1		IPCC	WGII Fourth Assessment Report – Draft for Government and Expert Review	
2 3 4			Chapter 5 – Food, Fibre, and Forest Products	
5 6 7	Coo W. E	rdinatin Easterling	g Lead Authors: g (USA) and P. Aggarwal, (India)	
9 10 11 12 13	Lead P. Ba (Aus F. Tu	l Autho atima (M stralia), A ubiello (1	rs: Iongolia), K. Brander (Denmark), J. Bruinsma (Italy), L. Erda (China), M. Howden A. Kirilenko (Russia), J. Morton (UK), P. Pingali (India), J.F. Soussana (France), IIASA/USA/Italy)	
14 15 16 17	Con J. Aı (UK (USA	tributin ntle (USA), W. Kii A)	g Authors: A), W. Baethgen (Uruguay), C. Barlow (Lao PDR), N. Chhetri (Nepal), S. des Clers Ilman (Italy), T. Mader (USA), K. O'Brien (Norway), J. Schmidhuber (Italy), R. Sec	djo
18 19 20 21	Rev i J. Sv	ew Edit veeney (ors: Ireland), T.P. Singh (India), L. Kajfež-Bogataj (Slovenia)	
22	Con	tents		
24 25	Exec	cutive Su	ımmary	3
26 27	5.1	Introd	uction: importance, scope and uncertainty, TAR summary, and methods	6
28	J.1	5.1.1	Importance of agriculture, forestry, and fisheries	6
29		512	Scope of the chapter and treatment of uncertainty	6
30		5.1.3	Important findings of the TAR	6
31		5.1.4	Methods	7
32 33	5.2	Curre	nt sensitivity, vulnerability, and adaptive capacity to climate	7
34		5.2.1	Current sensitivity	7
35		5.2.2	Sensitivity to multiple stresses	8
36		5.2.3	Current vulnerability and adaptive capacity in perspective	9
37				
38	5.3	Assum	ptions about future trends in climate, food, forestry, and fisheries	10
39		5.3.1	Climate	10
40		5.3.2	Balancing future global supply and demand in agriculture and forestry	11
41				
42	5.4	Key fu	ture impacts, vulnerabilities, and their spatial distribution	13
43		5.4.1	Primary effects and interactions	13
44		5.4.2	Food-crop farming including tree crops	16
45		5.4.3	Pastures and livestock production	19
46		5.4.4	Industrial crops and biofuels	22
47		5.4.5	Key future impacts on Forestry	23
48		5.4.6	Capture fisheries and aquaculture: marine and inland waters	26
49		5.4.7	Rural livelihoods: subsistence and smallholder agriculture	30
50	E F	A J == 4	ations. Ontions and Consultion	91
51 52	5.5.	Adapta $5 5 1$	Autonomous adoptations	31 22
52		5.5.1	Autonomous anapianons	52

1 2		5.5.2	Planned adaptations	34
3	5.6	Costs a	and other socioeconomic aspects, including food supply and security	35
4		5.6.1	Global costs to agriculture	35
5		5.6.2	Global costs to forestry	36
6		5.6.3	Changes in trade	37
7		5.6.4	Regional costs and associated socioeconomic impacts	37
8		5.6.5	Food security and vulnerability	37
9				
10	5.7	Implic	ations for sustainable development	38
11		-		
12	5.8	Key Co	onclusions and their Uncertainties, Confidence Levels, Research Gaps	40
13		5.8.1	Findings and Key Conclusions	40
14		5.8.2	Research Gaps and Priorities	43
15			-	
16	Refe	erences		45
17				

1	Executive Summary
2	Comment a sustinity by the sustrility
5 Л	• Pagent extreme elimete events demonstrate the current vulnerability of food, fibre, forestry and
+ 5	fisheries (FFFF) systems. The summer 2003 European heat wave and drought reduced maize
6	vields by 20% the largest yield decline since 1960 (<i>high confidence</i>) [Box 5.1] Frequent
7	droughts in Africa have caused high livestock mortality (<i>high confidence</i>) [see 5.2.1]
8	aroughts in rinted have eaused ingh investoek inoranty (<i>migh conjuctice</i>) [see 5.2.1].
9	Assumptions about future trends
10	Regional changes in JJA precipitation are likely to cause increased water deficit in some
11	temperate and semi-arid regions, which are currently suitable for rainfed crops (<i>medium</i>
12	confidence) [see 5.3.1].
13	• Future climate change is likely to result in shifts toward higher latitudes and elevations in the
14	climatic suitability for FFFF production. (high confidence) [see 5.3.1].
15	• The impact of climate change on FFFF sectors should be seen against the expected long-term
16	developments in the global economy, including increasing purchasing power and declining
17	relative economic importance of these sectors. (medium to high confidence)[see 5.3.2.1].
18	• Pressure to cultivate marginal land or to adopt unsustainable cultivation practices as yields drop
19	may increase land degradation and endanger biodiversity of both wild and domestic species (low
20	<i>confidence</i>) [see 5.3.2.1].
21	
22	Key future impacts
23	• Recent results from Free Air Carbon Enrichment (FACE) studies of carbon dioxide fertilisation
24 25	confirm conclusions from the TAK that crop yields at 550 ppm CO2 concentration increase by an every 2500 for the range
25 26	of EACE results (high confidence) [see 5.4.1]
20 27	 Results from the FACE studies of CO2 enrichment to 550 nnm on trees suggest a smaller effect
27 28	than is simulated by some of the forest sector models, although no direct comparisons with these
29	models have been done (<i>high confidence</i>) [see 5.4.1]
30	• An increased vulnerability of terrestrial carbon pools may be caused by the impacts of warming
31	and droughts on soil carbon and by the increased risks of fires in forests with feedback to
32	radiative forcing (medium confidence) [see 5.4.1].
33	• Crop modelling studies that include extremes in addition to changes in mean climate show lower
34	yields than for changes in means alone (medium confidence). [see 5.4.1.3]
35	• In temperate regions, moderate to medium local increases in temperature (1 to 3°C), along with
36	associated CO2 increase and rainfall changes can have small beneficial impacts on crops,
37	including wheat, maize, and rice. Cotton has a similar response. Further warming has
38	increasingly negative impacts (<i>medium to low confidence</i>) [see Figure 5.2].
39	• In tropical regions, even moderate temperature increases are likely to have negative yield
40	impacts for major cereals (1°C for wheat and maize, 2°C for rice). For temperature increases
41	more than 3°C impacts are stressful to all crops (<i>medium to low confidence</i>) [see Figure 5.2].
42 42	• Potential negative yield impacts are particularly pronounced in several regions where food
45 11	(madium confidence) [soo 5.4.2.1]
44 15	 (<i>meanum conjuence</i>) [See 5.4.2.1]. Climate changes increase irrigation demand in the majority of world regions due to a
46	combination of increased evanoration arising from increased temperatures and in some regions
47	decreased precipitation. This combines with increased water stress (see Chapter 3) to provide a
48	significant challenge to future food security (<i>medium to high confidence</i>) [see 5.4.2.1]
49	• The role of pests has become clearer since the TAR. In the FFFF sectors, the poleward spread of
50	diseases and pests which were previously found at lower latitudes is observed and predicted to
51	continue. The magnitude of the overall effect is unknown, but is likely to be highly regionalized
52	(medium to high confidence) [5.4.2.1].

