.94 m/yr (Penland *et al.* 2005) and additional erosional losses were sustained after Hurricane Katrina, in August, 2005. Beach erosion has also increased in parts of Fiji (Mimura and Nunn 1998), the San Juan delta on the Pacific coast of South America (Restrepo *et al.* 2002), Trinidad in the Southern Caribbean (Singh and Fouladi 2003), and the tropics (Wong 2003).

However, much of the observed beach erosion in Fiji and many other parts of the tropics is associated with development of the shoreline, clearing of mangroves, and mining of beach sand and coral. Another important contributor to coastal erosion is sediment starvation brought on by the construction of dams on major rivers (Chen *et al.* 2005; Syvitski *et al.* 2005; Ericson *et al.* 2006). Curtailment of sediments reaching the shore has exacerbated coastal erosion in Louisiana (Georgiou *et al.* 2005; Penland *et al.* 2005). Most beaches in Alexandria, Egypt are eroding caused by sediment deficiency due to construction of dams and barrages across the Nile, combined with the natural reduction of Nile floods due to climatic changes over east Africa (Frihy *et al.* 1996). Pumping of groundwater and subsurface hydrocarbons enhances land subsidence, thereby also contributing to coastal erosion (Syvitski *et al.* 2005).

1.3.3.2 Changes in coastal wetlands

In the United States, losses in coastal wetlands have been observed in Louisiana (Boesch *et al.* 1994), the mid-Atlantic region (Kearney *et al.* 2002), and in parts of Connecticut and New York (Hartig and Gornitz 2004), in spite of recent protective environmental regulations (Kennish 2001). Many of these marshes have had a long history of anthropogenic modification, including dredging and filling, bulkheading, and channelization, which in turn could have contributed to sediment
starvation, eutrophication, and ultimately marsh submergence. In New England, low marsh
cordgrass (*Spartina alterniflora*) has been migrating landward, partly in response to sea level rise,
but also to increased nitrogen levels in estuaries (Donnelly and Bertness 2001; Bertness *et al.* 2002).
A landward replacement of grassy freshwater marshes by more salt-tolerant mangroves in the
south-eastern Florida Everglades since the 1940s has been attributed to the combined effects of sea
level rise and water management practices that have resulted in lowered water tables (Ross *et al.*
2000). On the other hand, some salt marsh losses stem from causes unrelated to sea level rise, such
as predation by organisms or local weather events (e.g., in England (Hughes and Paramor 2004)and
south-eastern U.S. (Silliman *et al.* 2005). Elsewhere, there is evidence that not all coastal wetlands
are retreating, for example in northern France (Haslett *et al.* 2003).

Tropical mangroves play an important role in trapping sediments, also in reducing the erosive potential
of waves and currents (Furukawa *et al.* 1997; Mazda *et al.* 1997; Wolanski *et al.* 2002). Although
natural accretion rates of mangroves generally compensate for current rates of sea level rise, of greater
concern at present are the impacts of clearance for agriculture, aquaculture (particularly shrimp
culture), forestry, and urbanization. At least 35 per cent of the world’s mangrove forests were removed
in the last two decades but possible sea-level rise effects were not considered (Valiela *et al.* 2001). In
south-eastern Australia, mangrove encroachment inland into salt marsh environments is probably
related to anthropogenic causes other than sea-level rise (Saintilan and Williams 1999).

Climatic perturbations can also affect near shore vegetation. Coastal forest losses in western
Florida have occurred as a consequence of storm damage and drought; however, the inability of the
trees to regenerate may represent the effects of increasing salinity and greater frequency of tidal
flooding due to sea level rise (Williams *et al.* 1999; Williams *et al.* 2003). Severe storms,
especially hurricanes, have caused extensive wetlands losses. For example, Hurricane Katrina
washed away an estimated 260 km² of coastal wetlands in Louisiana, in August, 2005. The area
destroyed was more than 4 times the average annual rate of the 1990s, according to preliminary

Changes in storm surges, flood heights and areas, and waves

The vulnerability of the coastal zone to storm surges and waves depends on soil subsidence,
changes in storminess, and sea level rise. These three factors often interact and the effects of their
superposition vary regionally (Table 1.5). Along the U.S. East Coast, although there has been no
significant long-term change in storm climatology, storm surge impacts on the shore have increased
due to the regional sea level rise (Zhang *et al.* 2000). The U.S. Gulf Coast is particularly vulnerable
to hurricane surges, due to the low elevation and relative sea level rise (up to 1 cm/yr along parts of
the Louisiana coast) (Penland *et al.* 2005). Hurricane Katrina, in August, 2005, generated surges
over 4 meters, with catastrophic consequences (NOAA. 2005). In Venice, Italy, the frequency of
flooding surges in Venice has averaged close to 2 per year since the mid-1960s, as compared to
only 0.19 surges per year between 1830-1930, with land subsidence (exacerbated by groundwater
pumping between 1930-1970 (Carminati *et al.* 2005) and expanded sea-lagoon interactions (due to
channel dredging) playing a greater role than global sea level rise (Camuffo and Sturaro 2004).
Surges show a slight decrease in Brittany, France in recent decades, largely due to changes in wind
patterns (Pirazzoli *et al.* 2004). Apparent global increases in extreme high water levels since 1975
are also related to mean sea level rise and to large-scale interdecadal climate variability
(Woodworth and Blackman 2004).

In the northeast Atlantic Ocean, wave heights increased between 1970 to 1995 (Woolf *et al.* 2002), but
appear to have decreased in some areas of the Mediterranean from 1958-2001 (Lionello 2005; Lionello
and Sanna 2005). Significant open-water wave heights associated with powerful tropical cyclones in
the vicinity of Rarotonga, Cook Islands, have increased in recent years, as has the frequency of such events. In the Indian Ocean, the rate of increase in extreme high water levels in Hulhule, the Maldives, is about 4 times that of mean relative sea level rise (Govt. Maldives, 2006), possibly related to upward trends in local air/sea surface temperatures and zonal winds (Woodworth, 2005). On the other hand, no significant 20th-century trends in monsoon-related indices were observed.

Table 1.5: Changes in storm surges, flood height and areas, and waves.

<table>
<thead>
<tr>
<th>Type of change</th>
<th>Period</th>
<th>Location</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>More frequent and higher floods due to subsidence, hydrodynamic changes, and relative sea level rise</td>
<td>1830-2000</td>
<td>Venice, Italy</td>
<td>Camuffo and Sturaro, 2004</td>
</tr>
<tr>
<td>Decreasing surges due to shifts in wind directions</td>
<td>1890s-1910s and 1950s-1997</td>
<td>Brittany, France</td>
<td>Pirazzoli et al., 2004</td>
</tr>
<tr>
<td>Increasing extreme high water levels due to climate variability and sea level rise</td>
<td>1975-present</td>
<td>Global</td>
<td>Woodworth and Blackman, 2004</td>
</tr>
<tr>
<td>Decrease in mean winter significant wave height</td>
<td>1958-2001</td>
<td>Mediterranean Sea</td>
<td>Lionello and Sanna, 2005</td>
</tr>
</tbody>
</table>

1.3.3.4 Evidence of adaptation and vulnerability

In rural Fiji, islanders have responded to coastal erosion and sea encroachment over the last 40 years, in some cases, by constructing crude seawalls of stones and fences of sticks and debris, which are fairly ineffective protection against major storms (Mimura and Nunn 1998). Retreat from the shore or island abandonment is an extreme case of adaptation to rising seas. For example, the inhabitants of Tuvalu have considered relocation elsewhere, in anticipation of future sea level rise (ref. needed). In a few isolated cases, previously inhabited low-lying islands have been abandoned; for example, several Chesapeake Bay islands in the U.S. were abandoned in the early 20th century (Gibbons and Nicholls 2006). In the United States, approximately $1.3 billion (adjusted to 1996 dollars) have been spent between the 1960s and 1990s on beach nourishment, in response to coastal erosion. Japan spends over US$240 million annually on port restoration due to high waves, storm surges, and other natural disasters.

1.3.3.5 Summary

In many coastal regions, local sea level rise exceeds the global trend of 1.7 to 1.8 mm/yr, although much higher rates exist in subsiding regions. Sea-level rise, enhanced wave heights, and increased intensity of storms are affecting some coastal regions distant from human modification, e.g., polar areas and barrier beaches, mainly through coastal erosion. Coastal erosion and wetlands losses are widespread problems today, under current rates of sea level rise. These are largely caused by anthropogenic modification of the shoreline. A few isolated cases of historic island abandonment due to rising seas have been documented, and residents of presently inhabited islands such as Tuvalu, are finding it increasingly difficult to maintain their lifestyles, due to climate-induced environmental changes.

1.3.4 Marine and freshwater biological systems

The marine pelagic realm occupies 70% of the planetary surface (Legendre and Rivkin 2002). The
pelagic ecosystem plays a fundamental role in modulating the global environment via its regulatory
effects on the Earth’s climate and its role in biogeochemical cycling. Perhaps equally important to
global climate change, in terms of modifying the biology of the oceans, is the impact of
anthropogenic CO₂ on the pH of the oceans that will affect the process of calcification for some
marine organisms (Feely et al. 2004). Other driving forces of change that are operative in marine
and freshwater biological systems are overfishing and pollution from terrestrial runoff (from
deforestation, agriculture and urban development) and human introductions of non-native species.

Any observational change in marine and freshwater environments associated with climate change
should be considered against the background of natural variation on a variety of spatial and
temporal scales. Recently long-term decadal observational studies have focused on known natural
modes of climatic oscillations at similar temporal scales such as the El Nino-Southern Oscillation
(ENSO) in the Pacific and the North Atlantic Oscillation (NAO) in relation to ecosystem changes
(Stenseth et al. 2002). Many of the biological responses observed have been associated with rising
temperatures. However, discerning the effects of climate change embedded in natural modes of
variability such as the NAO is difficult and direct evidence of biological impacts of anthropogenic
climate change must be treated with caution.

Within the marine biological systems, coral reefs are iconic, highly diverse ecosystems of enormous
economic, cultural and aesthetic value. Located within a broad latitudinal band from 30°N to 30°S,
the geographic spread of reefs encompasses a wide range of physical and chemical conditions (e.g. in
temperature, alkalinity, turbidity and productivity). Habitats associated with coral reefs include
mangrove forests and seagrass beds. Besides pollution, scuba diving by tourists also places stress on
coral reefs.

Many changes in marine commercial fish stocks have been observed over the last few decades in
the Atlantic and Pacific Oceans but it is difficult to separate, in terms of changes in population
densities and recruitment, regional climate effects from direct anthropogenic influences like fishing.
Geographical range extensions or changes in the geographical distribution of fish populations,
however, can be more confidently linked to hydro-climatic variation and regional climate warming.

Freshwater biological systems of lakes and rivers are highly susceptible to changes in temperature.
This has been clearly demonstrated by paleolimnologic approaches examining changes on
millennial time scales. The same paleolimnological techniques, along with the increasing amount
and length of empirical data records, indicate that these freshwater systems are responding to recent
climate warming (Schindler et al. submitted). The type and magnitude of the response to climate
change depends upon many factors, including size, water depth/flow, latitude, and altitude.

1.3.4.1 Changes in coral reefs

Overfishing and pollution have reduced coral reef resilience, i.e., the regenerative capacity of corals
is impaired following disturbances such as hurricanes or bleaching events caused by warm sea
surface temperature events (Bellwood et al. 2004). The ability of reefs to cope with climate change
is pre-conditioned by the extent to which they are already overfished and polluted (Hughes et al.
2003; Pandolfi et al. 2003). (See Chapter 11, Box 11.1.)

The most visible manifestation of climate change occurs when stressed corals become pale and
bleached due to the loss of their endosymbiotic micro-algae (zooxanthellae); this occurs within 2-4
weeks. Regional-scale bleaching events have become increasingly prevalent since the 1980s.
Recurrent bleaching was first documented in the eastern Pacific, the Caribbean and Polynesia. In
1998, the largest bleaching event to date killed an estimated 16% of the world’s corals, primarily in
the western Pacific and the Indian Ocean, linked to the El Nino event of that year (Wilkinson 2004). Bleaching is highly selective, affecting species and strains (of both corals and zooxanthellae) to different extents (Loya et al. 2001; Coles and Brown 2003; Little et al. 2004). The mechanisms underlying this variation are poorly understood. Bleached corals have markedly higher rates of mortality. However, some corals regain zooxanthellae and can recover from bleaching, although they may suffer temporary reductions in growth and reproductive capacity (Baker et al. 2004; Little et al. 2004).

Rising sea surface temperatures have been linked with coral bleaching. Bleaching usually occurs when temperatures exceed a ‘threshold’ of ~2°C above mean summer maximum levels for several weeks. Maximum temperatures range by more than 10°C within the geographic boundaries of most species (e.g. along latitudinal gradients). Cooler locations have lower bleaching thresholds, implying that there is strong local acclimation to thermal conditions, and ongoing evolution of temperature tolerance (Hughes et al. 2003). How quickly further evolutionary responses can occur is unknown.

The incidence of disease in corals, gorgonians, sea urchins and other reef organisms has increased, especially on reefs that are already degraded (Harvell et al. 2002). The trend in species composition in favour of weedy species that can colonize and grow quickly suggests that reefs are being exposed to more frequent and intense tropical storms (Nystrom et al. 2000; Bellwood et al. 2004).

1.3.4.2 Changes in marine ecosystems

There is an accumulating body of evidence to suggest that many marine ecosystems, including managed fisheries, both physically and biologically, are responding to changes in regional climate caused predominately by warming of air and sea surface temperatures (SSTs) and to a lesser extent by modification of precipitation regimes and wind patterns (Table 1.6). The biological manifestations of rising SSTs have included biogeographical, phenological, physiological and species abundance changes. Evidence collected and modelled to date indicates that rising CO2 has led to chemical changes in the ocean which has led to the oceans becoming more acidic (Society 2005). Satellite-in situ blended ocean chlorophyll records indicate that global ocean annual primary production has declined more than 6% since the early 1980s (Gregg et al. 2003) (Fig. 1.1b).

In the Pacific, researchers have found similar changes to the intertidal communities where the composition has shifted significantly in response to warmer temperatures (Sagarin et al. 1999). Similar shifts were also noted in the kelp forest fish communities off the southern Californian coast and in the offshore zooplankton communities (Roemmich and McGowan 1995; Holbrook et al. 1997; Lavaniegos and Ohman 2003). These changes are associated with oceanic warming and the resultant geographical movements of species with warmer water affinities. Like the North Atlantic, many long-term biological investigations in the Pacific have established links between changes in the biology and regional climate oscillations such as the ENSO and the Pacific Decadal Oscillation (PDA) (Stenseth et al. 2002). In the case of the Pacific these biological changes are most strongly associated with El Nino events which can cause rapid and sometimes dramatic responses to the short-term SST changes accompanying El Niño events (Hughes 2000).

The progressive warming in the Southern Ocean has been associated with krill decline (Atkinson et al. 2004), decline in the population sizes of many seabirds and seals monitored on several breeding sites (Barbraud and Weimerskirch 2001; Weimerskirch et al. 2003), and an increase in the incidence of marine diseases (Harvell et al. 1999).

In the North Atlantic, both changes in phytoplankton and zooplankton species and communities have been associated with Northern Hemisphere Temperate (NHT) trends and variations in the
NAO index. These have included changes in species distributions and abundance, the occurrence of sub-tropical species in temperate waters, changes in overall phytoplankton biomass and seasonal length, changes in the North Sea ecosystem functioning and productivity, shifts from cold-adapted to warm-adapted communities, phenological changes and changes in species interactions (Fromentin and Planque 1996; Reid et al. 1998; Edwards et al. 2001; Reid and Edwards 2001; Beaugrand et al. 2002; Edwards et al. 2002; Beaugrand et al. 2003; Beaugrand and Reid 2003; Edwards and Richardson 2004; Richardson and Schoeman 2004). Over the last decade, numerous other investigations have established links between the NAO and the biology of the North Atlantic including the benthos, fish, seabirds and whales (Drinkwater et al. 2003). In the Benguela upwelling system in the South Atlantic, long-term trends in the abundance and community structure of coastal zooplankton have been related to large-scale climatic influences (Verheye et al. 1998).

Recent macroscale research has shown that the increase in regional sea temperatures has triggered a major re-organisation in calanoid copepod species composition and biodiversity over the whole North Atlantic basin (Beaugrand et al. 2002). During the last 40 years there has been a northerly movement of warmer water plankton by 10° latitude in the north-east Atlantic and a similar retreat of colder water plankton to the north. This geographical movement is much more pronounced than any documented terrestrial study, presumably due to advective processes. In terms of the marine phenological response to climate warming, many plankton taxa have been found to be moving forward in their seasonal cycles (Edwards and Richardson 2004). In some cases a shift in seasonal cycles of over six weeks was detected, but more importantly the response to climate warming varied between different functional groups and trophic levels, leading to mismatch in timing between different trophic levels (Edwards and Richardson 2004).

1.3.4.3 Changes in fisheries

Similar to the observed changes in marine ecological systems (section 1.3.4.5) many long-term changes in fish populations have been associated with known natural modes of climatic oscillations such as the ENSO and NAO (Stenseth et al. 2002; Drinkwater et al. 2003).

Northerly geographical range extensions or changes in the geographical distribution of fish populations have been recently documented for European Continental shelf seas and along the European Continental shelf edge (Fig. 1.3) (Brander et al. 2003; Beare et al. 2004; Genner et al. 2004; Perry et al. 2005). These geographical movements have been related with regional climate warming and are predominantly associated with the northerly geographical movement of fish species with more southern biogeographical affinities. These include the movement of sardines and anchovies northward in the North Sea and red mullet and bass extending their ranges northward to western Norway (Brander et al. 2003; Beare et al. 2004). New records were also observed over the last decade for a number of Mediterranean and north-west African species on the south coast of Portugal (Brander et al. 2003). The cooling and the freshening of the north-west Atlantic (such as in the sub-polar gyre, Labrador sea and Labrador current) over the last decade has had an opposite effect, with some groundfish species moving further south in their geographical distribution (Rose and O'Driscoll 2002).

Regional climate warming in the North Sea has affected cod recruitment via changes at the base of the food web (Beaugrand et al. 2003). Cod, like many other fish species, are highly dependent on the availability of planktonic food during their pelagic larval stages. Key changes in the planktonic assemblage, significantly correlated with the warming of the North Sea over the last few decades, has resulted in a poor food environment for cod larvae and hence eventual decline in overall recruitment success. This research is an example of how the dual pressures of over-fishing and regional climate warming have conspired together to negatively affect a commercially important
Recent work on pelagic phenology has shown that plankton communities, including fish larvae, are very sensitive to regional climate warming with the response to warming varying between trophic levels and functional groups (Edwards and Richardson 2004). These changes, again seen in the North Sea, have the potential to be of detriment to commercial fish stocks via trophic mismatch. The ability and speed with which fish and planktonic communities adapt to regional climate warming is not yet known.

![Image of marine species distribution](image_url)

Fig. 1.3: Long-term changes in the mean number of marine species per association in the North Atlantic from 1960 to 1999 (Beaugrand et al. 2002).

Table 1.6: Changes in marine ecosystems and managed fisheries.

<table>
<thead>
<tr>
<th>Key changes</th>
<th>Climate link</th>
<th>Location</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>South Atlantic Southern Ocean</td>
<td></td>
</tr>
<tr>
<td>Pelagic phenology</td>
<td>Earlier seasonal appearance due to increased temperature and trophic mismatch.</td>
<td>North Sea</td>
<td>Edwards & Richardson, 2004; Greve, 2004</td>
</tr>
</tbody>
</table>
1.3.4.4 Changes in freshwater ecosystems

Observations indicate that lakes and rivers around the world are warming, with effects on thermal structure and lake chemistry that in turn affect abundance and productivity, community composition, phenology, distribution and migration (see also 1.3.2) (Table 1.3c and Table 1.7).

Abundance/productivity. There have been changes in lake productivity and plankton abundance. In high latitude or high altitude lakes where reduced ice cover has led to a longer growing season and warmer temperatures, many lakes are showing increased algal abundance and productivity over the past century (Schindler et al. 1990; Hambright et al. 1994; Gajewski et al. 1997; Wolfe and Perren 2001; Battarbee et al. 2002; Korhola et al. 2002; Karst-Riddoch et al. 2005). There have been similar increases in the abundance of zooplankton, correlated to warmer water temperatures and longer growing seasons (Adrian and Deneke 1996; Weyhenmeyer et al. 1999; Straile and Adrian 2000; Battarbee et al. 2002; Gerten and Adrian 2002; Carvalho and Kirika 2003; Winder and Schindler 2004; Hampton 2005; Schindler et al. 2005). For upper trophic levels, rapid increases in water temperature after ice breakup have enhanced fish recruitment in oligotrophic lakes (Nyberg et al. 2001). In contrast to these lakes, some lakes, particularly deep tropical lakes, are experiencing reduced algal abundance and declines in productivity because stronger stratification reduces
upwelling of nutrient-rich deep water (Adrian et al. 1995; Verburg et al. 2003; O'Reilly 2006).

Primary productivity in Lake Tanganyika may have decreased by up to 20% over the past 200 years (O'Reilly et al. 2003), and for the East African Rift Valley lakes, recent declines in fish abundance have been linked with these climatic impacts on lake ecosystems (O'Reilly 2006).

Community composition. Increases in the length of the ice-free growing season, greater stratification, and changes in relative nutrient availability have generated shifts in community composition. Paleolimnological records showed widespread changes in phytoplankton species composition since the mid to late-1800s due to climate shifts, with increases in chrysophytes and planktonic diatom species and decreases in benthic species (Gajewski et al. 1997; Wolfe and Perren 2001; Battarbee et al. 2002; Sorvari et al. 2002; Laing and Smol 2003; Michelutti et al. 2003; Perren et al. 2003; Ruhland et al. 2003; Karst-Riddoch et al. 2005; Smol et al. 2005). These sedimentary records also indicated changes in zooplankton communities (Douglas et al. 1994; Battarbee et al. 2002; Korhola et al. 2002; Brooks and Birks 2004; Smol et al. 2005). In relatively productive lakes, there was a shift towards more diverse periphytic diatom communities due to increased macrophyte growth (Karst-Riddoch et al. 2005). In lakes where nutrients are becoming limited due to increased stratification, phytoplankton composition shifted to relatively fewer diatoms, potentially reducing food quality for upper trophic levels (Adrian and Deneke 1996; Verburg et al. 2003; O'Reilly 2006). Climate warming has also produced a northward shift in Odonata ranges in Britain (Hickling et al. 2005).

Phenology. With earlier ice breakup and warmer water temperatures, some species have responded to the earlier commencement of the growing season, often advancing development of spring algal blooms as well as clear water phases. The spring algal bloom now occurs about 4 weeks earlier in several large lakes (Weyhenmeyer et al. 1999; Gerten and Adrian 2000; Straile and Adrian 2000; Winder and Schindler 2004). In many cases where the spring phytoplankton bloom has advanced, zooplankton have not responded similarly, and their populations are declining because their emergence no longer corresponds with high algal abundance (Gerten and Adrian 2000; Winder and Schindler 2004). However, zooplankton phenology has also been affected by climate (Gerten and Adrian 2002; Winder and Schindler 2004). Phenological shifts have also been demonstrated for some wild and farmed fish species (Ahas 1999; Elliott et al. 2000). Because not all organisms respond similarly, differences in the magnitude of phenological responses among species has affected food web interactions (Winder and Schindler 2004).

1.3.4.5 Changes in rivers

Water flow is an important constraint in rivers that can influence water chemistry, habitat, and population dynamics, in addition to also affecting water temperature (Schindler et al. submitted). Specific information on the effect of climate change on hydrology can be found in Section 1.3.2. Increasing river temperatures have been associated with increased biological demand and decreased dissolved oxygen (without changes in flow) (Ozaki et al. 2003). Riverine dissolved organic carbon concentrations have doubled in some cases because of increased carbon release in the catchment as temperature has risen (Worrall et al. 2003).

Abundance, distribution and migration. Climate-related changes in rivers have affected species abundance, distribution, and migration patterns. While warmer water temperatures in many rivers have positively influenced the breeding success of fish (Fruget et al. 2001; Grenouillet et al. 2001; Daufresne et al. 2004), the stressful period associated with higher water temperatures for salmonids has lengthened as water temperatures have increased commensurate with air temperatures in some locations (Bartholow 2005). In the Rhone River, there have been significant changes in species composition, as southern, thermophilic fish and invertebrate species have progressively replaced...
cold-water species (Doledec et al. 1996; Daufresne et al. 2004). Correlated with long-term
increases in water temperature related to climate change, the timing of fish migrations in large
rivers in North America has advanced by up to 6 weeks in some years (Quinn and Adams 1996;
Huntington et al. 2003; Cooke et al. 2004; Juanes et al. 2004). Increasing air temperatures have
been negatively correlated with smolt production (Lawson et al. 2004) and earlier migrations are
associated with greater en route and pre-spawning mortality (up to 90%) (Cooke et al. 2004).

1.3.4.6 Summary

In marine and freshwater ecosystems, many observed changes in phenology and distribution have
been associated with rising water temperatures, as well as changes in salinity, oxygen levels, and
circulation. Climate change and variability, in combination with human impacts, have already
caused substantial damage to coral reefs. Globally, freshwater ecosystems are showing changes in
organism abundance and productivity, northward range expansions, and phenological shifts
(including earlier fish migrations) that are linked to rising temperatures. Many of these climate-
related impacts are now influencing how marine and freshwater ecosystems function.

Table 1.7: Examples of changes in freshwater ecosystems due to climate warming.

<table>
<thead>
<tr>
<th>Environmental factor</th>
<th>Change</th>
<th>Time period of change</th>
<th>Location of lakes/rivers</th>
<th># of lakes/rivers studied</th>
<th>Selected References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity or biomass</td>
<td>Increases due to longer growing season</td>
<td>100 years</td>
<td>North America, Europe</td>
<td>26</td>
<td>(Schindler et al. 1990; Adrian and Deneke 1996; Gajewski et al. 1997; Weyhenmeyer et al. 1999; Strale and Adrian 2000; Wolfe and Perren 2001; Battarbee et al. 2002; Gerten and Adrian 2002; Korhola et al. 2002; Carvalho and Kirika 2003; Winder and Schindler 2004; Hampton 2005; Karst-Riddoch et al. 2005; Schindler et al. 2005)</td>
</tr>
<tr>
<td></td>
<td>Decreases due to decreased nutrient availability</td>
<td>100 years</td>
<td>Europe, East Africa</td>
<td>5</td>
<td>(Adrian et al. 1995; O'Reilly et al. 2003; Verburg et al. 2003; O'Reilly 2006)</td>
</tr>
<tr>
<td>Algal community composition</td>
<td>Shift from benthic to planktonic species</td>
<td>150 to 100 years</td>
<td>North America, Europe</td>
<td>66</td>
<td>(Gajewski et al. 1997; Wolfe and Perren 2001; Battarbee et al. 2002; Sorvari et al. 2002; Laing and Smol 2003; Michelutti et al. 2003; Perren et al. 2003; Ruhland et al. 2003; Karst-Riddoch et al. 2005; Smol et al. 2005)</td>
</tr>
<tr>
<td></td>
<td>Decreased diatom abundance</td>
<td>100 years</td>
<td>East Africa, Europe</td>
<td>3</td>
<td>(Adrian and Deneke 1996; Verburg et al. 2003; O'Reilly 2006)</td>
</tr>
<tr>
<td>Phenology</td>
<td>Spring algal bloom up to 4 weeks earlier, earlier clear water phase, etc.</td>
<td>45 years</td>
<td>North America, Europe</td>
<td>5</td>
<td>(Weyhenmeyer et al. 1999; Gerten and Adrian 2000; Strale and Adrian 2000; Gerten and Adrian 2002; Winder and Schindler 2004; Winder and Schindler 2004)</td>
</tr>
<tr>
<td>Fish migration</td>
<td>6 days to 6 weeks earlier</td>
<td>50 to 20 years</td>
<td>North America</td>
<td>5</td>
<td>(Quinn and Adams 1996; Huntington et al. 2003; Cooke et al. 2004; Juanes et al. 2004; Lawson et al. 2004)</td>
</tr>
</tbody>
</table>
1.3.5 Terrestrial biological systems

Plants and animals can successfully reproduce, grow and survive only within specific ranges of climatic and environmental conditions (e.g., soil nutrients, roosting sites). If these conditions change beyond species’ tolerances, then plants and animals respond by shifting in space, timing of life cycles, morphology, reproduction and productivity, which could influence species compositions in ecosystems. If none of these responses is possible, local populations of species are likely to become extinct. Since the TAR, the number of studies finding species within terrestrial ecosystems to have responded to changing climate (associated with varying levels of confidence) has risen substantially. Recent global reviews are by Hughes (Hughes 2000), Menzel and Estrella (Menzel et al. 2001), Walther (Walther et al. 2002), Sparks and Menzel (Sparks and Menzel 2002), Parmesan (Parmesan and Yohe 2003) and Root (Root and Schneider 2002; Root et al. 2003); reviews on regional scales are by Parmesan and Galbraith for the US (Parmesan and Galbraith 2004) and the EEA for Europe (EEA 2004).

The likely influence of non-climate driving forces on biological responses increases with complexity of the processes studied, from phenology to morphology to ecosystems. Plants and animals may be affected by increased levels of UV-B radiation (Cummins 2003); plants are also affected by soluble-nitrogen deposition (Korner 2000). Species interactions and species-specific responses to various drivers – competition, pests and diseases, natural disturbances (e.g., wildfires), and soil properties (e.g., nutrient availability) also influence the changes seen in species. Other factors such as land use and land-use changes, habitat fragmentation (Hill et al. 1999) (Warren et al. 2001) or simply the absence of suitable areas for colonization, e.g., at higher elevations, also play an important role (Wilson et al. 2005), especially in species extinction (Williams et al. 2003). Animal distribution is dependent on the availability of suitable habitats for reproduction, raising of offspring, feeding, and wintering. Many animal populations have been under pressure from agricultural intensification and land-use change in the past 50 years and many species are in decline.

1.3.5.1 Morphological and physiological changes

In-situ observations provide evidence of morphological changes in vertebrates that appear linked to climatic change. Changes in morphological traits of birds apparently associated with temperature, probably via food availability, have been reported for the river warbler (Kanuscak et al. 2004). Reading and Clarke (Reading and Clarke 1999) report some changes in toad (Bufo spp.) reproduction related to temperature, precipitation, and population density. There have been reported instances of egg-size changes in birds related to temperature, but examples of both larger (Jarvinen 1994; Jarvinen 1996) and smaller eggs as evolutionary reaction to decreasing of female body size in long-term period have been reported (Tryjanowski et al. 2004). Following Bergmann’s rule, homeothermic (‘warm-blooded’) animals are expected to become smaller with rising average temperatures (Yom-Tov 2001). However, several studies on birds and mammals also revealed a trend towards larger body size in spite of globally and regionally increasing ambient temperatures (Nowaowski et al. 2002; Yom-Tov 2003; Kanuscak et al. 2004; Yom-Tov and Yom-Tov 2004), which may be explained by increased food supply and altered habitat structure.

In the insectivorous barn swallow, temperature affects not only egg mass, but also concentration of maternally derived substances that can affect egg hatchability and offspring antiparasite defence and viability (Saino et al. 2004). Northwards range extension by some Orthoptera and butterflies has been assisted by the evolution of increased colonization capacity (flight duration) and morphology (increased wing length and wing musculature, but decreased reproductive output (Hill et al. 1999; Thomas et al. 2001; Hughes et al. 2003; Simmons and Thomas 2004).
1.3.5.2 Changes in phenology

Phenology – the timing of seasonal activities of animals and plants – is perhaps the simplest process in which to track changes in the ecology of species in response to climate change. Recorded changes in spring and summer phenological events of plants and animals include leaf unfolding, flowering, fruit ripening of plants, arrival of migrant birds, chorusing of amphibians, and appearance/emergence of butterflies, while phenological changes in autumn include later leaf colouring, leaf fall, and migration of some birds. Numerous studies concurrently document both a progressively earlier start, and a later ending, thereby creating a lengthening of the growing season in most parts of the temperate and boreal zone of the northern hemisphere during the last 2-5 decades (see Table 1.8). A corresponding lengthening is observed for the frost-free growing season in North America and Europe (see 1.3.6.2).