- Warming and increased frequency of heat waves and droughts in Mediterranean, semi-arid and arid pastures will reduce livestock productivity, and increase heat stress—with potential increase in mortality (*medium to high confidence*) [see 5.4.3.1].
- In humid and temperate grasslands a moderate incremental warming (no change in variability)
 will increase pasture productivity and reduce the need for housing and for feed concentrates in
 some areas (*medium to high confidence*). However, a reduction of rainfall in some regions, with
 increased climate variability and extreme events, may suppress the positive effect of a moderate
 warming (*medium confidence*) [see 5.4.3.2].
- Elevated CO₂ and warming will modify the dominance of palatable plant species in pastures
 (*high confidence*). This confirms findings from TAR that feed quality for domestic herbivores
 will be affected both in terms of fine-scale (reduced protein content) and coarse-scale (plant
 species) changes [see 5.4.3.2].
- Overall, global forest products output during the 21st century changes, ranging from a modest increase to a slight decrease depending on the assumed impact of CO2 fertilisation and the effect of processes not well represented in the models (e.g., pest effects), although regional and local changes will be large. Production in some traditional forest production regions may decline as new ones benefit. (*medium confidence*) [see 5.4.5.1].
- Regional changes in the distribution and productivity of particular fish species will continue and
 local extinctions will occur at the edges of ranges, particularly in freshwater and diadromous
 species (e.g. salmon, sturgeon). In some cases ranges and productivity will increase (*high confidence*)[see 5.4.6.2].
- Emerging evidence suggests concern that meridional overturning circulation is slowing down,
 with serious potential consequences for fisheries (*low confidence*)[see 5.4.6.2].
- Smallholder and subsistence farmers, pastoralists and artisanal fisher people, whose adaptive
 capacity is constrained, will suffer complex, localized impacts of climate change, especially by
 extreme events and other impacts such as sea-level rise and snow-pack decrease. Vulnerability
 increases. (*high confidence*)[see 5.4.7].

29 Adaptation

28

- A large number of short-term responsive (or autonomous) adaptations are possible in cropping,
 grazing, forestry and fishery systems. Many of these are extensions of existing risk
 management activities (*high confidence*)[see 5.5.1].
- The potential effectiveness of the adaptations varies from only marginally reducing negative impacts to in some cases changing a negative impact into a positive impact. On average in cereal cropping systems adaptations such as changing varieties and planting times enable avoidance of a 10-15% reduction in yield. The benefit from adapting tends to increase with the degree of climate change up to a point (*medium to high confidence*) [see Figure 5.2].
- Changes in policies and institutions, including property rights, will be needed to facilitate
 adaptation to climate change. These could include greater investments in participatory research,
 infrastructure, capacity building, risk management, improved product storage and markets. The
 costs of implementing these adaptations will depend, in part, on the degree of mainstreaming
 with other policy initiatives (e.g., trade policy, investment in research and development)
 (*medium confidence*) [see 5.5.2].
- 44
- 45 *Costs, vulnerability and other socioeconomic aspects*
- Globally, an increased agricultural production potential should increase overall food availability
 in the short to medium-term (2020-2050), followed by a decline to 2080 (*medium to low confidence*) [see 5.6.1]. The global increase to 2050 will mask substantial regional differences
 (see tropical versus temperate crop yields above) (*medium confidence*).
- Projections of rising overall incomes imply a simultaneous increase in the capacity of individuals
 and countries to purchase food, although with regional differences. The increase in purchasing
 power for food is reinforced in the period to 2050 by declining real prices but would be adversely

- affected by higher real prices for food from 2050 to 2080 (low to medium confidence) [see Figure 1 2 5.41. 3 Agricultural trade flows are foreseen to rise significantly; climate change is expected to increase 4 exports of temperate zone products to tropical countries (medium confidence) [see 5.6.3]. 5 Regional comparative advantage in forest production changes substantially in response to the •
- 6 changing climate and this is assisted by management, including an increasing role for planted 7 forests. Such changes will change trade patterns with more exports from tropical and sub-tropical 8 regions to temperate regions (medium confidence). This projected trend is sensitive to presumed 9 trends in tropical deforestation [see 5.3.2.2, 5.6.2].
- 10
- 11 Sustainable development
- 12 Adaptation measures must be carefully integrated with overall development goals expressed, for 13 example, by the Millennium Development project [see 5.7].
- 14

1	5.1 Introduction: importance, scope and uncertainty, TAR summary, and methods
3	5.1.1 Importance of agriculture, forestry, and fisheries
4 5 6 7 8 9	At present, 40% of the Earth's surface is managed for cropland and pasture (Foley <i>et al.</i> , 2005). Natural forests cover another 30% (3.9 billion ha) of land; though only about 5% of forest cover is managed for forestry (about 200 M ha). In developing countries nearly 70% of people live in rural areas where agriculture is the largest supporter of livelihoods – growth in agricultural incomes in developing countries fuels the demand for non-basic goods and services, fundamental to human development. The
10 11 12 13 14 15	FAO estimates that the livelihoods of roughly 450 million of the world's poorest people are entirely dependent on managed ecosystem services. Fish provide more than 2.6 billion people with at least 20 percent of their average per capita animal protein intake, but three-quarters of global fisheries are currently fully exploited, overexploited or depleted (FAO Fisheries Department, 2004).
16 17	5.1.2 Scope of the chapter and treatment of uncertainty
18 19	The scope of this chapter is:
20 21 22 23	 For food crops, pastures and livestock, industrial crops and biofuels, forestry (commercial forests), aquaculture and fisheries, and small-holder and subsistence agriculturalists and artisanal fishers: To examine current climate sensitivities/vulnerabilities; To consider future trends in climate, global and regional food security, forestry, and fisheries
24 25 26 27 28 29 30	 production; To review key future impacts of climate change in food crops, pasture and livestock production, industrial crops and biofuels, forestry, fisheries, and small-holder and subsistence agriculture; To assess the effectiveness of adaptation in offsetting damages and to identify adaptation options, including planned adaptation to climate change; To examine the social and economic costs of climate change in those sectors; To explore the implications of responding to climate change for sustainable development;
31 32 33 34 35 36 37 38	We strive for consistent treatment of uncertainty in this chapter. Traceable accounts of final judgments of uncertainty in the findings and conclusions are, where possible, maintained. These accounts explicitly state sources of uncertainty in the methods used by the studies that comprise the assessment. At the end of the chapter, we summarize those findings and conclusions and provide a final judgment of their uncertainties.
39 40	5.1.3 Important findings of the TAR
41 42 43	The key findings of the Third Assessment Report with respect to food, fibre, forestry, and fisheries are an important benchmark for this chapter. In reduced-form, they are:
44 45 46 47	 Food crops CO₂ effects increase with warmth but fall once optimal photosynthetic temperatures are exceeded. The CO₂ effect may be relatively greater – compared to irrigated crops – for crops under moisture stress.
48 49 50 51 52	 Modelling studies suggest crop yield losses with minimal warming in the tropics. Temperate crops benefit from a small amount of warming (~+2°C) but decline after that. Countries with greater wealth and natural resource endowments adapt more efficiently than those with less.
Dead	line for Submission of Comments: 21 July 2006 6 of 59 Chapter 5 – Food, Fibre, and Forest Products

1	Fore	estry
2	•	Free-air CO ₂ enrichment (FACE) experiments suggest that trees rapidly become acclimated to
3		increased CO ₂ levels.
4	•	The largest impacts of climate change are likely to occur earliest in boreal forests.
5	٠	Contrary to the SAR, climate change will increase global timber supply and enhance existing
6		market trends toward rising market share in developing countries.
7		
8	Aqua	aculture and Fisheries
9	•	Global warming will confound the impact of natural variation and fishing activity and make

- Global warming will confound the impact of natural variation and fishing activity and make
 management more complex.
- The sustainability of the fishing industries of many countries will depend on increasing
 flexibility in bilateral and multilateral fishing agreements, coupled with international stock
 assessments and management plans.
- Increases in seawater temperature have been associated with increases in diseases and algal
 blooms in the aquaculture industry.