Global meta-analyses have documented mean advances of spring events by 2.3 and 5.1 days/decade (the former includes species that have shown no change (Parmesan and Yohe 2003), while the latter includes only changing species (Root et al. 2003). Three other methods provide similar results (Penuelas and Filella 2001; Lucht et al. 2002): (1) analyses of remotely sensed vegetation indices (Myneni et al. 1997; Zhou et al. 2001), (2) analysis of the atmospheric CO2 signal (Keeling et al. 1996) (both providing spatially and species-averaged information), and (3) analyses of phenological ground observations (reviewed by Menzel et al. 2001; Sparks and Menzel 2002; Walther et al. 2002; Menzel 2003; Walther 2004).

Although phenological network studies differ in regions, species, events observed, and applied methods, their data show a clear extension of the growing season by up to 2 weeks in the 2nd half of the 20th century in mid and high latitudes of the northern hemisphere. A lengthened growing season might account for observed increases in productivity (see 1.3.6). Analyses of single-station data indicate a much greater lengthening of the growing season of 32 days in Spain (1952-2000) (Penuelas et al. 2002), or a pronounced earlier birch leaf fall in Russia (1930-1998) (Kozlov and Berlina 2002).

Table 1.8: Changes in length of growing season, based on observations within networks.

<table>
<thead>
<tr>
<th>Location</th>
<th>Period</th>
<th>Species/Indicator (LU leaf unfolding, LC leaf colouring, LF leaf fall)</th>
<th>Lengthening [Days/decade]</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>1951 up to 2000</td>
<td>4 deciduous trees (LU to LC)</td>
<td>1.1 to 2.3 (all stations, records)</td>
<td>(Menzel et al. 2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Menzel et al. 2003)</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1951-2000</td>
<td>9 spring phases, 6 autumn phases</td>
<td>2.7 (only sign. changes)</td>
<td>(Defila and Clot 2001)</td>
</tr>
<tr>
<td>Europe (Int. Phenological Gardens)</td>
<td>1959-1996</td>
<td>Various spring / autumn phases (LU to LC, LF)</td>
<td>3.5 (all stations)</td>
<td>(Menzel and Fabian 1999; Menzel 2000)</td>
</tr>
<tr>
<td>Japan</td>
<td>1953-2000</td>
<td>Gingko biloba (LU to LF)</td>
<td>2.6</td>
<td>(Matsumoto et al. 2003)</td>
</tr>
<tr>
<td>Northern Hemisphere</td>
<td>Jul 1981 – Dec 1999</td>
<td>Growing season by NDVI</td>
<td>1 (Eurasia), 0.7(North America)</td>
<td>(Zhou et al. 2001)</td>
</tr>
</tbody>
</table>

Altered timing of spring events are reported for a broad multitude of species and locations (e.g., swallow arrival time in the Slovak Republic (Sparks and Braslavska 2001) or Aspen flowering in Canada (Beaubien and Freeland 2000) (see further examples in supplementary material). Network studies where results from all sites are reported, irrespective of their significance (Table 1.9), show that leaf unfolding and flowering have, on average, advanced by 1-3 days per decade in Europe, North America, and Japan over the last 30 to 50 years. There are also indications that the onset of fruit ripening has advanced in many cases (Jones and Davis 2000; Penuelas et al. 2002; Menzel et al. 2003).
Table 1.9: Changes in the timing of spring events, based on observations within networks.

<table>
<thead>
<tr>
<th>Location</th>
<th>Period</th>
<th>Species / Indicator (F=flowering, LU leaf unfolding))</th>
<th>Observed changes (- advance, + delay) [Days/decade]</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western USA</td>
<td>1957-1994</td>
<td>Lilac, honeysuckle (F)</td>
<td>-1.5 / -3.5</td>
<td>Cayan 2001</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>1970-1999</td>
<td>100 plant species (F)</td>
<td>-0.8</td>
<td>Abu-Asab et al. 2001</td>
</tr>
<tr>
<td>Germany</td>
<td>1951-2000</td>
<td>10 spring phases (F, LU)</td>
<td>-1.6</td>
<td>Menzel et al. 2003</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1951-1998</td>
<td>9 spring phases (F, LU)</td>
<td>-1.9</td>
<td>Defila and Clot 2001</td>
</tr>
<tr>
<td>Europe (Int. Phenological Gardens)</td>
<td>1959-1996</td>
<td>Different spring phases (F, LU)</td>
<td>-2.1</td>
<td>Menzel and Fabian 1999, Menzel 2000</td>
</tr>
<tr>
<td>Europe (Int. Phenological Gardens)</td>
<td>1969-1998</td>
<td>Different spring phases index</td>
<td>-2.7</td>
<td>Chmielewski and Rotzer 2001</td>
</tr>
<tr>
<td>21 European Countries</td>
<td>1971-2000</td>
<td>F, LU of various plants</td>
<td>-2.5</td>
<td>Menzel et al. 2006</td>
</tr>
<tr>
<td>Japan</td>
<td>1953-2000</td>
<td>Gingko biloba (LU)</td>
<td>-0.9</td>
<td>Matsumoto et al. 2003</td>
</tr>
<tr>
<td>Northern Eurasia</td>
<td>1982-2004</td>
<td>NDVI</td>
<td>-1.5</td>
<td>Delbart et al. 2006</td>
</tr>
<tr>
<td>UK</td>
<td>Past 23 years</td>
<td>18 butterfly species appearance</td>
<td>-2.8 to -3.2</td>
<td>Roy and Sparks 2000</td>
</tr>
<tr>
<td>North America; Cayuga Lake Basin, NY</td>
<td>1932-1993</td>
<td>52 species spring migrants</td>
<td>0.8 to -9.6 days/decade</td>
<td>Butler 2003</td>
</tr>
<tr>
<td>North America; Urbana, IL</td>
<td>1976-2002</td>
<td>8 spring Neotropical warbler species</td>
<td>2.4 to -8.6 days/decade</td>
<td>Strode 2003</td>
</tr>
<tr>
<td>Europe; Oxfordshire, England</td>
<td>1971-2000</td>
<td>20 species spring long-distance migrants</td>
<td>0.4 to -6.7 days/decade</td>
<td>Cotton 2003</td>
</tr>
<tr>
<td>North America; Middleborough, MA</td>
<td>1970-2002</td>
<td>16 species spring migrant birds</td>
<td>-2.6 to -10.0 days/decade</td>
<td>Ledneva et al. 2004</td>
</tr>
<tr>
<td>Europe; Ottenby, Sweden</td>
<td>1971-2002</td>
<td>36 species spring migrant birds</td>
<td>2.1 to -3.0 days/decade</td>
<td>Stervander et al. 2005</td>
</tr>
<tr>
<td>Europe-wide</td>
<td>1980-2002</td>
<td>Pied flycatcher egg-laying at 27 locations</td>
<td>-1.7 to -4.6 days/decade</td>
<td>Both et al. 2004</td>
</tr>
<tr>
<td>Australia</td>
<td>1970-1999</td>
<td>11 migratory birds</td>
<td>9 species earlier arrival</td>
<td>Green et al. 2002</td>
</tr>
<tr>
<td>Australia</td>
<td>1984-2003</td>
<td>5 migratory birds</td>
<td>1 species earlier arrival</td>
<td>Chambers et al. 2005</td>
</tr>
<tr>
<td>Europe, North America</td>
<td>Past 30-60 years</td>
<td>Numerous bird species</td>
<td>Earlier breeding by 1.9-4.8 days/decade</td>
<td>Dunn 2004</td>
</tr>
<tr>
<td>UK, Poland</td>
<td>Past 25 years</td>
<td>Amphibians</td>
<td>Earlier breeding</td>
<td>Beebee 1995, Tryjanowski et al. 2003</td>
</tr>
</tbody>
</table>
Records of the return dates of migrant birds have shown change in recent decades associated with changes in temperature in wintering or breeding grounds or on the migration route (Tryjanowski 2002; Butler 2003; Cotton 2003; Huppop and Huppop 2003). Different measurement methods, such as first observed individual, beginning of sustained migratory period, or median of the migratory period, provide different information about the natural history of species (Sokolov et al. 1998; Sparks and Braslavská 2001; Huppop and Huppop 2003; Tryjanowski et al. 2005). A recent meta-analysis of arrival dates (Lehikoinen et al. 2004) showed strong evidence of earlier arrival (of 983 series 39% were significantly earlier and only 2% significantly later for first arrival dates).

Several studies have reported an advance in egg-laying dates in birds (Hussell 2003; Dunn 2004). The confidence in such studies is enhanced where the data cover a period of both local cooling and warming or are multinational and include sites experiencing both localised warming and cooling. Flycatchers in Europe (Both et al. 2004) provide an example where trend in egg-laying dates matches trends in local temperatures. Fewer examples are reported of phenological change in mammals. There are examples of altered phenology at higher altitude and latitude, for example the appearance of marmots (Inouye et al. 2000) and changes in the phenology of reindeer (Post, reindeer). In the Yukon, earlier breeding of pikas has been reported (Franken and Hik 2004). In amphibians there have been numerous reports of advances in mating or calling related to temperature (Gibbs and Breisch 2001; Tryjanowski et al. 2003). Changes in the length of the tadpole phase of the common toad were reported by Reading (Reading 2003). Despite the bulk of evidence in support of earlier breeding activity as a response to temperature, counter examples do exist (Blaustein et al. 2001). Advancement in the phenology of butterflies has been reported from a number of national (Roy and Sparks 2000) and local studies (Forister and Shapiro 2003; Stefanescu et al. 2003). There is a growing literature indicating earlier activity in other invertebrates including crickets, aphids, and hoverflies (Hickling et al. 2005; Newman 2005).

Uncertainties and Variations. Shifts in spring activities differ by species and by time of season with early-season plants species exhibiting the stronger reactions (Abu-Asab et al. 2001; Menzel et al. 2001; Fitter and Fitter 2002; Sparks and Menzel 2002; Menzel 2003). Similarly, short-distance migrating birds, which tend to migrate early in the season, often exhibit a trend towards earlier arrival while the response of later-arriving long-distance migrants is more complex, with many species showing no change or even delayed arrival (Butler 2003; Strode 2003). Annual plants respond more strongly than congeneric perennials, insect-pollinated plants more than wind-pollinated plants, woody plants less than herbaceous plants (Fitter and Fitter 2002), but there are no differences between Raunkiaer life-forms or different origins (Penuelas et al. 2002). Small-scale spatial variability may be due to microclimate, land cover, genetic differentiation and other non-climate drivers (Menzel et al. 2001; Menzel 2002). In Switzerland, the proportion of stations with advancing onset of spring events increases with altitude (Defila and Clot 2001). Geographical differences are evident, e.g., for both plants and birds in Southeast Europe by later bird arrival in the Slovak Republic (Sparks et al. 1999) and later start of the growing season (Menzel and Fabian 1999). Spring advance, being more pronounced in maritime western and central Europe than in the continental east (Ahas et al. 2002; Schleip et al. 2005), is associated with higher spatial variability (Menzel et al. 2006).

Detection of changes depends on the underlying time-frame of observations: longer series covering the last century also include periods of later onset. Earlier spring events and a longer growing season in Europe is most apparent for time-series ending in the mid 1980s or later (Schaber 2002; Scheifinger et al. 2002; Dose and Menzel 2004; Menzel and Dose 2005; Schleip et al. 2005), which matches turning points in the respective spring temperature series (Dose and Menzel 2006).
Signal. Spring phenology is sensitive to climate and local weather (Sparks et al. 1999; Lucht et al. 2002; Menzel 2003). In contrast to autumn phenology, the spring climate signal is fairly well understood: nearly all spring changes in plants, including agricultural crops (Estrella et al. 2006) correlate with spring temperatures in the preceding months. Alpine species are also partly sensitive to photoperiod (Keller and Korner 2003) or amount of snow pack (Inouye et al. 2002). For many birds, spring temperatures and weather conditions on wintering grounds and for some birds, late summer and/or autumn temperatures and weather on the breeding grounds influence the timing of migration. The speed and pattern (Menzel and Dose 2005) as well as recent trends of spring events in European plants has changed consistently with changes seen in the North Atlantic Oscillation (NAO) index (Chmielewski and Rotzer 2001; Scheifinger et al. 2002; Walther et al. 2002; Menzel 2003). However, directions of species changes corresponding to NAO changes can differ across Europe (Hubalek 2003; Kanuscak et al. 2004). Spring phenological changes in birds and plants and their triggering by spring temperature are often similar, as described in some cross-system studies (Walther et al. 2002) (Fig. 1.4).

1.3.5.3 Changes in reproduction

Several studies report evidence for climate change effects not only on timing and duration of the pollen season (see 1.3.5.5), but also on pollen amounts (Beggs 2004). Among mammals, polar bear body condition and reproductive success have declined in areas that have become ice-free for prolonged periods, where the time available for hunting has been reduced (Derocher et al. 2004).

1.3.5.4 Changes in species distribution
Many studies focusing on species abundances and distributions corroborate predicted systematic shifts related to changes in climatic regimes, often via species-specific physiological thresholds of temperature and precipitation tolerance. Habitat loss and fragmentation may also influence these shifts; however, temperature is likely to be the main driver if different types of species in many different areas or species throughout broad regions shift in a coordinated and systematic manner. A certain inherent resilience of treeline forests is reported and the magnitude of elevational shifts of alpine plant species lags behind the isothermal shift (Walther et al. 2005), whereas some butterflies appear to track decadal warming quickly (Parmesan et al. 1999). The survival of different bird species wintering in Europe has increased. Many species have recently expanded their ranges along the poleward boundaries as conditions in these boundary habitats become less marginal (Thomas et al. 2001).

Changes in the distribution of species have occurred across a wide range of taxonomic groups and geographical locations during the 20th century (Table 1.10). Over the past decades a poleward extension of various plant species has been observed, which is likely attributable to increases in temperatures (Parmesan and Yohe 2003). One cause of these expansions is increased survivorship (Crozier 2004). Many Arctic and tundra communities are affected and have been replaced by trees and dwarf shrubs (Molau and Alatalo 1998; ACIA 2004). In north-western Europe, e.g., in the Netherlands (Tamis et al. 2001) and central Norway (EEA 2004), thermophilic (warmth-requiring) plant species have become significantly more frequent compared with 30 years ago. In contrast, there has been a small decline in the presence of traditionally cold-tolerant species. The changes in composition are the result of the migration of thermophilic species into these new areas, but also due to an increased abundance of these species in current locations.

Altitudinal shifts of vegetation are well-documented (Dobbertin et al. 2005; Walther et al. 2005) (see Tab. 1.10). In the Alps, over the past 60 years spruce and pine species have migrated upward into the sub-alpine region (Pauli et al. 2001) and sub-alpine shrubs now grow on the summits (Theurillat and Guisan 2001). The movement upwards in elevation by lower elevational species has often proven detrimental to the endemic species already occurring in the higher locations. While species richness has increased in some places, it has declined in others (Weare and Morgan 2001; Cuevas 2002; Klanderud and Birks 2003). In some places, the position of treeline has not extended up in elevation in the last half-century (Cullen et al. 2001; Masek 2001; Klasner and Fagre 2002), which may be due to time-lag effects owing to poor seed production/dispersal or to the presence of “surrogate habitats” with special microclimate. In mountainous regions, climate is the main driver of species composition, and human influence is relatively low, despite grazing, logging and firewood collection. Species that are often endemic and of high importance for plant diversity (Vare et al. 2003) are vulnerable to climate change most likely because of enhanced response to higher CO2 levels, characteristic small climatic ranges, severe climatic conditions and small isolated populations (Pauli et al. 2003) and the absence of suitable areas at higher elevations in which to migrate.

Table 1.10: Evidence of significant recent range shifts poleward and to higher elevation.

<table>
<thead>
<tr>
<th>Location</th>
<th>Species/Indicator</th>
<th>Observed changes due to increased temperature (if nothing else stated)</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>California coast</td>
<td>Spittlebug</td>
<td>Northward range shift</td>
<td>(Karban and Strauss 2004)</td>
</tr>
<tr>
<td>Eastern Washington, USA</td>
<td>Sachem Butterfly</td>
<td>Range expansion with increased minimum temperature</td>
<td>(Crozier 2004)</td>
</tr>
</tbody>
</table>
Britain | Speckled wood (*Pararge aegeria*) | Expanded N. margin, at 0.51 to 0.93 km/y, depending on habitat availability | (Hill et al. 2001)
Britain | 4 northern butterflies | 40 m mean increase in elevation, pre-1970 to 1995-99 | (Hill et al. 2002)
Britain | 37 dragonfly and damselfly species | 36 out of 37 species shifted northwards (mean 84 km), 1960-70 to 1985-95 | (Hickling et al. 2005)
Czech Republic | 15 of 120 butterfly species | Uphill shifts in last 40 years | (Konvicka et al. 2003)
Poland | White stork (*Ciconia ciconia*) | Range expansions in elevation, 240 m during last seventy years | (Tryjanowski et al. 2005)
Australia | 3 Macropods & 4 feral mammal species | Range expansions up in elevation | (Green, 2002, alpine)
Australia | Grey-headed Flying Fox | Contraction of southern boundary poleward by 750 km since 1930s | (Tidemann, 1999, flying foxes)
Senegal, West Africa | 126 tree and shrub species | 35-50 km latitudinal shift of ecological zones in the period 1945-1993 due to decrease in annual precipitation | (Gonzalez 2001)
Sweden, Spain, New Zealand, California | Treeline | Advancement towards higher altitudes | (Meshinev et al. 2000; Kullman 2002; Penuelas and Boada 2003; Millar and Herdman 2004)
Canada | Forest-Tundra line | 12 km/year northward shift by NDVI and land-surface temperature data | (Fillol and Royer 2005)
Alaska | Arctic shrub vegetation | Expansion of shrubs in previously shrub-free areas | (Sturm and Liston 2003)
European Alps | Alpine summit vegetation | Elevational shift, increased species richness on mountain tops | (Walther et al. 2005)
Montana, US | Arctic-alpine species | Decline at the southern margin of range | (Lesica and McCune 2004)
Germany, Scandinavia | English Holly (*Ilex aquifolium*) | Poleward shift of northern margin due to increasing winter temperatures | (Walther et al. 2005)

Climate-linked extinctions. Determining the exact cause or causes of extinction can be difficult. As the time-horizon lengthens, however, more extinctions are likely to occur (Thomas et al. 2004). Currently about 20% of the bird species are extinction prone, while around 5% are already functionally extinct (e.g., small inbreed populations) (Sekercioglu et al. 2004). The extinction process in declining species is reflected by fragmented distributions (Wilson et al. 2004). Prominent examples for declines in populations and subsequent extinction/extirpation (Ron et al. 2003) are found in amphibians around the world (Pounds et al. 2006). In Puerto Rico, a synergistic interaction between drought and disease has been noted (Burrowes et al. 2004). In Central and South America, the synergy between UVB radiation and other factors, such as acidification, have been hypothesized (Middleton et al. 2001). Climate variability (of both temperature and precipitation) is unlikely to be the direct cause of amphibian decline (Alexander and Eischeid 2001), but it has been found to have significant impact on the extinction of the butterfly *Euphydryas editha* (McLaughlin et al. 2002) and *Euphydryas editha bayensis* (McLaughlin et al. 2002).

Climate-linked invasions. Fluctuation in resource availability, which can be driven by climate variability, has been identified as the key factor controlling the susceptibility of an environment to invasion by non-resident species (Davis et al. 2000). The clearest evidence for climate variability triggering an invasion occurs where a suite of species with different histories of introduction spread...
en-masse during periods of climatic amelioration (Walther 2000). A prominent example is thermophilous plants that spread from gardens into the surrounding countryside in southern Switzerland (Walther 2000; Walther et al. 2002), and exotic thermophilous plants spreading into the native flora of Spain and Ireland (Pilcher and Hall 2001; Sobrino et al. 2001). Elevated CO2 might also contribute to the spread of weedy, non-indigenous plants (Hattenschwiler and Korner 2003).

1.3.5.5 Species community changes and ecosystem processes

In many parts of the world, including Europe, species composition has changed (Walther et al. 2002), partly due to invasions and distributional changes (see 1.3.5.4). The assemblages of species in ecological communities reflect interactions among organisms as well as between organisms and the abiotic environment. Climatic change, enhanced CO2 levels or extreme climatic events can alter community composition as species differentially track their climatic tolerances. If this is asymmetrical with species invading faster than resident species are receding, species diversity may increased in certain regions (e.g., northwestern Europe) due to a northward movement of southern species, whereas the effect on cold-tolerant species is still limited (Tamis et al. 2001; EEA 2004) (see 1.3.5.4). In non-fragmented Amazon forests, direct effects of CO2 on photosynthesis, as well as faster forest turnover rates, may have driven non-linear composition response with a substantial increase in density and basal area of lianas over the last 2 decades (Phillips et al. 2002). Although many species-community changes are also attributable to landscape fragmentation, habitat modification, and other non-climate drivers, many studies show a high correlation between changes in species composition and recent climate change, also via frequency of weather-based disturbances (Hughes 2000; Pauli et al. 2001; Parmesan and Yohe 2003). Examples of altered or stable synchrony in ecosystems via multi-species interactions are still not abundant. Visser and Holleman (Visser and Holleman 2001) found different responses in the Pedunculate Oak-Winter Moth-Tit food chain compared to Buse (Buse et al. 1999) and van Noordwijk (van Noordwijk et al. 1995).

1.3.5.6 Species evolutionary processes

Recent evolutionary responses to climate change have been reviewed by Thomas (Munich Re Group 2005). Changes have taken place in the plants preferred for egg-laying and feeding of butterflies, e.g., a broadened diet facilitated the colonisation of new habitats during range extension in Britain (Thomas et al. 2001). The pitcher-plant mosquito in the USA has prolonged development time in late summer by the evolution of changed responses to daylength (Bradshaw and Holzapfel 2001; Bradshaw et al. 2003). The blackcap warbler has recently extended its overwintering range northwards in Europe by evolving a change in migration direction (Berthold et al. 2003). Insects expanding their ranges have undertaken genetically-based changes in dispersal morphology, behaviour and other life history traits, as “good colonists” have been at a selective advantage (Hill et al. 1999; Thomas et al. 2001; Hughes et al. 2003; Simmons and Thomas 2004). Genetic changes of Drosophila melanogaster in eastern coastal Australia over 20 years are likely to reflect increasingly warmer and drier conditions (Umina et al. 2005). Evolutionary processes are also demonstrated by reproductive phenological change associated with climate change in North American Red squirrels (Berteaux et al. 2004). There is no evidence so far that the temperature response rates of plants has changed over the last century (Menzel 2005).

1.3.5.7 Summary

The overwhelming majority of studies of terrestrial biological systems reveal notable impacts of global warming over the last 3-5 decades, which are consistent across plant and animal taxa: earlier spring and summer phenology and longer growing seasons in mid and higher latitudes, range
expansions at higher elevations and latitudes, some evidence for population declines at lower elevational or latitudinal limits to species ranges, and vulnerability of species with restricted ranges, leading to (local) extinctions. Non-climate synergistic factors can significantly limit migration and acclimation capacities.

While a variety of methods have been used that provide evidence of biological change over many ecosystems, there remains a notable lack of studies on some ecosystems particularly in tropical regions, due to a significant lack of long-term data. Furthermore, not all processes influenced by warming have yet been studied. Nevertheless, in the large majority of studies, the observed trends found in species correspond to predicted changes in terms of magnitude and direction. Analyses of regional differences in trends reveal that spatio-temporal patterns of both phenological and range change are consistent with spatio-temporal patterns expected from observed climate change.

1.3.6 Agriculture and forestry

Although agriculture and forestry are known to be highly dependent on climate, little evidence of observed changes related to regional climate changes was noted in the TAR. This is likely due to the strong influence of non-climate factors on agriculture, and to a lesser extent, on forestry, especially management practices and technological changes on local and regional scales, as well as market prices and policies related to subsidies (Easterling 2003). The worldwide trends in increasing productivity (yield per hectare) of most crops over the last 40 years, primarily due to technological improvements in breeding, pest and disease control, fertilization, and mechanization, also makes identifying climate change signals difficult (Hafner 2003).

1.3.6.1 Crops and livestock

Changes in crop phenology provide important evidence of responses to climate (Table 1.10a). Such changes are apparent in production of perennial crops, such as fruit trees and wine-grapes, which are less dependent on yearly management decisions by farmers than annual crops and are also often easier to observe. But some evidence also appears in annual crops. Phenological changes are often observed in tandem with changes in management practices by farmers (Table 1.11b). A study in Germany (Menzel et al. 2006) has revealed that between 1951 and 2004 the advance for agricultural crops (2.1 days/decade) has been significantly less marked than for wild plants or fruit trees (4.4 to 7.1 days/decade). All the reported studies concern Europe, where recent warming has clearly advanced a significant part of the agricultural calendar.

Table 1.11: Observed changes in agricultural crop production and livestock: (a) Phenology; (b) Management practices, pests and diseases; (c) Yield; (d) Livestock.

<table>
<thead>
<tr>
<th>Location</th>
<th>Period</th>
<th>Observed Change</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>a). Phenology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>1961-2000</td>
<td>Observed advance of stem elongation for winter rye (10 days) and emergence for maize (12 days)</td>
<td>(Chmielewski et al. 2004)</td>
</tr>
<tr>
<td>European Union</td>
<td>1975-2001</td>
<td>Advance in wheat flowering (3 weeks) computed with CGMS model</td>
<td>(Genovese et al. 2005)</td>
</tr>
<tr>
<td>Germany</td>
<td>1951-2000</td>
<td>Observed advance in cherry tree flowering (0.9 days/10 years), apple tree flowering (1.1 days/10 years) in response (-5 days/°C) to March/April temperature increase</td>
<td>(Menzel 2003)</td>
</tr>
<tr>
<td>Germany</td>
<td>1961-1990</td>
<td>Observed advance in beginning of growing season for fruit trees (2.3 days/10 years),</td>
<td>(Chmielewski et al. 2004)</td>
</tr>
</tbody>
</table>
cherry tree blossom (2.0 days/10 years),
apple tree blossom (2.2 days/10 years) in
agreement with annual air temperature
increase of 1.4°C.

South of France 1970-2001 Observed advance of fruit tree flowering of
1 to 3 weeks for apricot and peach trees,
increase in spring frost risks, and more
frequent occurrence of bud fall or necrosis
for sensitive apricot varieties
(Seguin et al. 2004)

b). Management practices, pests and
diseases

Germany 1961-2000 Observed advance of seeding dates for
maize and sugarbeet (10 days)
(Chmielewski et al. 2004)

France last 30 years Observed advance of maize sowing dates
by 20 days in 4 INRA experimental farms
(Benoit and Torre 2004)

Finland 1965-1999 Observed advance of potato sowing date by
5 days, no change for spring cereals
(Hilden and Lethtonen 2005)

South of France last 20 years Observed partial shift of apple codling moth
from two to three generations
(Sauphanor and Boivin 2004)

c) Yields

Rothamsted UK (Europe) 1965-1998 Observed lower hay yields, in relation with
warmer summers
(Cannell et al. 1999)

USA county level 1982-1998 Part of overall yield increase attributed to
recent cooling during growing season:
25% maize, 33% soybean
(Lobell and Asner 2003)

IRRI field Philippines 1992-2003 Decrease of rice yield associated with
increase of temperature (0.35 °C and
1.13°C for maximum and minimum
respectively during 1979-2003).
(Peng et al. 2004)

d) Livestock

Mandalgobi station
(Mongolia) 1970-2002 Decrease of measured pasture biomass by
20 to 30%
(Batimaa 2005)

Mongolia 1982-2002 Decline of NDVI of the third decade of July
by 69% for the whole territory
(Erdenetuya 2004)

Asia (Tibet) 1978-2002 Observed increase in animal production
related to warming in summer and annual
temperature.
(Du et al. 2004)

Since the TAR, there has been evidence of recent trends in agro-climatic indices, particularly those
with a direct relationship to temperature, such as increases in growing season length and in
-growing-degree-days during the crop cycle. These increases, associated with earlier last spring frost
and delayed autumn frost date, are clearly apparent in temperate regions of Europe (Moonen et al.
2002; Menzel 2003; Genovese et al. 2005) and a major part of North America (Robeson 2002; Feng
and Hu 2004). They are especially detectable in indices applicable to wine-grape cultivation (Box
1.2). In Sahelian countries, increasing temperature in combination with rainfall reduction has led to
a reduced length of vegetative period no longer allowing present varieties to complete their cycle
(Ben Mohamed et al. 2002).

Box 1.2: Wine and Recent Warming

Wine-grapes are known to be highly sensitive to climatic conditions, especially temperature
(viticulture was thriving in Great Britain during the last medieval warm period). They have been
used as an indicator of observed changes in agriculture related to warming trends, particularly in
Europe and in some areas of North America.
Using 30 years of data for grapevine production in Alsace, France, Duchêne (Duchene and Schneider 2005) found that the number of days with a mean daily temperature above 10°C (favourable for vine activity) in the last 70 years has increased from 170 to 210 at the end of the 20th century. The increase of the heliothermal index of Huglin (Seguin et al. 2004) is observed for all the wine-producing areas of France. It is associated to a lower year-to-year variability in the last 15 years, which provides conditions favourable for wine, in terms of both quality and stability. Jones (Jones 2005) observed similar trends in the average growing-season temperatures (April-October for the Northern Hemisphere) at the main sites of viticultural production in Europe. The same tendencies have also been found in the California, Oregon, and Washington vineyards of the U.S., Nemani (Nemani et al. 2001), (Jones 2005).

Consequences of warming are already detectable in the wine quality, as shown by Duchêne (Duchene and Schneider 2005) with a gradual increase of the potential alcohol levels at harvest for Riesling in Alsace of nearly 2% volume in the last 30 years. On a worldwide level, Jones (Jones 2005) has established, for 25 of the 30 analyzed regions, increasing trends of vintage ratings (average rise of 13.3 points on a 100-point scale for every 1°C warmer the growing season), with lower vintage-to-vintage variation.

In spite of this, no detectable change in crop yield directly attributable to climate has been reported for Europe, even though model simulations exhibit a tendency to lower potential biomass with observed levels of warming (Table 1.11c). For example, the yield trend of winter wheat displays progressive growth from 2.0 t/ha in 1961 to 5.0 t/ha in 2000, with anomalies due to climate variability on the order of 0.2 t/ha (Cantelaube et al. 2004). The same observation is valid for Asia, where the rice production of India has grown since 1999 from 20 M tons to over 90 M tons, with only a slight decline during El Niño years when monsoon rainfall is reduced (Selvaraju 2003). A negative effect of warming for rice production observed by IRRI in The Philippines (yield loss of 15% for 1°C increase of growing-season minimum temperature in the dry season) (Peng et al. 2004) is limited to a local observation for a short time-period; a similar effect has been noted on hay yield in the UK (1°C increase in July-August led to 0.33 t/ha loss) (Cannell et al. 1999). A study at the county level of US yields (Lobell and Asner 2003) has established a positive effect of cooler and wetter years in the Midwest and hotter and drier years in the Northwest plains. In the case of the Sahel region of Africa, warmer and drier conditions have served as a catalyst for a number of other factors that have accelerated a decline in groundnut production (Van Duivenbooden et al. 2002).

Changes in crop area distribution have not been associated with regional climate trends, but enlarged areas of vineyards and forage maize in production have been selected as indicators of climate change in the UK, along with the use of irrigation water for agriculture, proportion of potato crop that is irrigated, and potato yield (Cannell et al. 1999).

For livestock (Table 1.11d), one study in Tibet reports a significant relationship of improved performance with warming in high mountainous conditions (Du et al. 2004). On the contrary, the pasture biomass in Mongolia has been affected by the warmer and drier climate, as observed at a local station (Batimaa 2005) or at the regional scale by remote sensing (Erdenetuya 2004).