16 17

18 5.1.4 Methods

19

20 Research on the consequences of climate change for agriculture, forestry, and fisheries is addressing 21 deepening levels of system complexity that requires a new suite of methodologies to cope with the 22 added uncertainty that accompanies the addition of new, often non-linear, process knowledge. The 23 application of meta-analysis to agriculture, forestry, and fisheries in order to identify trends and 24 consistent findings across large numbers of studies that address a common research problem has 25 revealed important new information since the Third Assessment Report (TAR), especially on the direct 26 effects of atmospheric CO₂ on crop and forest productivity (e.g., Long, 2005) and fisheries (Allison et 27 al., 2005). The complexity of processes that determine adaptive capacity has dictated an increasing 28 regional focus to studies in order best to understand and predict adaptive processes (Kates and 29 Wilbanks, 2003)-hence the rise in numbers of regional-scale studies. This heightens the need for 30 robust methods of scaling local and regional findings to larger, often political, regions for use in decision making (Easterling and Polsky, 2004). Further complexity is contributed by the expansion of 31 32 scenarios of future climate and society (Nakicenovic and Swart, 2000). 33

33 34

36

35 **5.2** Current sensitivity, vulnerability, and adaptive capacity to climate

37 5.2.1 Current sensitivity

38

39 The inter-annual, monthly and daily distribution of climate variables (e.g. temperature, radiation, 40 precipitation, water vapour pressure in the air, and wind speed) affects a number of physical, chemical and biological processes that drive the productivity of agricultural, forestry and fisheries systems. The 41 42 latitudinal distribution of crop, pasture and forest species is a function of the current climatic and 43 atmospheric conditions as well as photoperiod (e.g. Leff et al., 2004). Crops exhibit threshold 44 responses to their climatic environment that affect their growth, development and yield (Porter and 45 Semenov, 2005). Yield damaging climate thresholds for cereals and fruit trees include absolute 46 temperature levels that are linked to particular developmental stages that condition the formation of 47 reproductive organs, such as seeds and fruits and can be effective over short time-periods 48 (Wollenweber et al., 2003; Wheeler et al., 2000). This means that yield damage estimates from coupled 49 crop-climate models need to have a maximum temporal resolution of a few days and include detailed phenology (Porter and Semenov, 2005). Short-term natural extremes such as storms and floods, 50 51 inter-annual and decadal climate variations as well as large-scale circulation changes such as the El 52 Niño Southern Oscillation (ENSO) all have important effects on crop, pasture and forest production

(Tubiello, 2005). For example, Nelson and Kokic, found that El Niňo-like conditions result in a greater 1 2 than 75 per cent chance of farm incomes falling below their long term median across most of the twelve 3 Australian cropping regions with impacts on GDP ranging from 0.75 to 1.6% (O'Meagher, 2005). 4 5 There are a number of examples, both in temperate and in tropical regions, of large impacts on the food, 6 feed and fibre production of extreme climatic events. One example given here is the heat wave during 7 the summer 2003 in Europe (Box 5.1), and another is the high mortality and reduced productivity of 8 livestock during drought events in Africa during the last 25 years (Table 5.1). 9 10 11 12 Box 5.1 European heat wave impact on the agricultural sector. 13 14 Europe experienced a particularly extreme climate event during the summer of 2003, with 15 temperatures up to 6°C above long-term means, and precipitation deficits up to 300 mm y⁻¹ (see WG I report). A record crop yield drop of 36% occurred in Italy for corn grown in the Po valley where 16 17 extremely high temperatures prevailed (Ciais et al., 2005). In France, compared to 2002, the corn grain crop was reduced by 30% and fruit harvests declined by 25%. Winter crops (wheat) had nearly 18 19 achieved maturity by the time of the heatwave and therefore suffered less yield reduction (21 % decline 20 in France) than summer crops (like corn, fruit trees and vines) undergoing maximum foliar 21 development (Ciais et al., 2005). Forage production was reduced on average by 30% in France and hay

and silage stocks for winter were partly used during the summer (COPA COGEGA, 2003a). Wine

France (4 billion Euros) (Sénat, 2004). The estimation of forest area destroyed reached 647,069

production in Europe was the lowest in 10 years (COPA-COFEGA, 2003B). The economic losses for the agriculture sector in the European Union were estimated at 13 billion Euros, with largest losses in

hectares. Portugal was the worst hit with 390,146 ha burned, destroying around 5.6 % of its forest area.

Spain came second with 127,525 ha burned. The agricultural area burned reached 44,123 ha plus 8,973

ha of unoccupied land. This was by far the worst forest fire season that Portugal had faced in the last 23

27 28 29

22

23

24 25

26

30 31 vears (EU-JRC, 2003).

32

33 Table 5.1: Quantified impacts of selected African droughts on livestock, 1981-1999.

~	<u> </u>	<u> </u>	/
1981-84	Botswana	20% reduction in national herd	FAO, 1984 cited in Toulmin, 1986
1982-84	Niger	62% loss of national cattle herd	Toulmin, 1986
1983-84	Ethiopia (Borana	90% of calves, 45% cows, 22%	Coppock, 1994
	Plateau)	mature males	
1983-85	Ethiopia (Borana)	37% of cattle	Desta and Coppock, 2002
1991	Northern Kenya	Cattle 556,000 (28%)	Surtech, 1993 cited in Barton and
		Sheep and Goats 723,000 (18%)	Morton, 2001
1991-93	Ethiopia (Borana)	42% of cattle	Desta and Coppock, 2002
1993	Namibia	22% of cattle	Devereux and Tapscott, 1995
		41% of goats and sheep	
1995-97	Greater Horn of	29% of cattle	Ndikumana et al., 2000
	Africa	25% of sheep and goats	
	(average of 9 areas)		
1995-97	Southern Ethiopia	78% of cattle	Ndikumana et al., 2000
		83% of sheep and goats	
1998-99	Ethiopia (Borana)	62% of cattle	Shibru, 2001 cited in Desta and
			Coppock, 2002

34

2 3

1

5.2.2 Sensitivity to multiple stresses

4 Multiple stresses such as limited availability of water resources (see Chapter 3), loss of biodiversity 5 (see Chapter 4), and air pollution (Box 5.2) are increasing climate sensitivity and climate stress in the 6 agricultural sector (FAO, 2003). Natural land resources are being degraded through soil erosion: salinization of irrigated areas; dry-land degradation from overgrazing; over-extraction of ground water; 7 8 growing susceptibility to disease and build-up of pest resistance favoured by the spread of 9 monocultures and the use of pesticides: loss of biodiversity and erosion of the genetic resource base 10 when modern varieties displace traditional ones (FAO, 2003). The sum total effect of these processes on agricultural productivity is not clear. In forestry, fires, insect outbreaks, air pollution and soil 11 degradation increase the sensitivity to climate variability (see 5.3.4). In fisheries, overexploitation of 12 stocks (see 5.3.6), loss of biodiversity, water pollution and changes in water resources (see Box 5.3) 13 14 also increase the current sensitivity to climate.