1.3.6.2 Forestry

Here we focus on forest productivity and its contributing factors (see Section 1.3.5 for phenological aspects). The terrestrial carbon cycle is strongly linked to inter-annual climate variability. However, the rising atmospheric CO₂ concentration, nitrogen fertilization, lengthening of the growing season due to warming, and changed management have resulted in a steady increase in annual forest CO₂ storage capacity in the past few decades, which leads to a more significant net carbon uptake.
(Nabuurs et al. 2002). Net primary production over the same period increased by 6% globally, with
the largest increases in tropical ecosystems (Nemani et al. 2003). Northern vegetation activity
inferred from satellite data of vegetation index has increased in magnitude by 12% in Eurasia and by
8% in North America from 1981-1999. Thus the overall trend towards longer growing seasons is
consistent with an increase in the 'greenness' of vegetation, for broadly continuous regions in Eurasia
and in a more fragmented way in North America, reflecting changes in biological activity (Zhou et
al. 2001). Analyses in China attribute increases in net primary productivity, in part, to countrywide
lengthening of the growing season (Fang et al. 2003). Similarly, other studies find a decrease in the
frost-free period in northern China by 10 days (Schwartz and Chen 2002) and advances in spring
phenology (Zheng et al. 2002). In humid evergreen tropical forest in Costa Rica, annual growth in
the period 1984-2000 varied inversely with the annual means of daily minimum temperature, because
of increased respiration at night (Clark and et al 2003). However, for southern Europe, an opposite
trend has been detected in relation due the observed rainfall decrease (Maselli 2004), especially after
the severe drought episode of 2003 (Gobron et al. 2005; Lobo and Maisongrande 2005).

Climate warming can also change the disturbance regime of forests by increasing the range
extension of some damaging insects as observed during the last 20 years for bark beetles in USA
(Williams and Liebhold 2002) or pine processional moth in Europe (Battisti et al. 2004). The
latter has displayed an observed northward shift of 27 km/decade near Paris, a 70m/decade upward
shift in altitude for southern slopes and 30m/decade for northern slopes in Italian mountains.

Trends in disturbance resulting from forest fires are still a subject of controversy. While the
increase of outdoor fires in England and Wales between 1965 and 1998 may be attributable to a
trend toward warmer and drier summer conditions (Cannell et al. 1999), McKenzie (McKenzie et
al. 2004) has established that, in spite of management acting to reduce fuel load in forests, climate
variability is the dominant factor affecting large wildfires. This is confirmed by an analysis of forest
fires in Siberia between 1989 and 1999 (Conard et al. 2002), which detected the significant impacts
of two large fires in 1996 and 1998, resulting in 13 million ha burned and the emission of 14-20%
of the annual global carbon emission from forest fires. Also, repeated large forest fires during the
warm season in recent years in the Mediterranean region and North Africa, as well as in California,
have been linked to drought episodes. One study for forest fires in Canada (Gillett et al. 2004)
found that the observed increase in burned areas during the last 40 years, in spite of improved fire-
fighting techniques, is in agreement with simulated warming from a GCM model. About half of the
trend towards increasing area burned may be attributed to climate change as the result of a
statistical model. However, this finding is not in agreement with another study (Bergeron et al.
2004), which found that 1940 to 1970 was a period of relatively low fire frequency in Canada and a
tendency for a recent decrease of fires in Eastern Canada.

1.3.6.3 Evidence of adaptation and vulnerability

There is little documented evidence of adaptation to regional climate trends in agriculture and
forestry, with only a few studies related to the shift of sowing dates of annual crops. There is even
less evidence related to food supply. In regard to vulnerability, evidence of observed effects
(changes in planting or shifts in distribution) studies have primarily focused on crops in developed
countries, and not on effects in relation to subsistence agriculture in rural populations in developing
countries.

Changes in vulnerability are difficult to assess in relation to recent changes in mean temperature at
the decadal scale. Vulnerability in these sectors appears to be high in the case of extreme events or
exceptional episodes, such as the summer of 2003 in Europe. The extreme warming (which was
close to levels projected by end-of-century GCM climate change scenarios) resulted in the strongest
negative deviation in crop production from the long-term trend in the last 43 years (FAO 2004). Greece, Portugal, Italy and especially France suffered yield decreases of up to 30%.

Global crop modelling studies have projected that agriculture in developed countries will mostly benefit from climate change at least in the near-term, while developing nations, for the most part, will experience declines in production (Parry et al. 2004). The observed trends tend to confirm the model simulations. Regions in North America (Lobell and Asner 2003) and Northern Europe, apart from 2003 (Genovese et al. 2005), in general, appear to have experienced more favourable growing conditions, but the first study leads to predict a reduction of 17% in corn and soybean for each 1°C increase of growing season temperature. Regions such as the Sahel (Van Duivenbooden et al. 2002) have experienced changes that have been unfavourable to crop production, whilst the local experiment in Philippines (Peng et al. 2004) indicates a potential tendency for reduced rice production with warming in tropical countries.

1.3.6.4 Summary

Trends in individual climate variables or their combination into agro-climatic indicators show that there is an advance in phenology in large parts of North America and Europe, which has been attributed to recent regional warming. In temperate regions, there are clear signals of reduced risk of frost, longer growing season duration, increased biomass, higher quality (for grapevines, a climate-sensitive crop), insect expansion, and increased forest-fire occurrence that are in agreement with regional warming. These effects are hard to detect in aggregate agricultural statistics because of the influence of non-climate factors. Though the present effects are of limited economic consequence and appear to lie within the ability of the sectors to adapt, both the agriculture and forestry sectors show vulnerability to recent extreme heat and drought events.

1.3.7 Human Health

Here we evaluate evidence regarding observed changes in human health and regional climate change. These observed changes are related to temperature trends and extremes in nearly all cases and their resultant impacts on infectious diseases, noncommunicable diseases associated with heat and cold stress, or environmental allergens (See Chapter 8).

The superposition of natural climate variability on greenhouse gas-induced warming can produce fluctuations that may be key drivers of interannual variability in many parts of the world. Extremes of temperature and rainfall, sometimes associated with ENSO can be associated with the transmission and occurrence of certain diseases in certain locations (Kovats et al. 2001). Climate extremes in temperature and precipitation have direct impacts, such as heat and cold extremes, which can result in well-described impacts on mortality (8.2.1). Additionally, temperature and rainfall variability can be an important determinants of the transmission of vector borne diseases. Githeko and Ndegwa (Githeko and Ndegwa 2001) have shown, for example, how unusually high temperatures in the normally cool highlands of Kenya have been favourable to malaria outbreaks.

There is a wide range of driving forces that can affect and modify the impact of climate change on human health indicators. Consideration of reported trends in a given disease and the attribution to climate change needs to take into account three possible conditions:

- The change in disease incidence is real and due to changes in important non-climate determinants which include social factors, such as human population density and behaviour; housing facilities; public health facilities (e.g., water supply and general infrastructure, waste management and vector-control programs); use of land for food, fuel and fibre supply; and
results of adaptation (e.g., drug use as well as insecticide use), as well as changed resistance of organisms and vector species Sutherst (Sutherst 2004), Githeko and Woodward (Githeko and Woodward 2003.), Molyneux (Molyneux 2003), and Tillman (Tillman et al. 2001).

- The change in disease incidence is real and due to changes in a climate factors, once all non-climate determinants have been considered and excluded as the main explanation (see for example (Purse et al. 2006). Patz (Patz et al. 2005) notes that changes in land use and land cover can affect the local climate and ecosystems and should be considered when linking climate and health.
- That the changes in disease incidence are not real, but only due to increased reporting.

1.3.7.1 Analysis of evidence regarding ENSO and human health

Some climate and health studies have addressed the issue of climate variability, especially the ENSO phenomena (see Chapter 8) while only a very few have investigated the health effects of observed climate change. For example, studies in Thailand have established that there is a significant complex, non-linear association between El Nino, climate variables and dengue fever and dengue haemorrhagic fever (DHF) (Koelle and Pascual 2004; Cazelles et al. 2005). The effect of ENSO on the risk of malaria epidemics has been well established in parts of South Asia and South America, and also for cholera in some coastal regions (Lipp et al. 2002; Kovats et al. 2003). Rodo et al (Rodo et al. 2002) found an increased role of interannual climate variability on the temporal dynamics of cholera in Bangladesh, with a more robust relationship in recent times accounting sometimes for over 70% of variability at selected intervals between the more variable and intense recent El Niño events and cholera prevalence (Rodo et al. 2002). ENSO-related SST changes in bounded regions of the Indian Ocean and the Bay of Bengal may be associated with flooding over Bangladesh in the last decades of the 20th century and with increases in transmissibility for cholera at interannual timescales (Koelle and Pascual 2004). Variability in sea surface temperatures is associated with higher incidence of toxin-related illnesses, such as cholera and possibly shellfish poisoning (Patz et al. 1996).

1.3.7.2 Trends in vector-borne diseases

Vector-borne diseases are known to be sensitive to temperature and rainfall factors (as shown by the ENSO effects discussed above). Consideration of these interactions suggests that warmer temperature is likely to have two major kinds of closely related, potentially detectable, outcomes: changes in vectors per se, and changes in vector-borne disease outcomes. Insect and tick vectors would be expected to respond to changes in climate like other cold-blooded terrestrial species. There is some evidence that this is occurring in relation to three vector-borne diseases or their vectors.

Lyme disease. Changes in the latitudinal spread and abundance of Lyme disease vectors in relationship to milder winters have been well-documented in Sweden (Lindgren et al. 2000; Lindgren and Gustafson 2001), although results may have been influenced by changes due to reporting and changes in human behaviour.

Tick-borne encephalitis (TBE). Increase in TBE in Sweden since the mid-1980s may have been caused by milder climate in this period, permitting an increase in tick abundance (Lindgren and Gustafson 2001), but other explanations cannot be ruled out (Randolph 2001). Malaria. There is still much uncertainty about the potential impact of climate change on malaria disease at a local scale. In particular, the role of observed climate change on the geographical distribution of malaria and its transmission intensity in highland areas remains controversial.

Malaria incidence has increased since 1970s at some sites in East Africa. Chen et al. (Chen et al.
2006), have demonstrated the recent spread of falciparum malaria and its vector *Anopheles arabiensis* in highland areas of Kenya that were malaria-free as recently as 20 years ago. It has yet to be proven whether this is due solely to warming of the environment. A range of studies have demonstrated the importance of temperature variability in malaria transmission in these highland sites (Bouma, 2003; Abeku *et al.*, 2003; Zhou *et al.*, 2004; Zhou *et al.*, 2005) (see 8.2.8.2 for detailed discussion). While a few studies have shown the effect of a long-term upward trends in temperature on malaria in some highland sites (e.g. Tulu 1996), other studies indicate that increase in resistance of the malaria parasite to drugs, decrease in vector-control activities, and ecological changes may have been be the most likely driving forces behind the malaria resurgence in recent years. Thus, while climate is a major limiting factor in the spatial and temporal distribution of malaria, many non-climatic factors (drug resistance and HIV prevalence, and secondarily, cross-border people movements, agricultural activities, emergence of insecticide resistance and the use of DDT for indoor residual spraying) may alter or override the effects of climate (Craig *et al.* 2004; Craig *et al.* 2004; Barnes and Durrheim 2005).

There is a shortage of concurrent detailed and long-term historical observations of climate and malaria. Good quality time-series of malaria records in the East African and the Horn of Africa highlands are too short to address the early effects of climate change. Very few sites have longer data series, and the evidence on the role of climate change is unresolved (Hay *et al.*, 2002a; Hay *et al.*, 2002b; Patz *et al.*, 2002; Shanks *et al.*, 2002), although a recent study has confirmed warming trends at these sites (Pascal *et al.* 2006).

1.3.7.3 **Effects of trends in heat and cold stress**

Episodes of extreme heat or cold have been associated with increased mortality independent of season and populations (Huynen *et al.* 2001; Curriero *et al.* 2002). There is evidence of recent increases in mean surface temperatures and in the number of days with high temperatures, with the extent of change varying by region (Karl and Trenberth 2003; Luterbacher *et al.* 2004; Schar *et al.* 2004)[see WGI]. This increase in heatwave exposures has been associated with excess mortality, as was dramatically illustrated in the 2003 heatwave in western and Central Europe, which was the hottest summer since 1500 (Luterbacher *et al.* 2004). France was most affected, and more than 14000 excess deaths are estimated to have occurred there during the heat wave (Institute de Veille Sanitaire 2003; Vandentorren *et al.* 2004).

In general, high-income populations are become less sensitive to both heat and cold. Studies in Europe and in the United States of mortality over the past 30 to 40 years found evidence of declining death rates during summer months, which was attributed to increased use of air conditioning, improved health care, and increased public awareness of the risks of exposure to high ambient temperatures (Davis *et al.* 2003; Davis *et al.* 2003; Donaldson *et al.* 2003). Declines in winter mortality are apparent in many countries due to both a reduction in cold days, as well as a decreased response to cold.

1.3.7.4 **Emerging food- and water-borne diseases**

Food- and water-borne diseases (WBD) are major adverse issues associated with warming and extreme precipitation events. Bacterial infectious diseases are sometimes sensitive to temperature, e.g., salmonellosis incidence was associated with monthly temperatures in Australia (D'Souza *et al.* 2004). In US and Canada, there is a reported increase in outbreaks of *Escherichia coli* 0157:H7 and *Cryptosporidium* from 1950 through 2000, although this cannot be attributed to climate change (Charron *et al.* 2004). Water-borne disease outbreaks are often triggered by extreme rainfall events (Casman *et al.* 2001; Curriero *et al.* 2001; Rose *et al.* 2002; Diergaardt *et al.* 2004) but, again, no
attribution to longer-term trends in climate has been attempted.

Harmful Algal Blooms. There also appears to be an increasing trend in harmful algal blooms (HABs) in coastal waters. Proliferation of harmful algal blooms poses a threat to human health in some regions of the world. Increases in 'red tides' and other HABs during the past 50 yr on both the Atlantic and Pacific coasts of Canada suggest that global-scale factors, such as climate change and increased international shipping trade, can be the main driving forces (Mudie et al., 2002; Van Dolah, 2000). However, most of the time, the origin and climatic suitability conditions for red tide proliferations are not well-known (Yang, ZB; Hodgkiss, IJ (2004), such as for Fibrocapsa japonica (De Boer et al., 2005), Gymnodinium catenatum, Pyrodinium bahamense var. compressum, and recently Cochlodinium cf. catenatum. The variability and near-concurrence of species blooms in the modern (past 60 yr) record is unmatched in the past, according to the examination of the Holocene history of harmful phytoplankton species and suggests disequilibrium of the natural ecosystem structure (Mudie et al., 2002) and a climate change effect (via surface temperature and storminess) as the main driving force stimulating blooms.

1.3.7.5 Pollen- and dust-related diseases

There is evidence that observed climate change is affecting the timing of the onset of pollen production (Van Vliet et al. 2002; WHO 2003; Beggs 2004) (see 1.3.5). Studies, mostly from Europe, indicate the seasonal onset of some important allergens have become earlier in recent decades, and such shifts are consistent with observed changes in climate (Teranishi et al. 2000; Rasmussen 2002; Emberlin et al. 2003). However, there is no good evidence that temperature changes have increased pollen abundance or allergenicity, although laboratory and field studies suggest that increased CO2 may facilitate increased pollen abundance (Ziska and Caufield 2000). Pollen abundance, however, is more strongly associated with land-use change and farming practices than to weather. Changing agricultural practices, such as the replacement of haymaking in favour of silage production, have also affected the grass pollen season in Europe. The impact on health of dust and dust storms has not been well described in the literature. Prospero and Lamb (Prospero, 2003, African dust) have reported on African droughts and dust transported across the Atlantic to the Caribbean, while Gyan (Gyan et al. 2003) reported a dramatic increase in respiratory disease in the Caribbean attributed to increase in Sahara dust, which has in turn, been linked to climate change.

1.3.7.6 Summary

While there is little evidence of climate change currently having widespread significant detectable effects on human health, there is some evidence that shows increased incidence and range of some vector-borne diseases and dust and pollen-borne diseases. Changes in cholera incidence in Bangladesh have been related to changes in the El Nino-Southern oscillation. Evidence linking climate changes with famine-related nutrition is inconclusive. An increase in variability of high temperature has been associated with excess mortality during the 2003 heatwave in Europe, although, in general, adaptation to high temperature via air-conditioning has contributed to declines in death rates during the summer in the U.S. and Europe over the past 30-40 years.

1.3.8 Disasters and hazards

The rapid onset meteorological hazards with the potential to cause the greatest destruction to property and lives include extreme river floods, intense tropical & extratropical cyclone windstorms (along with their associated coastal storm surges), as well as the most severe supercell
thunderstorms. Here we assess the evidence for a change in the frequency, geography and/or severity of these high energy events.

By definition the extreme events under consideration here are rare events, with return periods in a location typically in excess of 10-20 years – as the built environment is generally sited and designed to withstand the impacts of more frequent extremes. Given that the strong rise in global temperatures only began in the 1970s, it is difficult to demonstrate statistically a change in the occurrence of extreme floods and storms (with return periods of 20 years or more) simply from the recent historical record (Frei and Schar 2001). In the quest to identify a change in extreme flood and storm return periods: Data may be pooled from independent and uncorrelated locations that share common hazard characteristics so as to search for changes in occurrence across all of them collectively. A search for a statistically significant change in occurrence characteristics of relatively high frequency events (with return periods <5 years) can be used to infer changes at longer return periods.

1.3.8.1 Extreme river floods

In the most comprehensive available global study, Kundzewicz (Kundzewicz 2004) examined worldwide information on annual extreme daily flows from 195 rivers, principally in North America and Europe, and did not find any consistent trends with the number of rivers showing statistically significant increases in annual extreme flows being approximately balanced by the number showing a decrease. However there was some evidence for regionalization in behaviour; when data were pooled across all the rivers surveyed in Europe, a rising trend was found in the decade of the maximum observed daily flow with four times as many rivers showing the decade of highest flow in the 1990s than the 1960s.

Milly et al (Milly et al. 2002) undertook a pooled study of great floods with return periods estimated as >100 yrs on very large rivers (with catchments greater than 200,000km²) in Asia, North America, South America, Europe and Africa. From the pooled record of all the rivers, the observed trend in the population of 100 year flood events, at a 95% confidence interval averaged across all basins, has been positive since the Mississippi Floods in 1993 and can be detected intermittently since 1972. Analysis of available long-term river flow records shows that since 1989 more than half of Scotland’s largest rivers (notably those draining from the west) have recorded their highest flows (Werrity et al. 2002). Of 16 rivers surveyed, with a median record of 39 years, 8 had their maximum flow during 1989-1997 – a period of high North Atlantic Oscillation index values consistent with storm tracks bringing high levels of precipitation to northern Britain.

1.3.8.2 Extratropical cyclones

Many studies report an increase in the 1980s in the numbers of deep (and high wind speed) extratropical cyclone storms in the Atlantic margin of Northwest Europe (see Günther et al. 1998) returning to levels not previously seen since the late 19th Century. Various measures, including the number of deep storms (with central pressures less than 970hPa) and the annual pressure minimum of storms crossing the Greenwich Meridian all show a significant increase, in particular between 1980 and 1993, when there were a series of major damaging storms. In the Northeast Atlantic wave heights showed significant increases over the period from 1970-1995 (Woolf et al. 2002) in parallel with the North Atlantic Oscillation NAO index (based on the pressure difference between Iceland and the Azores), which reached its highest values ever (reflecting deep low pressure over Iceland) in the years of 1989-1990. Intense storms returned at the end of the 1990s when there were three principal damaging storms across Western Europe in December 1999. However since that time, as winter NAO values have continued to fall (through to March 2005), there has been a significant
decline in the number of deep and intense storms passing into Europe to some of the lowest levels seen for more than 30 years.

1.3.8.3 Tropical cyclones

While overall numbers of tropical cyclones worldwide have shown little variation over the past forty years (Pielke et al. 2005), the basin with the highest volatility in tropical cyclone numbers is the Atlantic, for which the record is considered comprehensive back to 1945. The number of years of high activity (8 or more) hurricanes in the Atlantic basin was four (out of 6 years) between 1950 and 1955, only four in total in the low activity phase between 1956 and 1994 but eight out of eleven years between 1995 and 2005 (HURDAT 2005). The most intense Saffir Simpson Category 3-5 storms have shown more variability than the overall population.

These shifts in hurricane activity and intensity are principally the consequence of sea surface temperature variations in the main hurricane development region of the tropical North Atlantic (Trenberth 2003; Emanuel 2005). From a low period of activity in the 1970s Emanuel identified an increase in the overall power dissipated by tropical cyclones hurricanes (measured from the Potential Destructiveness Index - that is the integral of the cube of the maximum wind speed sampled over time along the track of the storm). Using this measure Emanuel identified an apparent doubling of the power released by tropical cyclones in both the Atlantic and North West Pacific basins over the past 30 years that in both basins appears to be correlated with the observed sea surface temperatures. This increase is significantly greater than had previously been anticipated on thermodynamic grounds based on the measured increases in sea-surface temperatures alone. Webster (Munich Re Group 2005) surveyed tropical cyclone intensities across all basins using satellite observations (that start in the 1970s) and found evidence for a shift in the proportion of intense tropical cyclones that reached the higher intensity (Saffir Simpson Cat4 and Cat 5) from close to 20% of the total in the 1970s rising to 35% since the 1990s.

However questions remain as to whether the record of tropical cyclone intensities may have been underestimated in the earlier period (see WMO/CAT Tropical Meteorology Research Program, 2006). The most reliable observations are likely to have come from the Atlantic Ocean where the link between observed sea surface temperatures and tropical cyclone intensities is widely accepted. For the Atlantic, there is also significant debate about the influence of an Atlantic Multidecadal Oscillation of tropical sea surface temperature variations relative to any rising trend accompanying global warming.

1.3.8.4 Economic and insurance losses

Economic losses attributed to natural disasters have increased from US $75.5 billion in the 1960s to $659.9 billion in the 1990s (a compound annual growth rate of 8%) (UNDP, 2004). Private sector data on insurance costs also shows rising insured losses over a similar period (Munich Re Group 2005; Swiss Reinsurance Company 2005). However, as has been widely acknowledged, failing to adjust for time-variant economic factors yields loss amounts that are not directly comparable and a pronounced upward trend through time for purely economic reasons. A previous normalization of losses, undertaken for the United States hurricane by Pielke and Landsea (1998) and US flood (Pielke et al. 2002) included normalizing the economic losses for changes in wealth and population to express losses in constant dollars. These previous national US assessments, as well as those for normalized Cuban hurricane losses (Pielke et al. 2003), did not show an significant upward trend in losses over time, but this was before the remarkable hurricane losses of 2004 and 2005.

Miller (Miller et al. 2006) performed an analysis to construct a ‘global’ catalogue of catastrophe losses normalized to account for changes that have resulted from variations in wealth and the
numbers and values of properties located in the path of the catastrophes using the method of Pielke and Landsea (1999). The global survey covered data from 1950 – 2005 for countries and regions that had a reasonable centralization of catastrophe loss information as well as a broad range of peril types: tropical cyclone, extratropical cyclone, thunderstorm, hailstorm, wildfire and flood, and that spanned high and low latitude areas. These included the principal developed countries and regions Australia, Canada, Europe, Japan, South Korea, US and developing: Caribbean, Central America, China, India and the Philippines. For many countries in the survey data were incomplete before 1970 and for some, such as China it appears the record only becomes complete from the 1980s.

Once the data were normalized a small trend was found for an increase in annual catastrophe loss since 1970 of 2% per year. However a significant trend was not found for the overall data on losses since 1950 and normalized losses in the 1950s were higher than in the 1960s and 1970s (in part because there were subsequent major investments in coastal flood protection schemes in Europe and Japan). For a number of regions, such as Australia and India, normalized losses show a statistically significant reduction since 1970. Since 1970 the global normalized results do show a statistically significant correlation with global temperatures with an increase of $6.6Bn (in 2005 values) for each 0.1C rise in global temperatures (Figure 1.5). However these findings of trends are sensitive to modest changes in the assumptions. Removing the 2004 and 2005 years of US and Caribbean hurricane losses, or major flood losses in China in the 1990s, or swapping US and India ‘GDP per capita’ values means that the relationship between year and loss weakens or disappears entirely.

Figure 1.5: Normalized losses in US$ millions compared with global temperature anomalies (Miller et al. 2006).

1.3.8.5 Summary

Global losses reveal rapidly rising costs due to extreme weather-related events since the 1970s. While the dominant signal remains that of the significant increases in the values of exposure at risk, once losses are normalised for exposure, there still remains an underlying rising trend. For specific regions and perils, including extreme floods on some of the largest rivers, there is evidence for an increase in occurrence. For tropical cyclones, in particular in the Atlantic Ocean and Northwest...
Pacific, over the past 30 years, significant increases have occurred in the proportion of storms at the highest intensity (Categories 4 and 5) as well as in the cumulative ‘power dissipation’ of storms (a combination of intensity and duration) that correlates with increases in sea surface temperatures in the main cyclone development regions.

1.3.9 Socio-Economic Indicators

Literature on observed changes in socio-economic indicators in response to recent climate change is sparse. Here we summarize some of the few examples related to energy demand and tourism now extant, and some studies on regional adaptations to climate trends. Relevant indicators include energy supply and markets for natural resources (e.g., timber, fisheries). Indicators of adaptation such as domestic insurance claims, energy demand, changes in tourism are being defined and tracked for the UK and Europe (DEFRA, 2003; EEA, 2004).

1.3.9.1 Energy Demand

Buildings account for a significant part of total energy use, up to 50% in some developed countries (Lorch 1990) (see WGIII Chapter 6), and the design and energy performance of buildings are related to climate (Steemers 2003). Work related to climate change and building energy use can be grouped into two major areas – weather data analysis and building energy consumption.

Weather data analysis. A study on the 1981-1995 weather data by Pretlove (Pretlove and Oreszczyn 1998) indicated that temperature and solar radiation in the London region (UK) had changed significantly over the period, and climatic data used for energy design calculations could lead to 17% inaccuracies in building energy-use estimates. Based on 1976-1995 temperature data from 3 key UK sites, Levermore (Levermore and Keeble 1998) found that the annual mean dry-bulb temperature had increased by about 1°C over the 19-year period with milder winters and warmer summers. In subtropical Hong Kong, Lam (Lam et al. 2004) analyzed the 40-year period (1961-2000) weather data and found an underlying trend of temperature rise, especially during the last 10 years (1991-2000). The increases occurred largely during the winter months and the impact on peak summer design conditions and cooling requirements, and hence energy use, was considered insignificant. In the 1990s and 2000s, many countries experienced extreme phenomena (notably, heat waves in summer), which induced exceptional peaks of electric power consumption (Klein Tank and Konnen 2003). These had notable impacts on human mortality (1.3.7) and the local socio-economic systems (Easterling et al. 2000; Parmesan et al. 2000; Johnson et al. 2004). Two well-documented cases are the heat waves in Chicago in 1995 (Karl and Knight 1997) and in Europe in 2003 (Schar et al. 2004).

Building energy consumption. Energy use has been and will continue to be affected by climate change because space conditioning, a major energy end-user, is climate-dependent. However, the extent to which temperature rise has affected energy use for space heating/cooling in buildings is uncertain. There is a concern that energy consumption will increase as air-conditioning is adopted for warmer summers (see Chapter 6). It is likely that certain adaptation strategies (e.g. tighter building energy standard) have been (or would be) taken in response to climate change (e.g. Camilleri et al. 2001; Larsson 2003; Sanders and Phillipson 2003; Shimoda 2003). Adaptation strategies and implementation are strongly motivated by the cost of energy. Besides, in terms of thermal comfort, there is also the question of people adapting to warmer climates (e.g. de Dear and Brager 1998; Nicol 2004).

1.3.9.2 Tourism
Climate is a major factor for tourists when choosing a destination (Aguiló et al. 2005) and both tourists and tourism stakeholders are sensitive to fluctuations in the weather and climate (Wall 1998). Statistical analyses by Maddison (Maddison 2001), Lise and Tol (Lise and Tol 2002), and Hamilton (Hamilton 2003), and a simulation study by Hamilton (Hamilton et al. 2003) have shown the relevance of climatic factors as determinants of tourist demand, next to economic and political conditions, fashion, media attention, and environmental quality. As a result of the complex nature of the interactions that exist between tourism, the climate system, the environment, and society, it is difficult to isolate the direct observed impacts of climate change upon tourism activity. There is also sparse literature upon this relationship at all scales. Responses have been documented in Switzerland, Austria, the eastern U.S. and Chile (Breiling 1998; Elsasser and Messerli 2001; Steininger et al. 2002; Beniston 2003; Casassa et al. 2003; Hamilton 2003; Beniston 2004).

1.3.9.3 Regional Adaptation

There are several studies that show societies adapting to climate changes such as drying trends or increasing temperatures. For example, in Southern Africa Thomas (Thomas et al. 2005; Thomas and Twyman 2005) examined responses to recent historical climate variability and change in four locations in southern Africa. They found that people were highly aware of changes in the climate including longer dry seasons and more uncertain rainfall, and were adjusting to change through collective and individual actions that included both short-term coping through switching crops and long term adaptations such as planting trees, and commercializing and diversifying livelihoods. One of the most striking conclusions was the importance of local institutions and social capital such as farming associations in initiating and supporting adaptations.

In Europe, evidence is also accumulating that people are adapting to climate change, either in response to observed changes or in anticipation of predicted change. For example, in the UK a large number of adaptations have been identified including changes in flood management guidelines (assuming more extremes), hiring of climate change managers, alteration of nature conservation and disaster plans, climate proofing buildings, planting different crops and trees, and converting a ski to a walking centre in Scotland (West and Gawith 2005).

1.4 Larger-scale aggregation and attribution

Larger-scale aggregation may offer insights into the attribution of some of the observed changes described in 1.3 by combining the results from multiple studies over larger regions. As described in 1.2, observed changes in systems and sectors are jointly attributed to anthropogenic climate change through a process involving attribution of the responses to regional temperature changes and attribution of the regional temperature changes to increases in greenhouse gases and aerosols in the atmosphere.

1.4.1 Larger-scale aggregation

This section evaluates studies that use techniques that aggregate from individual observations at sites to regional, continental, and global scales.

1.4.1.1 Studies related to warming

Meta-analysis is a statistical method of combining quantitative findings from multiple studies.
investigating similar factors for the purpose of finding a general result. The methods used in the various studies, however, need not be similar. The criteria for inclusion of studies in a meta-analysis are determined a priori and rigorously followed to avoid investigator effect.

Parmesan and Yohe (Parmesan and Yohe 2003) and Root et al. (Root and Schneider 2002; Root et al. 2003) have examined the ‘fingerprint’ of observed warming in recent decades on the phenology and distribution of plants and animal species using meta-analyses. Although the detailed results of these studies are different, because they used different species and different methods, they all conclude that a significant impact of global warming is already discernible in animal and plant populations at regional and continental scales in the Northern Hemisphere.

Parmesan (Parmesan and Yohe 2003) applied meta-analysis techniques to 31 studies that examined more than 270 species, and showed that recent biological trends matched climate change predictions. Their meta-analyses estimated northward range shifts of 6.1 km/decade for northern range boundaries of species living in the northern hemisphere and documented advancement of spring events in northern hemisphere species by 2.3 d/decade in the northern hemisphere. They also defined a diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends. Among long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. They concluded, with ‘very high confidence,’ that climate change is already affecting living systems.

After examining over 2,500 articles on climate change and a wide array of species from around the globe, Root and co-authors (Root et al. 2005) found that 143 studies fit the criteria for inclusion in their meta-analyses. They focused on only those species showing a change and found that about 80% of the species showing change were changing in the direction expected with warming. The types of changes included species expanding their ranges poleward and higher in elevation, and advances in the timing of spring events, such as flowers blooming and frogs chorusing, by about 5 days per decade in the last 30 years. This number is larger than the 2.3 d/decade found by Parmesan and Yohe (Parmesan and Yohe 2003) because these authors included both changing and not-changing species in their analysis, while Root and co-authors only included changing species. A more recent meta-analysis of bird arrival dates (Lehikoinen et al. 2004) showed strong evidence of earlier arrival. Of 983 data series, 39% were significantly earlier and only 2% significantly later for first arrival dates.

The EU COST725 network analysis project had as its main objective the establishment of a European reference data set of phenological observations that can be used for climatological purposes, particularly climate monitoring and detection of changes (see Box 1.3).

Box 1.3: Phenological Responses to Climate in Europe: The COST725 Project

The COST725 meta-analysis-project used an enormous phenological network dataset of more than 125,000 observational series of various phases in 542 plant and 19 animal species in 21 European countries (1971-2000). The time-series were systematically (re-)analysed for trends in order to track and quantify the phenological response to changing climate. The benefit of this study is a verification and exhaustive enlargement of nationally reported trends at single-sites and / or for selected species, which are particularly open to suspicion of being biased towards predominantly reporting climate change induced impacts. Species’ phenology (254 national series) was responsive to temperature of the preceding month with spring / summer phases advancing on average by 2.5 days/°C, leaf colouring /fall being delayed by 1.0 day/°C.
The summary of more than 100 000 trends revealed a clear signal across Europe of changing spring phenology with 78% of leaf unfolding and flowering records advancing (31% significantly) and only 22% delayed (3% significantly). Fruit ripening was mostly advanced (75% advancing, 25% sig.; 25% delayed, 3% sig.). The signal in farmers’ activities was generally smaller (57% advancing, 13% sig.; 43% delayed, 6% sig.). Autumn trends (leaf colouring/fall) were ambiguous. Spring and summer exhibited a clear advance by 2.5 days/decade in Europe, mean autumn trends were close to zero, but suggested more of a delay when the average trend per country was examined (1.3 days/decade).