15 16 17

18

Box 5.2 Air pollutants and UV-B

19 20 Ozone has significant adverse effects on crop yields, pasture and forest growth and species composition (Ashmore, 2005; Vandermeiren, 2005; Volk, 2006; Loya et al., 2003). While emissions of 21 22 ozone precursors, chiefly NOx compounds, may be decreasing in North America and Europe due to 23 pollution control measures, they are increasing in other regions of the world—especially Asia. 24 Additionally, as global ozone exposures increase over this century, direct and indirect interactions with 25 climate change and elevated CO₂ will further modify plant dynamics (Booker, 2005; Fiscus, 2004). Although several studies confirm TAR findings that elevated CO₂ may ameliorate otherwise negative 26 27 impacts from ozone (Kaakinen, 2004), the essence of the matter should be viewed the other way 28 around: increasing ozone concentrations in future decades, with or without CO₂, with or without 29 climate change, will negatively impact plant production, possibly increasing exposure to pest damage 30 (Karnoski, 2003, 2002; Ollinger, 2002). Current risk assessment tools do not sufficiently consider 31 these key interactions. Improved modeling approaches linking the effects of ozone, climate change, 32 nutrient and water availability, on individual plants, species interactions and ecosystem function are 33 needed (Ashmore, 2005), and some efforts are under way (Felzer, 2004). Finally, impacts of UV-B 34 exposure on plants was previously reviewed by the TAR, showing contrasting experimental results on 35 the interactions of UV-B exposure with elevated CO₂. Post TAR studies have not narrowed uncertainty, with some findings suggesting amelioration of negative UV-B effects by elevated CO2 36 37 (Oaderi and Reid, 2005), and others showing no effect (Zhao et al., 2003).

38 39

40

41 5.2.3 Current vulnerability and adaptive capacity in perspective

42 43 Current vulnerability to climate variability, including extreme events, is both hazard- and context-44 dependent (Brooks et al.). For agriculture, forestry and fisheries systems, vulnerability depends on exposure and sensitivity to climate conditions (as discussed above), and on the capacity to cope with or 45 46 adapt to changing conditions. A comparison of conditions on both sides of the United States-Mexico 47 border reveal important differences in access to resources, state involvement, class and ethnicity, 48 which result in drastically different vulnerabilities for farmers and ranchers living within the same 49 biophysical context (Vasquez-Leon et al.). Processes linked to globalization are also changing the 50 capacity to respond to climate variability and there is a growing recognition that efforts to reduce 51 vulnerability and facilitate adaptation to climate change must be linked to the processes of reform 52 underway in both developing and industrialized countries (Eakin and Lemos, 2006).

2 Adaptive capacity with respect to current climate is dynamic, and influenced by changes in wealth,

- human capital, information and technology, material resources and infrastructure, institutions and
 entitlements (see Chapter 17) (Yohe and Tol, 2001; Eakin and Lemos, 2006). The production and
- dissemination of seasonal climate forecasts has improved the ability of many resource managers to
- 6 anticipate and plan for climate variability, particularly in relation to the El Niño-Southern Oscillation
- 7 (ENSO) (Harrison, 2005). However, problems related to infectious disease, conflicts and other societal
- 8 factors may decrease the capacity to respond to variability and change at the local level, thereby
- 9 increasing current vulnerability. Policies and responses made at the national and international levels
- 10 also influence local adaptations (Salinger *et al.*, 2005). National agricultural policies are often
- developed on the basis of local risks, needs, and capacities, as well as international markets, tariffs,
 subsidies, and trade agreements (Burton and Lim, 2005).
- 13

1

Sub-Saharan Africa is one area of the world that is currently highly vulnerable to food insecurity
 (Vogel, 2005). Drought conditions, flooding, and pest outbreaks are some of the current stressors to

- 16 food security that may be influenced by future climate change. Current response options and overall
- 17 development initiatives related to agriculture, fisheries, and forestry may be aggravated by health
- 18 status, lack of information and ineffective institutional structures and processes, with potential negative
- 19 outcomes for future adaptation to periods of heightened climate stress (Reid and Vogel, 2006).
- 20 Sub-Saharan Africa is but one example.
- 21 22

23 5.3 Assumptions about future trends in climate, food, forestry, and fisheries 24

25 Declining global population growth (UN, 2004), rapidly rising urbanization, shrinking shares of 26 agriculture in the overall formation of incomes and fewer people dependent on agriculture are 27 amongst the key factors that are likely to shape the socio-economic environment in which climate change is likely to evolve. This environment will determine how climate change affects agriculture, 28 29 how rural populations can cope with changing climate conditions and it will affect their ability to 30 feed themselves. Any assessment of climate change impacts on agro-ecological conditions of 31 agriculture must be undertaken against this background of changing socio-economic environment 32 (Bruinsma, 2003).

33

34

35 5.3.1 Climate

36

37 Globally, some 3.6 billion ha (about 27% of the Earth's land surface) are too dry for rain-fed agriculture. Considering water availability, only about 1.8% of these dry zones are suitable for 38 39 producing cereal crops under irrigation (Fischer et al., 2002). In many other areas, water resources are 40 already stressed and are highly vulnerable, with intense competition for water supply (FAO, 2003). Total seasonal precipitation as well as its pattern of variability (Olesen and Bindi, 2002) are both of 41 42 major importance for agricultural, pastoral and forestry systems. Prevailing temperatures determine 43 crop performance when moisture conditions are met. Similarly, when temperature requirements are 44 met, the growth of a crop is dependent on how well its growth cycle fits within the period when water is 45 available. The current climate, soil and terrain suitability for a range of rainfed crops and pasture types 46 has been estimated by Fischer et al. (2002) (Figure 5.1b). 47

- 48 There is now greater confidence from global and regional-scale models concerning projected patterns
- 49 of change in average precipitation than in the TAR. Decreases in precipitation are robustly predicted by
- 50 more than 90% of the simulations by the end of the 21^{st} century for the northern and southern
- 51 subtropics (WG I, Summary for Policy Makers). Decreases are also expected for parts of western North
- 52 and South America, and southern Europe, with increases expected in some places in the tropics as well

1 as at higher latitudes (Figure 5.1a). Summer rainfall decline is projected to affect some major rainfed 2 crop and pasture production areas in South America, South and North Africa, Australia and Southern 3 Europe (Figure 5.1b). Extremes of precipitation increase are also very likely in major agricultural 4 production areas in Southern and Eastern Asia, in East Australia and in Northern Europe (see WG I, 5 Chapter 11 report). More frequent droughts are predicted in the Mediterranean area, in Central 6 America, in Australia and New-Zealand (Figure 5.1a). It should be noted that climate change impact 7 models for food, feed and fibre do not yet include these findings on projected patterns of change in 8 precipitation, so the best we can do at present is to examine Figure 5.1a and b side by side. 9

Figure 5.1: a) Map of spatial patterns of projected rainfall change (from Summary for Policy Makers of WG I Fourth Assessment Report). b) Current suitability for rainfed crops (excluding forest ecosystems) (after Fischer, 2002).