The pattern of observed change in spring (leafing, flowering, animal phases) was spatially consistent and efficiently matched measured national warming across 19 European countries (correlation coefficient $r=-0.69$, $p<0.001$), thus the phenological evidence quantitatively mirrored regional climate warming. The COST725 results assessed the possible lack of evidence at a continental scale as 20% (c.80% of spring/summer phases advancing). They strongly support previous results and confirm them as being free from bias towards reporting global change impact (Menzel et al. 2006).

1.4.1.2 Studies related to multi-decadal climate variability

The North Atlantic Oscillation (NAO) has widespread influence on many ecological processes. A comprehensive, long-term European plant phenological dataset (1879-1998), including in total 23,797 stations of (1) the historical first European Phenological Network (1882-1941), (2) the network of the International Phenological Gardens in Europe (1959-1998), and (3) network data of seven Central and Eastern European countries (1951-1998, EU FP5 project POSITIVE), was analysed to study the influence of NAO of the progression (direction, velocity) of nine phenological seasons across Europe (Menzel et al. 2005). Phenological phases in most of the area studied responded to higher NAO indices by earlier spring leaf unfolding and flowering, the correlation coefficients between mean onset and NAO ranged up to 0.8 (Fig 1.6, lower plate right). This did not necessarily implicate a high relevance of the NAO index in all regions in Europe. Differences in onset between the average NAO high and average NAO low years were more pronounced in the western (France, Ireland, UK) and north-western (south Scandinavia) parts of Europe and less distinct in the continental part of Europe (lower left panel). The two different patterns of progression are clearly evident SW-NE in years with high NAO index and S-N in years with low NAO index.
Figure 1.6. Upper two plates: The mean onset of season 2 (mid spring, day of the year) in Europe for the 10 years with the highest (1990, 1882, 1928, 1903, 1993, 1910, 1880, 1997, 1989, 1992, North Atlantic Oscillation (NAO) high) and the ten years with the lowest (1969, 1936, 1900, 1996, 1960, 1932, 1886, 1924, 1941, 1895, NAO low) NAO winter and spring index (Nov – Mar) in 1879-1998; Lower plate left: differences between the mean onset of season 2 (days) in Europe in NAO high and low years (upper two plates); Lower plate right: correlation coefficient between the yearly onset of season 2 and NAO index (1897-1998). The vertical and horizontal axes represent degrees of latitude and longitude respectively (Menzel et al. 2005).

Various other studies have found connections between local ecological observations and weather/climate patterns at larger spatial scales, particularly with large-scale climate variations associated with the North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), and Pacific Decadal Oscillation. Impacts have been demonstrated across diverse taxa (birds, mammals, fish). NAO has been associated with the synchronization of population dynamics of caribou and musk oxen (Post and Forchhammer 2002). Weladji and Holand (Weladji and Holand 2003) identified risks to northern indigenous peoples due to the negative impacts of higher NAO indices upon reindeer calf survival. Three recent studies identified the impacts of NAO on fish, including abundance (Guisande et al. 2004), phenology (Sims et al. 2004), and range shifts (Dulcic et al. 2004). A meta-analysis of ecological studies of NAO interactions found a clear NAO signature in freshwater, marine, and terrestrial ecosystems (Blenckner and Hillebrand 2002).

Bird populations and migratory timing have received particular attention. Huppop and Huppop (Huppop and Huppop 2003) find significantly earlier arrival of 17 species of migratory birds in Helgoland, Germany. For 23 of the 24 species studied, earlier arrival coincided with warmer local temperatures and correlation with higher NAO indices. Similarly, in the Czech Republic, Hubalek

Deadline for submission of comments: 21 July 2006
(Hubalek 2003) found that the earlier arrival of short-distance migrants correlated with positive winter/spring NAO index values. Pied flycatchers across Europe are breeding earlier and laying smaller clutches; these changes are correlated with increased spring temperatures and positive values of the winter NAO index (Sanz 2003). With the exception of Ballard and co-authors’ (Ballard et al. 2003) study of population declines of songbirds in western North America, other recent avian studies have strongly linked NAO and/or ENSO to demographic dynamics, but do not attribute climate patterns to population trends (Sydeman et al. 2001; Jones et al. 2002; Almaraz and Amat 2004).

1.4.2 Joint attribution

Joint attribution involves attribution of significant changes in a natural or managed system to regional temperature changes, and attribution of a significant fraction of the regional temperature change to human activities. To date, two studies have demonstrated joint attribution directly using climate model studies; one using forest fires in Canada (Gillett et al. 2004), and the other using wild plants and animals (Root et al. 2005). An assessment of the relationship between significant observed changes in systems and sectors from 1.3 and attributable regional temperature change is presented in 1.4.2.3.

1.4.2.1 Attributing regional temperature change

Since the TAR, it has been shown that an anthropogenic climate change signal is detectable in continental-scale regions using surface temperature changes over the 20th century (Karoly et al. 2003; Stott 2003; Zwiers and Zhang 2003; Karoly and Braganza 2005) (See Chapter 9, Volume 1, for a more complete assessment of attribution of observed regional climate changes to anthropogenic forcing). Most of the observed warming over the last 50 years in the six major continents, including North America, Eurasia and Australia, is likely to be due to the increase in greenhouse gases in the atmosphere (Stott 2003). Many features of the observed temperature variability and change on decadal time scales in different regions are reproduced by the climate model simulations that include changes in anthropogenic forcing (see Fig. 9.4.7 in Volume 1). Recently, studies have shown that the observed regional warming trends over the last 50 and 30 years are statistically significant in many regions of the globe, even for regions of order 500 km (Karoly and Wu 2005; Tett et al. 2005; Knutson and et al 2006). These warming trends are consistent with the response to increasing greenhouse gases and sulphate aerosols and cannot be explained by natural internal climate variations or the response to changes in natural external forcing (solar irradiance and volcanoes). Hence, the observed warming trends can be attributed to anthropogenic climate change in many regions of the globe.

The influence of anthropogenic forcing has also been detected in other climate changes over the last 50 years, including increases in global oceanic heat content, increases in sea level, shrinking of alpine glaciers, reductions in Arctic sea ice extent, and reductions in spring snow cover (Hegerl et al. 2007) (WGI AR4 Chapter 9).

1.4.2.2 Joint attribution using climate model studies

One of the main messages of the SAR was that there is a discernible impact of humans on climate. A main message from the TAR was that wild plant and animal species were being affected by changes in regional temperatures. Now research has shown that these two findings can be combined to demonstrate that discernible changes in species at a regional scale are associated with regional temperatures, and that a significant amount of change in those temperatures, as determined by
climate modelling, is due to human activities (Root et al, 2005). This is what we are calling joint
attrition.

Root (Munich Re Group 2005) demonstrate joint attribution at a regional scale by considering
changes in wild animals and plants. Using 145 species reported in 29 studies, they calculated the
mean annual phenological change for species in the Northern Hemisphere (Figure 1.7a). These
changes have been shown either in the original studies or in Root et al. (2001; 2003) to be
statistically significantly associated with the changes in regional temperature changes.

Modelled temperature data obtained from the HadCM3 GCM were used to determine if the changes
in temperatures with which the phenological changes in species were associated were due to human
or natural causes. Three different forcings were used when deriving the modelled values: natural
only, anthropogenic only, and combined natural and anthropogenic. The association is quite poor
between the phenological changes in species and modelled temperatures derived using only natural
climatic forcing (Figure 1.7b). Quite strong agreement occurs, however, between the same
phenological changes in species and temperatures modelled either using only anthropogenic forcing
or using both natural and anthropogenic forcings together (Figure 1.7c & d). Studies comparing
anthropogenically forced models to empirical data in the oceans (Barnett et al. 2004) and for
planetary radiation balance (Hansen and Nazarenko 2004) reach similar conclusions using very
different data sets and models: that there is discernible skill in models driven by anthropogenic
forcing (see Chapter 9 of Working Group 1).

In a related model-based joint attribution study, Gillett et al. (2004) demonstrated a striking
agreement between the observed increase in the area of forests burned in Canada over the last four
decades and that expected from climate changes due to increasing greenhouse gases and sulphate
aerosols. Temperature is a good predictor of forested area burned (Flannigan and Harrington 1988).
Using climate model simulations, Gillet and colleagues found that human activity has made a
discernible contribution to the observed increase in temperature, which is outside the range of
natural variability. They then used an empirical model of the relationship between climate
variables and area burnt to show that the human-induced warming has had a detectable influence on
the amount of forest area burnt.

1.4.2.3 Joint attribution from synthesis of studies

Significant observed changes documented since the TAR are divided into the categories of
cryosphere, hydrology, coastal processes, marine and freshwater biological systems, terrestrial
biological systems, and agriculture and forestry as assessed in 1.3. Studies are selected that
demonstrate a statistically significant trend in change in system or sector related to temperature or
other climate change variable for the period 1973-2002 (study periods may extend later), with at
least 20 years of data. Studies are divided in three types: Type 1 studies are comprised of individual
observations considered individually in the statistical analyses; Type 2 studies are comprised of
individual observations that have been grouped and then “collectively analyzed” (i.e., statistically
significant as a group, such as a network; Type 3 studies correspond to very large areas not
associated with individual sites. Observation in the studies are characterized as ‘change in expected
direction,’ ‘no change,’ and ‘change in unexpected direction.’

Figure 1.8 shows the 5°x5° gridboxes in which significant warming trends over 1973-2002 are
consistent with response to anthropogenic forcing and not consistent with internal climate variability
alone for three GCMs (HadCM2) (Karoly and Wu, 2005), and the geographic locations of significant
observed changes from Type 1, 2, and 3 studies. A statistical comparison shows that the agreement
between the regions of significant and attributable regional warming across the globe and the locations
of significant observed changes in systems consistent with warming is very unlikely to be due to
natural variability in temperatures or natural variability in the systems (Supplementary Material).
Areas with joint attribution are found predominantly in the Northern Hemisphere high latitudes.

Figure 1.7: For each year, the dates (in Julian days) that spring events occurred in wild plants and
animals (e.g., timing of first bloom, arrival of spring migrants) are averaged over all Northern
Hemisphere species exhibiting statistically significant changes in those events (n=130). These
averages are plotted against: A. year with a -3.2 day change per decade ($r^2=??$), B. the average
modelled spring (March, April, May) temperatures including only natural forcings at each study
location ($r = 0.22$, $p<0.23$), C. the same as B except including only anthropogenic forcings ($r = -
0.71$, $p<0.001$), and D. the same as B except including both natural and anthropogenic forcings ($r
= -0.72$, $p<0.001$). From Root et al. (2005).

The synthesis also enables examination of areas with significant change in temperature, but absence
of observations of changes in systems or sectors. Figure 1.9 shows observed surface-air temperature
changes from 1973-2002 with gridcells with significant temperature trends indicated. The climate
data used are from the $5^\circ\times5^\circ$ dataset from Hadley Centre and NOAA, and from GCOS (Global
Climate Observing System) station data (from stations designated as high quality). Using
information from Figure 1.9 and the observations from Type 1, 2 and 3 studies, Table 1.12 shows
the presence/absence and characterization of regional temperature changes and observed responses.
Figure 1.8: Regional temperature warming attributable to anthropogenic forcing for three global climate models (HadCM2, GFDLR30, PCM) and a) Categories of Type 1 studies (individual observations considered individually in the statistical analyses); b) Observations of Type 2 studies (individual observations that have been grouped and then “collectively analyzed” (i.e., statistically significant as a group); and c) Areas of Type 3 studies (studies corresponding to very large areas not associated with individual sites). (Draft.)
Figure 1.9: Observed trends in surface air temperature and sea-surface temperature 1973-2002
(Karoly and Wu, 2005). Individual 5° latitude-longitude regions are indicated where the observed
trends are significantly larger than zero at the 95% level. White regions do not have sufficient
observational climate data to estimate a trend. Observed changes in cryosphere, hydrology, coastal
processes, marine and freshwater biological systems, terrestrial biological systems, and agriculture
and forestry for studies ending in 1993 or later with at least 20 years of data. (Draft.)

There are many 5° gridboxes that are experiencing significant warming for which there are no
observations of changes in systems or sectors. For regions where there are both significant warming
and observed changes, there is a greater probability of finding coincident significant temperature
change and observed responses in the expected direction than finding significant temperature
change and no response or response in an unexpected direction. In regions with no change in
temperature, there is a greater probability of finding no observed response than of finding an
observed response in either direction.
Table 1.12: Presence/absence of observed changes in systems and sectors and presence/absence of significant regional temperature change, with characterization of observed changes as ‘consistent with warming,’ or ‘not consistent with warming,’ for a) Type 1 studies (individual observations considered individually in statistical analysis), b) Type 2 studies (individual observations that have been grouped and ‘collectively’ analyzed), and c) Type 3 studies (studies corresponding to very large areas not associated with individual sites).

a) Type 1 studies (individual observations analyzed individually).

<table>
<thead>
<tr>
<th>Type 1</th>
<th>Cells with significant system/sector change consistent with warming</th>
<th>Cells without significant system/sector change</th>
<th>Cells with significant system/sector change not consistent with warming</th>
<th>Cells with no studies</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cells with positive significant temperature change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6</td>
<td>1</td>
<td>721</td>
<td>758</td>
</tr>
<tr>
<td></td>
<td>Cells without significant temperature change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>893</td>
<td>918</td>
</tr>
<tr>
<td></td>
<td>Cells with negative significant temperature change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Cells with no temperature data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>829</td>
<td>835</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>7</td>
<td>1</td>
<td>2452</td>
<td>2520</td>
</tr>
</tbody>
</table>

b) Type 2 studies (individual observations that have been grouped and ‘collectively’ analyzed).

<table>
<thead>
<tr>
<th>Type 2</th>
<th>Cells with significant system/sector change consistent with warming</th>
<th>Cells without significant system/sector change</th>
<th>Cells with significant system/sector change not consistent with warming</th>
<th>Cells with no studies</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cells with positive significant temperature change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>9</td>
<td>1</td>
<td>639</td>
<td>758</td>
</tr>
<tr>
<td></td>
<td>Cells without significant temperature change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>11</td>
<td>7</td>
<td>759</td>
<td>918</td>
</tr>
<tr>
<td></td>
<td>Cells with negative significant temperature change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Cells with no temperature data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>773</td>
<td>835</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>312</td>
<td>20</td>
<td>8</td>
<td>2180</td>
<td>2520</td>
</tr>
</tbody>
</table>
c) Type 3 studies (studies corresponding to very large areas not associated with individual sites).

<table>
<thead>
<tr>
<th>Type 3</th>
<th>Cells with significant system/sector change consistent with warming</th>
<th>Cells without significant system/sector change</th>
<th>Cells with significant system/sector change not consistent with warming</th>
<th>Cells with no studies</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>139</td>
<td>0</td>
<td>0</td>
<td>619</td>
<td>758</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>0</td>
<td>0</td>
<td>733</td>
<td>918</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>768</td>
<td>835</td>
</tr>
<tr>
<td></td>
<td>391</td>
<td>0</td>
<td>0</td>
<td>2129</td>
<td>2520</td>
</tr>
</tbody>
</table>

Uncertainties in observed change studies at the regional level relate to potential mismatches between climate and system/sector data in temporal and spatial scales and lack of time-series of sufficient length to determine if the changes are outside normal ranges of variability. The issue of non-climate driving forces is also important. Land use change, changes in human management practices, pollution, and demography shifts are all, along with climate, drivers of environmental change. More explicit consideration of these factors in observed change studies will strengthen the robustness of conclusions.

Since systems and sectors respond to an integrated climate signal, precise assignment of the proportions of natural and anthropogenic forcings in their responses is not possible. Through the use of combined observational and simulation studies, observed changes may be used to test the presence of the anthropogenic signal. The wide variety of observed responses to regional climate trends in expected directions, and the attribution of the regional climate trends to anthropogenic causes means that anthropogenic climate change is having a significant impact on multiple systems and sectors in many regions across the globe.