29 5.3.2 Balancing future global supply and demand in agriculture and forestry 30

31 5.3.2.1 Agriculture

32 33 Slower population growth and an increasing share of better-fed people (e.g. over half of the population in developing countries now already lives in countries averaging over 2700 kcal/person/day) is 34 35 projected to lead to a gradual deceleration in the growth of global food demand. In parallel with the 36 slow-down in demand, FAO (FAO, 2006) expects growth in world agricultural production to decline 37 from 2.2% p.a. over the last 30 years to 1.6% p.a. in 2000-15, 1.3% p.a. in 2015-30 and 0.8% p.a. in 38 2030-50. This still implies a 55% increase in global crop production by 2030 and an 80% increase to 39 2050 (compared with 1999/01). To facilitate this growth in output, another 185 million ha of rain-fed 40 crop land (+19%) and another 60 million ha of irrigated land (+30%) will have to be brought into 41 production. Essentially the entire land expansion will take place in developing countries, most of it in 42 sub-Saharan Africa and Latin America, which could result in direct tradeoffs with ecosystem services 43 (Cassman et al., 2003). In addition to expanded land use, yields are expected to rise. Cereal yields in 44 developing countries are projected to increase from 2.7 tonnes/ha now to 3.8 tonnes/ha in 2050 (FAO, 45 2006).

46

10 11

12 13 14

15

16

17

18

19

20

21

22

23 24

25

26

27 28

- 47 These improvements in the global supply-demand balance will be accompanied by a further decline in
- 48 the number of undernourished from more than 800 million at present to about 300 million people, or
- 4% of the population in developing countries, by 2050 (FAO, 2006). Notwithstanding these overall 49
- improvements, important food security problems remain to be addressed at the local and national level. 50
- 51 Areas in sub-Saharan Africa, Asia and Latin America, with high population growth rates and high rates
- 52 of natural resource degradation, are likely to continue to have high rates of poverty and food insecurity

(Alexandratos, 2005). Cassman *et al.*, (2003) emphasize that climate change will add to the dual
 challenge of meeting food (cereal) demand while at the same time protecting natural resources and
 improving environmental quality in these regions.

5.3.2.2 Forestry

5 6

4

7 A number of long-term studies of supply and demand of forestry products have been undertaken in 8 recent years (e.g., Sedjo and Lyon, 1990, 1996; FAO, 1998; Hagler, 1998; Sohngen et al., 1999; 9 Sohngen et al., 2001). These studies have projected a shift from natural forest harvests to those of 10 plantations. For example, Hagler (1998) suggested growth of the industrial wood harvest produced on plantations from 20% in 2000 to over 40% in 2030, while the FAO (2004a) estimates that in 2001 the 11 plantations already produced about 34%, and this portion may increase to 44% by 2020 (Carle et al., 12 2002) and 75% by 2050 (Sohngen et al., 2001). There also will be a global shift in the industrial wood 13 14 supply between the temperate and tropical zones and also between the Northern and Southern Hemispheres, which in turn will increase trade in forest products in order to balance the regional 15 16 imbalances in demand/supply (Hagler, 1998).

17

In recent decades forecasts of industrial wood demand have tended to be consistently higher than actual
 demand (Sedjo and Lyon, 1996), with very slow demand increase (compare current demand of 1.6 B

m³ to 1.5 B m³ in the early 1980s [FAO selected issues]). The recent projections of the FAO, Häggblom (2004); Sedjo and Lyon (1996); and Sohngen *et al.* (2001) project similar modest demand growth to 1.8 – 1.9 B m³ by 2010 – 2015 - compare to earlier higher predictions of 2.1 B m³ by 2015 and 2.7 B m³ by 2030 (Hagler, 1998). Similarly, an FAO (2001) study suggests that global fuelwood use has

24 peaked at 1.9 B m³ and is stable or declining, but the use of charcoal continues to rise (e.g., Arnold et

al., 2003). However, fuelwood use could dramatically increase in the face of rising energy prices,
 particularly if incentives are created to shift away from fossil fuels and toward biofuels. There are

27 many other products and services that depend upon forest resources than above. However, there are not

any satisfactory estimates on the global future demand of these products and services.

29

Finally, although climate change will impact the availability of forest resources, the anthropogenic
 impact, particularly land use change and deforestation in tropical zones is likely to be extremely

32 important (Zhao *et al.*, 2005). In the Amazon basin, deforestation and increased forest fragmentation

may impact water availability, triggering more severe droughts. Droughts combined with deforestation

in turn increases fire danger (Laurance and Williamson, 2001): simulations show that during the 2001

35 ENSO period approximately one-third of Amazon forests became susceptible to fire (Nepstad *et al.*,

- 36 2004).
- 37

38 *5.3.2.3 Fisheries*

39

40 Global food fish production is forecast to increase but not as fast as the world demand to 2020. Per capita fish consumption and fish prices are expected to rise, with wide variations per commodity type 41 42 and region. By 2020, wild capture fisheries are predicted to continue to supply most of the fish 43 produced in sub-Saharan Africa (98%), the USA (84%), Latin America (84%), but not India (45%) 44 where aquaculture production will dominate (Delgado et al., 2003). In Asia, all countries are likely to 45 produce more fish between 2005 and 2020, but the rate of increase will slow down. Trends in capture 46 fisheries (usually zero growth or modest declines) will not unduly endanger overall fish supplies; 47 however, any decline of fisheries is a cause for concern given the potential repercussions for fish 48 consumption (Briones et al., 2004).

49 50

5.3.2.4 Subsistence and smallholder agriculture

51

52 "Subsistence and smallholder agriculture" is used here to describe rural producers, predominantly in

developing countries, who farm using mainly family labour and for whom the farm provides the 1 2 principal source of income (Cornish, 1998). Pastoralists and people dependent on artisanal fisheries 3 and household aquaculture enterprises Allison and Ellis (2001) are also included in this category.

4

There are few informed estimates of world or regional population of these categories (Lipton, 2004).