1.4.3 Learning from current and observed responses – adaptation and vulnerability

In relation to the questions posed in 1.1.2, we find the following:

1) Detection. Significant changes in systems and sectors related to changes in regional climate are detectable through a variety of methods of analysis. These methods include analyses of ground-based data from individual sites, networks of sites, large-area collections, as well as remote sensing. Meta-analyses across multiple studies are used to detect and characterize changes.

2) Functional Understanding. The great majority of observed changes are consistent with functional understanding and modelled predictions of climate impacts. Examples of expected responses include infrastructure effects of melting in the cryosphere, effects of intensifying...
droughts and runoff, and effects of rising sea-levels. In marine, freshwater, and terrestrial biological
systems, changes in morphology, physiology, phenology, reproduction, species distribution,
community structure, ecosystem processes, and species evolutionary processes are, for the most
part, in predicted directions. Agricultural crops have shown similar trends in phenology, and
management practices along with the spread of pests and diseases coincide with expected responses
to warming. Responses of yields in some crops coincide with model predictions. With human
health, there is spread of temperature-sensitive vectors, e.g., ticks. With the warmer sea surface
temperatures and the intensification of the hydrological cycle comes evidence of an expected
increase in damages from floods and tropical cyclones.

3) Prevalence and Patterns. Observed changes are prevalent across diverse physical and biological
systems and less prevalent in managed sectors and across many, but not all geographical regions.
While there is evidence of observed changes in every continent, including Antarctica, the majority
of studies provide evidence of observed changes in Northern Hemisphere high latitudes and
altitudes. Significant evidence comes from high-latitude waters in the Northern Hemisphere as well.
Evidence is primarily found in places where warming is the greatest. Documentation of observed
changes in tropical regions is still sparse.

4) Adaptation and Vulnerability. The evidence extant for adaptation and vulnerability to observed
climate change is most prevalent in places where warming has been the greatest and in systems that
are more sensitive to temperature. Thus, there are documented changes related to adaptation in the
Arctic and mountain regions that include reduced outdoor and tourism activities, and alterations in
indigenous livelihoods (1.3.1). Responses to climate change, including warming, vary by
community and are beginning to be systematically documented. In regard to sea level rise, there are
only a few isolated cases of historic island abandonment have been documented, although residents
of presently inhabited islands such as Tuvalu, are finding it increasingly difficult to maintain their
lifestyles, due to climate-induced environmental changes (1.3.3).

In managed systems, there is little documented evidence of adaptation to regional climate trends in
agriculture and forestry, with only a few studies related to the shift of sowing dates of annual crops
(1.3.6). There is even less evidence related to food supply. In regard to vulnerability, there are few
studies of observed effects of warming in subsistence agricultural systems in rural populations in
developing countries; there are documented studies of adaptive responses and vulnerability to long-
term drought in the Sahel. Vulnerability appears to be high in the case of extreme events or
exceptional episodes even in developed countries, as documented by the agricultural response and
excess mortality to the 2003 heatwaves in Europe. In human health, adaptation to high temperature
via air-conditioning has contributed to declines in death rates during the summer in the U.S. and
Europe over the past 30-40 years (1.3.7). Documentation of adaptation and vulnerability in terms of
energy and tourism is limited (1.3.9).

5) Attribution to Anthropogenic Forcing. The wide variety of observed responses to regional
climate trends in expected directions, and the attribution of the regional climate trends to
anthropogenic causes means that anthropogenic climate change is having a significant impact on
multiple systems and sectors in many regions across the globe. Regions with climate warming
attributable to anthropogenic forcing with an accumulation of evidence of observed changes are
Europe, Northwestern Asia, Central Asia, northwestern North America, and the North Atlantic.
Regions with attributable warming where evidence of observed changes is sparse are Africa and
South America, and is lacking in Southeast Asia, the Indian Ocean and regions in the Pacific.
References

Aizen, V. B., V. A. Kuzmichenok, et al. 2006: Glacier changes in central and northern Tien Shan during the last 140 years based on surface and remote sensing data. Annals of Glaciology 43. [Asia; glaciers]

Chapter 1 – Observed Changes

Batimaa, P. 2005: The potential impact of climate change and VA assessment for the livestock sector of Mongolia. AIACC: 20pp. [Asia; agriculture]

833. [Caribbean; coral reefs]

Boon, S., Sharp, M. and Nienow, P. 2003: Impact of an extreme melt event on the runoff and

Breiling, M. Year: of Conference. The Role of Snow Cover in Austrian Economy During 1965 and 1995 and Possible Consequences Under a Situation of Temperature Change. Conference Japanese Society of Snow and Ice. [Europe; ice]

Carey, M. in press: Living and dying with glaciers: people's historical vulnerability to avalanches and outburst floods in Peru. Global and Planetary Change. [Latin America; glaciers]

Chattopadhyay, N. and M. Hulme 1997: Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural And Forest Meteorology 87(1): 55-73. [Asia; hydrology]

Church, J. A., N. J. White, et al. 2004: Estimates of the regional distribution of sea level rise over the...
Clark, D. A. and et al 2003: Tropical rain forest tree growth and atmospheric carbon dynamics linked
to interannual temperature variation during 1984-2000. Proceedings of the National Academy
of Sciences of the USA 100: 5852-5857. [South America; forestry]
Hydrological Sciences, John Wiley & Sons, Ltd. [Global; ice sheets] [Global; glaciers]
Chapter 4, in Sea Ice - an introduction to its physics, biology, chemistry, and geology,
Blackwell Science. [Global; sea ice]
Conard, S. G., A. I. Sukhinin, et al. 2002: Determining effects of area burned and fire severity on
carbon cycling and emissions in Siberia. Climatic Change 55(1-2): 197-211. [Asia; forest fires]
[Africa; hydrology]
[Europe; phenology]
Crozier, L. 2004: Warmer winters drive butterfly range expansion by increasing survivorship.
Ecology 85(1): 231-241. [North America; insects]
[Australia and New Zealand; plants]
Cummins, C. P. 2003: UV-B radiation, climate change and frogs - the importance of phenology.
Annales Zoologici Fennici 40(1): 61. [Europe; amphibians]

Dose, V. and A. Menzel 2006: Bayesian correlation between temperature and blossom onset data. Global Change Biology In Press. [Europe; phenology]

Dunn, P. O. and D. W. Winkler 1999: Climate change has affected the breeding date of tree swallows throughout North America. Proceedings of the Royal Society of London Series B-Biological Sciences 266: 2487. [North America; birds]

Easterling, W. E. 2003: Observed impact of climate change in agriculture and forestry. In: IPCC Workshop on the detection and attribution of the effects of climate change. [Global; agriculture]

stream correlates with the North Atlantic Oscillation. Journal Of Fish Biology 56(1): 208-210. [Europe; NAO]

Erdenetuya, M. 2004: Application of remote sensing in climate change study: vulnerability and adaptation assessment for grassland ecosystem and livestock sector in Mongolia project. AIACC annual report. [Asia; agriculture]

FAO 2004: Food and Agriculture Organization FAOSTAT data. [Global; agriculture]

Fox, S., Ed.:2002. These things that are really happening: Inuit perspectives on the evidence and impacts of climate change in Nunavut. The earth is faster now: Indigenous observations of Arctic environmental change. Fairbanks, Alaska, Arctic Research Consortium of the US. [North America; indigenous people]

Franken, R. J. and D. S. Hik 2004: Interannual variation in timing of parturition and growth of collared pikas (Ochotona collaris) in the southwest Yukon. Integrative and Comparative Biology 44(2): 186. [North America; mammals]

Frenkel 2004: Global warming and its effect on the Viatka river runoff,. The VIth All-Russia
Hydrological Congress. Abstracts of papers, Section 3: 209-211. (in Russian). [Asia; hydrology]

Githeko, A. and A. Woodward 2003. International consensus on the science of climate and health:
the IPCC third assessment report. [Global; human health]

Hampton, S. E. 2005: Increased niche differentiation between two Conochilus species over 33 years of climate change and food web alteration. Limnology And Oceanography 50(2): 421-426. [North America; freshwater biological systems]

Haslett, S. K., A. B. Cundy, et al. 2003: Salt marsh, sedimentation over the past c. 120 years along the West Cotentin Coast of Normandy (France): Relationship to sea-level rise and sediment supply. Journal Of Coastal Research 19(3): 609-620. [Europe; coastal processes and zones]

Hill, J. K., C. D. Thomas, et al. 1999: Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121(2): 165. [Europe; insects]

1 Hussell, D. J. T. 2003: Climate change, spring temperatures, and timing of breeding of tree swallows (Tachycineta bicolor) in southern Ontario. Auk 120(3): 607-618. [North America; birds]

3 Hyvarinen, V. 2003: Trends and characteristics of hydrological time series in Finland. Nordic Hydrology 34(1-2): 71-90. [Europe; hydrology]

7 IOCI 2002: Climate variability and changes in South West Western Australia. Indian Ocean Climate Initiative, Perth: 36. [Australia and New Zealand; climate variability]

20 Jones, G. V. 2005: Climate change in the western United States grapegrowing regions. 7th International Symposium on Grapevine Physiology and Biotechnology 689: 71-80. [North America; agriculture]

21 Jones, G. V. and R. E. Davis 2000: Climate Influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. American Journal of Enology and Viticulture 51(3): 249. [Europe; agriculture]

22 Jones, I., F. Hunter, et al. 2002: Annual adult survival of least auklets (Aves, Alcidae) varies with...
large-scale climatic conditions of the North Pacific Ocean. Oecologia 133: 38-44. [Pacific Ocean; birds]

Kozlov, M. V. and N. G. Berlina 2002: Decline in length of the summer season on the Kola Peninsula, Russia. Climatic Change 54(4): 387-398. [Europe; phenology]

track? Natural Hazards 36(1-2): 165-189. [Europe; disasters and hazards]
Laing, T. E. and J. P. Smol 2003: Late Holocene environmental changes inferred from diatoms in a lake on the western Taimyr Peninsula, northern Russia. Journal Of Paleolimnology 30(2): 231-247. [Europe; freshwater biological systems]
Levermore, G. J. and E. Keeble 1998: Dry-bulb temperature analyses for climate change at three UK
sites in relation to the forthcoming CIBSE Guide to weather and solar data. Building Services Engineering Research and Technology 19: 175-181. [Europe; temperature]

Lionello, P. and A. Sanna 2005: Mediterranean wave climate variability and its links with NAO and Indian Monsoon. Climate Dynamics. [Europe; coastal processes and zones]

MacDonald, M., A. Lucassie, et al. 1997: Voices from the Bay: traditional ecological knowledge of Inuit and Cree. Canadian Arctic Resource Committee and Environmental Committee of Municipality of Sanikiluaq, Ottawa, Ontario and Sanikiluaq, N.W.T. [Arctic; indigenous peoples]

Chapter 1 – Observed Changes

Menzel, A. 2003: Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climate change 57: 243. [Europe; phenology]

Menzel, A. 2005: Temporal and spatial scales of observed changes in systems and sectors. [Europe; plants]

Menzel, A., J. von Vopelius, et al. 2006: Farmers’ annual activities are not tracking speed of climate change. Climate Research submitted. [Europe; agriculture]

Moonen, A. C., L. Ercoli, et al. 2002: Climate change in Italy indicated by agrometeorological indices over 122 years. Agricultural And Forest Meteorology 111(1): 13-27. [Europe; agriculture]

Nabuurs, G. J., A. Pussinen, et al. 2002: Stemwood volume increment changes in European forests
due to climate change - a simulation study with the EFISCEN model. Global Change Biology 8(4): 304. [Europe; terrestrial biological systems]

Nicholls, N. 2005: Climate variability, climate change and the Australian snow season. Australian Meteorological Magazine 54(3): 177-185. [Australia and New Zealand; snow]

Pagliosa, P. R. and F. A. R. Barbosa 2006: Assessing the environment--benthic fauna coupling in protected and urban areas of southern Brazil. Biological Conservation 129: 408-417. [Latin America; animals]

Parmesan, C. and H. Galbraith 2004: Observed impacts of global climate change in the U.S. [North America; terrestrial biological systems]

Phillips, O. L., R. V. Martinez, et al. 2002: Increasing dominance of large lianas in Amazonian...
forests. Nature 418(6899): 770-774. [Latin America; forestry]

Rasmussen, A. 2002: The effects of climate change on the birch pollen season in Denmark. Aerobiologia 18: 253-65. [Europe; plants]

Rignot, E., Rivera, A., Casassa, G. Year: of Conference. Decadal changes in ice flow and mass of Patagonia Glaciers, South America. EGU General Assembly 2005, Vienna, Austria. [South America; ice]

Root, T. L., D. P. MacMynowski, et al. 2005: Human-modified temperatures induce species changes:

Royal Society 2005: Ocean acidification due to increasing atmospheric carbon dioxide. Royal Society: 1-60. [Global, marine biological systems]

Ruhland, K., A. Presnitz, et al. 2003: Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian arctic treeline. Arctic, Antarctic and Alpine Research, 35: 110-123. [Arctic; lakes]

Sanz, J. J. 2003: Large-scale effects of climate change on breeding parameters of pied flycatchers in Western Europe. Ecography 26: 45-50. [Europe; birds]

Schaber, J. 2002: Phenology in Germany in the 20th century : methods, analyses and models, University of Potsdam. [Europe; phenology]

phenology. Agricultural and Forest Meteorology (submitted) [European; phenology]
Schrier Van der, G. and et al 2005: Summer moisture variability across Europe. J. Climate in press. [Europe; hydrology]
Schwartz, M. D. and X. Chen 2002: Examining the onset of spring in China. Climate research 21(2): 157-164. [Asia; phenology]
America 102(12): 4397-4402. [Arctic; freshwater biological systems]

[Arctic; freshwater biological system]

Sparks, T. H. and O. Braslavska 2001: The effect of temperature, altitude and latitude on the arrival and departure dates of the swallow Hirundo rustica in the Slovak Republic Int. J. Biometeorology 45: 212-216. [Europe; birds]

Straille, D., K. Johns, et al. 2003: Complex effects of winter warming on the physicochemical
characteristics of a deep lake. Limnology And Oceanography 48(4): 1432-1438. [Europe; NAO]

Tett, S., R. Betts, et al. 2005: Simulating the recent Holocene. AMS 16th Symp. on Global Change and Climate Variations. San Diego, CA. [Global; temperature]

Chapter 1 – Observed Changes

Tryjanowski, P., T. H. Sparks, et al. 2004: Do White Storks Ciconia ciconia always profit from an early return to their breeding grounds? Bird Study 51: 222-227. [Europe; animals]

Tulu, A. N. 1996: Determinants of malaria transmission in the highlands of Ethiopia: The impact of global warming on morbidity and mortality ascribed to malaria. London School of Hygiene and Tropical Medicine. [Africa; disease]

Ueda, H., M. Shinoda, H. Kamahori 2003: Spring northward retreat of Eurasian snow cover relevant to seasonal and interannual variations of atmospheric circulation. Intl. J. Climatology 23(6): 615-629. [Europe; snow] [Asia; snow]

Vare, H., R. Lampinen, et al. 2003. Taxonomic diversity of vascular plants in the European alpine areas Alpine biodiversity in Europe - A Europe-wide assessment of biological richness and
Velicogna, I. and J. Wahr 2006: Measurements of time-variable gravity show mass loss in Antarctica. Science. [Antarctica; ice]

Wearne, L. J. and J. W. Morgan 2001: Recent forest encroachment into subalpine grasslands near Mount Hotham, Victoria, Australia. Arctic Antarctic And Alpine Research 33(3): 369. [Australia; forestry]

Weladji, R. and O. Holand 2003: Global climate change and reindeer: effects of winter weather on
the autumn weight and growth of calves. Oecologia 136(2): 317-323. [Arctic; terrestrial biological systems]

Werrity, A., A. Black, Duck, R., et al. 2002: Climate change flooding occurrences review. Scottish Executive Central Research Unit, 94p. [Europe; hydrology]

Chapter 1 – Observed Changes

Yom-Tov, Y. 2003: Body sizes of carnivores commensal with humans have increased over the past 50 years. Functional Ecology 17(3): 323. [Asia; mammals]