- 5 6 While not all smallholders, even in developing countries, are poor, 75% of the world's 1.2 billion poor
- 7 (defined as consuming less than one purchasing-power adjusted dollar per day) live and work in rural
- areas (IFAD, 2001). They suffer, in varying degrees, problems associated both with subsistence 8
- 9 production (isolated and marginal location, small farm-size, informal land tenure, low levels of 10 technology), and with uneven and unpredictable exposure to world markets. These systems have been
- emphasized as "complex, diverse and risk-prone" (Chambers et al., 1989). Production systems are 11
- complex and diverse: in the combinations of plant and animal species that are exploited; the types of 12
- 13 integration between them; their production objectives; and their institutional arrangements for
- 14 managing natural resources. Risks are also diverse-drought and flood, crop and animal diseases, and
- 15 market shocks-and may be felt by individual households or entire communities. Smallholder and
- 16 subsistence farmers and pastoralists often practice hunting/gathering of wild resources as well as crop 17 and livestock production, to fulfil energy, clothing and health needs as well direct food requirements.
- 18 They also widely participate in off-farm and/or non-farm employment.
- 19

20 Subsistence and smallholder livelihood systems currently experience a number of interlocking

21 stressors other than climate change and climate variability, as outlined in section 5.2.2 above. They

22 also possess certain important resilience factors: efficiencies associated with the use of family labour

23 (Lipton, 2004), livelihood diversity allowing spreading of risks, and indigenous knowledge allowing

- 24 exploitation of risky environmental niches and coping with crises. The combinations of stressors and
- 25 resilience factors give rise to complex positive and negative trends in livelihoods. Rural-urban
- 26 migration will continue to be important; the World Bank estimates that 90 percent of population
- 27 growth in developing countries occurs in urban areas. Within rural areas there will be continued 28 diversification away from agriculture: already non-farm activities account for 30-50% of rural income
- 29 in developing countries (Davis, 2004). Although Vorley (2002), Hazell (2004), and Lipton (2004) see
- 30 the possibility, given appropriate policies, of pro-poor growth based on the efficiency and employment
- generation associated with family farms, it is overall likely that smallholder and subsistence 31

households will decline in numbers, as they are pulled or pushed into other livelihoods, with those that 32

33 remain suffering increased vulnerability and increased poverty. Because of waning numbers of

34 small-holder and subsistence households, projections for these categories will be progressively less

- 35 meaningful in the medium-term.
- 36 37

38 5.4 Key future impacts, vulnerabilities, and their spatial distribution 39

40 5.4.1 Primary effects and interactions

41

42 The TAR concluded that climate change and variability will impact food, fibre and forests around the 43 world due to the effects on plant growth and yield of elevated CO₂, higher temperatures, altered 44 precipitation and transpiration regimes, increased climate variability, as well as modified weed, pest 45 and pathogen pressure. Many studies since the TAR confirmed and extended previous findings; key 46 issues are described in the following sections.

47

48 5.4.1.1 Re-analysis of CO_2 effects suggests that they may be lower in the field

49

50 Plant response to elevated CO₂ alone—without climate change—is positive and was reviewed

51 extensively in the TAR. Effects will depend on photosynthetic pathway, species, growth stage, and

52 management (Ainsworth and Long, 2005; Norby et al., 2003; Jablonski et al., 2002). Recent **CONFIDENTIAL: Do Not Cite – Do Not Quote**

re-analyses of FACE data sets confirmed TAR reviews, indicating on average, across crops, +17% 1 2 vield increases at 550 ppm (Long et al., 2004); and increases in above-ground biomass at 550 ppm for 3 trees (+28%), legumes (+24%) and pastures (+10%) (Nowak et al., 2004; Ainsworth et al., 2003). For 4 commercial forestry, slow-growing species may respond little to elevated CO₂ (e.g., Vanhatalo et al., 5 2003), and fast-growing trees more strongly, with harvestable wood increases of +15-25% at 550 ppm 6 and high N (Wittig et al., 2005; Liberloo et al., 2005; Calfapietra et al., 2003). 7 8 How current models simulate responses to CO₂ is now questioned (Ainsworth and Long, 2005). 9 However, our assessment is that main crop simulation models, such as CERES, Cropsys, EPIC, 10 SoyGrow, and main pasture models CENTURY and EPIC, are in line with recent findings-in fact a bit lower-by assuming crop yield increases of about 8-17% (Tubiello et al., 2006; Tubiello and Ewert, 11 2002), and above-ground grassland production of about +15-20%, at 550 ppm. By contrast, 12 13 comparisons of forestry model predictions with observed data under elevated CO₂ is still insufficient to 14 draw similar conclusions. Importantly, plant physiologists and modelers alike now recognize that effects of elevated CO₂

15

16

17 measured in experimental settings and implemented in models may overestimate actual field and

18 farm-level responses, due to many limiting factors such as pests, weeds, competition for resources, soil

19 water and air quality, etc., which are neither well understood at large scales, nor well implemented in

20 leading models (Korner, 2005; Ainsworth and Long, 2005; Tubiello and Ewert, 2002; Peng et al.,

21 2004; Ziska, 2004; Karonsky, 2003; Fuhrer, 2003). Assessment studies should therefore include these

22 factors where possible, while analytical capabilities need to be enhanced; yield and production 23 projections should use a range of parameterisations of CO₂ effects to better convey the uncertainty

- 24 range.
- 25

26 5.4.1.2 Interactions of elevated CO_2 with temperature and precipitation may critically modify impacts 27 on production

28

29 Many recent studies confirm and extend TAR findings that temperature and precipitation changes in 30 future decades will modify—and often limit—direct CO₂ effects on plants. For instance, high temperatures during flowering may lower CO₂ effects by reducing grain number, and size and quality 31 (Caldwell et al., 2005; Baker, 2004; Thomas et al., 2003). Increased water demand under warming 32 33 may also reduce CO₂ effects. Rainfed wheat grown at 450 ppm CO₂ showed yield increases up to 0.8°C warming, then declines beyond 1.5°C warming; additional irrigation was needed to 34 counterbalance these negative effects (Xiao et al., 2005). In pastures, elevated CO₂ together with 35 increases in temperature, precipitation, and N deposition resulted in increased primary production, with

36 37 changes in species distribution and litter composition (Aranjuelo et al., 2005; Henry et al., 2005;

38 Zavaleta et al., 2003; Shaw et al., 2002). Future CO₂ levels may favour C₃ plants over C₄ (Demer,

39 2003); yet the opposite is expected under associated temperature increases (Shukla, 2003); the net

- 40 effect remains uncertain.
- 41

42 Finally, precipitation changes may modify ecosystem productivity and function, particularly in 43 marginal areas; higher water-use efficiency and greater root densities under elevated CO₂ in crops,

44 pasture and forestry systems may in some cases alleviate drought pressures, although large-scale

45 dynamics are not well understood (Centritto, 2005; Norby et al., 2004; Shafer et al., 2002;

46 Wullschleger et al., 2002). Thus climate impacts may significantly depend on the precipitation

47 scenario considered. In particular, since more than 80% of total agricultural land-and close to 100%

48 pastureland—is rainfed, GCM-dependent changes in evaporation to precipitation ratios will often

49 shape both the direction and magnitude of the overall impacts (Tubiello et al., 2002, Olesen and

50 Bindi, 2002).

51

52 5.4.1.3 Increased variability of extreme events may further damage plant production

1 2 The TAR already reported on studies documenting additional negative impacts of increased climate 3 variability on plant production under climate change, beyond those estimated from changes in mean 4 variables alone. More studies since the TAR have more firmly established such issues (Porter and 5 Semenov, 2005); they are described in detail in sections 5.4.2 to 5.4.7 in this chapter. Understanding 6 links between increased climate variability and ecosystem disturbance-fires, pest outbreaks, etc.-is 7 particularly important (Hogg and Bernier, 2005; Volney, 2006; Carroll, 2004). We note here that although a few models since the TAR have started to incorporate impacts of increased climate 8 9 variability on plant production, most assessment studies continue to only include effects on changes in mean variables.

10 11

12 5.4.1.4 Impacts on pests and diseases and animal health

13 14 The importance of weeds, pest and disease interactions with climate change was reviewed in the TAR. New research identified CO₂/temperature interactions as one important factor determining plant 15 damage due to pests in future decades; CO₂/precipitation interactions will be likewise important, but no 16 17 quantitative analyses exist to date (Zvereva and Kozlov, 2006; Chen et al., 2004; Stacey and Fellows, 18 2002). Most studies continue to investigate pest damage as a separate function of either CO₂ (Agrell et 19 al., 2004; Chakraborty and Datta, 2004; Chen et al., 2005b; Chen et al., 2005a) or climate—mostly 20 temperature (Cocu et al., 2005; Bale et al., 2002). For instance, recent warming trends in the U.S. and 21 Canada have led to earlier insect spring activity and proliferation of some species, such as the mountain 22 pine beetle (e.g., (Crozier, 2002, see also Ch.1). Importantly, increased climate extremes may promote 23 plant disease and pest outbreaks (Alig and al., 2004; Gan, 2004). Finally, new since the TAR are 24 studies focusing on the spread of animal diseases and pests from low to mid-latitudes due to warming, 25 a continuance of trends already under way (see 5.2). For instance, models project that *bluetongue*, 26 affecting mostly sheep, occasionally goat and deer, would spread from the tropics to mid-latitudes 27 (Hendrick, 2005). Likewise, White et al., in press simulated under climate change increased 28 vulnerability of the Australian beef industry to the cattle tick (Boophilus microplus). Most assessment 29 studies do not explicitly consider either pest-plant dynamics or impacts on livestock health as a 30 function of CO₂ and climate.

31

32 5.4.1.5 Vulnerability of carbon pools

33 34 Vulnerability of organic carbon pools to climate change in managed systems is an important topic due to its linkage with land sustainability and climate mitigation actions. The TAR had reviewed potential 35 dynamics that might either increase or decrease carbon pools in agricultural fields, pastures and 36 37 managed forests. Recent research confirms results-and the uncertainties-of previous findings, i.e., carbon storage in particulate soil organic matter pools is often increased under elevated CO₂ in the 38 39 short term (e.g. Allard et al., 2005). However the total soil C sink may become saturated at elevated 40 CO₂ concentrations (Gill et al., 2002) when nutrients inputs are low (Van Groeningen et al., 2006). More research is needed to lower current uncertainty and elucidate specific key issues: for instance the 41 42 impacts of increased climate variability on stability of carbon and soil organic matter pools. The recent 43 European heat wave of 2003 led to significant soil carbon losses (Ciais et al., 2005). Also of 44 importance are interactions with air pollution—ozone significantly limited enhanced C-sequestration 45 rates under elevated CO₂ (Loya et al., 2003)—as well as the links between land use change, adaptation, 46 carbon sequestration and long-term sustainability of managed production systems (e.g., Rosenzweig 47 and Tubiello, 2006). Because of the large land area covered by forestry, pastures and crops, the 48 potential for climate change to greatly affect the terrestrial C sink (Ciais et al., 2005) and thereby to 49 further increase the atmospheric CO₂ concentration (Betts et al., 2004) should be emphasized. 50

51 5.4.1.6 Remaining Uncertainties

Understanding key dynamics in CO₂/climate interactions, pest weed and disease, and climate
 variability/ecosystem vulnerability remains a priority for understanding future impacts on managed

3 systems. Additional experiments and simulations are necessary; however, reducing uncertainties

4 requires increased independent replication of similar experiments; renewed model inter-comparison

5 efforts; and continued model development and evaluation of complex managed system dynamics.

6 Design of better integrated experimental and modeling projects – spanning relevant temporal and

7 spatial scales – may be one way to better test, evaluate and further develop our assessment tools.

8 9

5.4.2 Food-crop farming including tree crops

10

11 Simulation results of crop models and integrated assessments- at scales from local to regional and global-reported in the TAR indicated that impacts on food systems might be small overall in the first 12 13 half of the 21st century, but progressively negative after that, as mean temperatures increase regionally 14 and globally above 2.5°C. Importantly, crop production in (mainly tropical) developing countries would suffer more than in (mainly temperate-zone) ones, due to a combination of adverse 15 agro-climatic, socio-economic and technological conditions already present today, and their continued 16 17 poor state in coming decades, compared to developed regions (see recent analyses in Alexandratos, 18 2005 and XiongWei, 2005).

19

20 Uncertainties remained in several areas, including: the true strength and saturation point of the elevated

21 CO₂ response of crops grown in real fields; water relations and water availability, irrigation;

22 interactions with weeds, pathogens and disease; importance of changes in variability versus changes in

23 mean climate; implementation of CO₂ effects in models, and other scale/validation issues;

24 socio-economic scenario-climate change interaction within integrated assessments, and their

validation; and timing and implementation of adaptation strategies. In addition, the TAR covered
 impacts under mitigation scenarios only marginally; as well as the interactions of adaptation and

- 27 mitigation strategies.
- 28

29 5.4.2.1 What is new since the TAR

30

Many studies since the TAR have confirmed key dynamics of previous regional and global projections.
 Importantly, many have contributed new knowledge—and reduced uncertainty—with respect to
 several of the issues identified above.

34

35 New Knowledge: Increases in climate variability may lower crop yields beyond the impacts of mean climate change. The TAR had concluded that crop losses could rise due to increases in climate 36 37 variability under climate change. More frequent extreme events may indeed lower long-term yields by directly damaging crops at specific developmental stages, such as temperature thresholds during 38 39 flowering (Porter and Semenov, 2005; Tubiello, 2005), or by making the timing of field applications 40 more difficult, thus reducing the efficiency of farm inputs (Antle et al., 2004). A number of simulation studies since the TAR has developed specific aspects of increased climate variability within climate 41 42 change scenarios. Rosenzweig et al. (2002) computed that, under scenarios of increased heavy 43 precipitation, production losses due to excessive soil moisture-already significant today-would 44 double in the U.S. to \$ 3 billion per year in 2030. Monirul and Mirza (2002) computed increased risk of 45 crop losses in Bangladesh from higher flood frequency under climate change. In scenarios with higher 46 rainfall intensity, Nearing et al. (2004) projected increased risks of soil erosion, while van Ittersum 47 (2004) simulated a higher possibility of salinization in arid and semi-arid regions, due to increased loss 48 of water past the crop root zone. Others have focused on the consequences of higher temperatures on 49 the frequency of heat stress during growing seasons, as well on the frequency of frost occurrence 50 during critical growth stages (Howden, 2003b).

51

52 *New Knowledge:* Impacts of climate change on irrigation water requirement may be large. A few new

studies have further quantified the impacts of climate change on regional and global irrigation 1 2 requirements. Döll (2002), considering direct impacts of climate change on crops evaporative demand, 3 estimated an increase of net crop irrigation requirements, i.e., net of transpiration losses, of +5% to 4 +8% globally by 2070, with larger regional signals, e.g., +15% in southeast Asia. Fischer et al. (2006), considering both increased evaporative demands and longer growing seasons under future warmer 5 6 climates, computed increases in global net irrigation requirements of +20% by 2080 due to climate change, with larger impacts in developed vs. developing regions. Fischer et al. (2006) also projected 7 8 increases in water stress-the ratio of irrigation withdrawals to renewable water resources-in the 9 Middle East and southeast Asia, in agreement with independent findings (Arnell, 2004). Recent 10 regional studies have likewise underlined critical climate change/water dynamics in key irrigated areas. such as North Africa (increased irrigation requirements; Abou-Hadid et al., 2003) and China 11 12 (decreased requirements; Tao et al., 2003). 13 14 *New Knowledge:* Elevated CO_2 and warmer temperatures combine to increase pest damage. Research on interactions of elevated CO₂/temperature, weeds pest and disease has significantly increased since 15 the TAR (e.g., Zvereva and Kozlov, 2006; Chen et al., 2004; Stacev and Fellows, 2002), showing in 16 17 particular that the interactions of elevated CO₂ and higher temperatures may significantly increase crop 18 damage from pest herbivores in future decades. 19 20 New Knowledge: Stabilization of CO₂ concentrations reduces damage to crop production. Recent 21 work further investigated the effects of mitigation – in the form of stabilization of atmospheric CO_2 – 22 on regional and global crop production. Compared to business as usual scenarios, (Parry et al., 2005) 23 computed somewhat smaller impacts of climate change on crop production under 750 ppm CO₂ 24 stabilization, and significantly reduced impacts under 550 pm stabilization, leaving lower risks of 25 hunger. Tubiello and Fischer (2006) simulated beneficial effects of stabilization at 550 ppm, but with 26 complex spatial and temporal dynamics: global costs of climate change to the agricultural sector were 27 reduced in 2080 by 70-100% compared to the case with no mitigation. They found larger benefits in

- developing vs. developed countries, while the number of people at risk of hunger was cut by 60-85%.
- 29 In the first decades of this century, however, some regions were projected to be worse-off with
- 30 mitigation than without, due to lower CO_2 levels thus reduced stimulation of crop yields but same
- 31 degree of climate change, compared to the unmitigated scenarios. Finally, adaptations to climate
- change are likely to happen at the same that mitigation strategies are implemented. A growing body of
 work has started to analyze potential synergies and incompatibilities of these two strategies (see Ch. 18)
- 34 WGII).
- 35

TAR Confirmation: Choice of spatial and temporal scale may affect crop modelling results. More
 studies since the TAR have investigated impact dynamics as a function of spatial scale, confirming
 TAR findings that simulated climate impacts are greater when fine-scale vs. coarse-scale scenarios are
 used (e.g., Carbone *et al.*, 2003; Doherty *et al.*, 2003), possibly due to different patterns of moisture
 stress, timing and degree of temperature change during key growth phases in the different
 representations. Additional simulations are still needed to confirm such findings.

42

43 **TAR Confirmation:** Trade lessens regional and global impacts. Recent work by Fischer et al. (2005); 44 Fischer et al. (2002); Parry et al. (2005); Parry (2004), confirm that global impacts on agriculture may 45 be small over this century, once dynamics of economic adjustments and trade are considered. Yet 46 despite socio-economic development, temperate countries would mostly benefit, while poor tropical 47 countries would in general suffer from climate change, and increased malnutrition in Africa. Other 48 studies, performed at either regional or global levels with various linkages between economics and 49 trade, also indicated that developing regions may be more negatively affected than others (Mendelsohn 50 et al., 2004, Antle et al., 2004, Reilly et al., 2003; Cassman et al., 2003; Olesen and Bindi, 2002). 51 Finally, coupled agronomy-trade simulations show that socio-economic drivers such as increased food

52 demand and improvements in production technology and efficiency need to be considered in order to

realistically project climate change impacts on food supply (Parry *et al.*, 2004; Fischer *et al.*, 2005;
 Ewert *et al.*, 2005).

3 4

5

5.4.2.2 Review of impacts vs. incremental temperature change

6 The increasing number of regional and global simulation studies performed since the TAR makes it 7 now possible to graph (Figure 5.2), with higher confidence than before, several aggregated relations 8 (based on comparable modelling results) showing impacts of climate change on key crops against 9 temperature signals-a proxy for both time and severity of climate change—as greenhouse gas 10 concentrations increase over this century. Specifically, in temperate regions, moderate to medium local increases in temperature (1°C to 3°C), along with associated CO₂ increase and rainfall changes, can 11 have small beneficial impacts on crops, including wheat, maize, and rice. Further warming has 12 13 increasingly negative impacts (medium to low confidence). [Figure 5.2a, c, e]. In tropical regions, even 14 moderate temperature increases are likely to have negative yield impacts for major cereals (1°C for wheat and maize, 2°C for rice) [Figure 5.2b, d, f]. For temperature increases more than 3°C, impacts are 15 16 stressful to all crops and all regions (medium to low confidence) [Figure 5.2].

17

19

18 5.4.2.3 What has not been undertaken since the TAR – ongoing uncertainties

20 Several uncertainties remain unresolved since the TAR. In terms of experimentation: First, there is 21 still a lack of knowledge of CO₂ and climate change response for many crops other than cereals, 22 including many of importance to the rural poor, such as root crops, millet, etc, with few exceptions 23 e.g., peanut, (Varaprasad et al., 2003); mungbean (Dash et al., 2002). Second, research on the 24 combined effects of elevated CO₂ and climate change on pests, weeds and disease is still insufficient, 25 though research networks have long been put into place (Scherm et al., 2000); impacts of climate change-only on pest ranges and activity are being increasingly analyzed (e.g., Salinari et al., 2006; 26 Cocu et al., 2005; Rafoss and Saethre, 2003; Bale et al., 2002; Todd, 2002). Finally, the true strength 27 of elevated CO₂ on crop yields at field to regional scales, as well as the CO₂ levels beyond which 28 29 saturation may occur, remains largely unknown. Firstly, calls by the TAR to enhance crop model 30 inter-comparison studies have remained unheeded; in fact, such activity has been performed with much less frequency after the TAR than before it. Yet it is important that uncertainties related to 31 32 model implementation, including spatial-temporal resolution, be better understood, or integrated 33 studies will remain dependent upon the particular crop model used. Secondly, it is still unclear how 34 implementation of plot-level experimental data on CO₂ responses: a) compares across models; and: b) effectively represents field-scale responses - especially when simulations of several key limiting 35 factors such as soil and water quality, pests weeds and disease, and the like, remain either unresolved 36 37 or untested. Thirdly, the TAR had concluded that the economic-trade-technological assumptions used 38 in many of the integrated assessment models were poorly tested against observed data. This remains 39 the situation today; improvements in these models and more robust assumptions are needed in order 40 to analyze scenarios of future agricultural systems with greater confidence. 41

26 Figure 5.2a-f: Yield sensitivity to climate change for the major cereal crops, divided into temperate 27 and tropical regions. Each graph aggregates results of several impact studies published after the TAR. 28 Mean local temperature change is used in the abscissa as a generalized proxy indicating magnitude of 29 climate impact in each study—this is by convention across WG II chapters. In each graph, polynomials 30 have been derived to estimate general trends in yields versus temperature, both without adaptation 31 (red lines) and with adaptation (blue lines). Although precipitation is not controlled, it is important to 32 note that there were stronger statistical relationships of yield with precipitation and CO₂ changes, 33 emphasizing the importance of these other factors in scenarios of future yield change. 34 35

36 5.4.3 Pastures and livestock production

37

Pastures comprise both grassland and rangeland ecosystems. Grasslands are the dominant vegetation type in areas with low rainfall, such as the steppes of central Asia and the prairies of North America. Grasslands can also be found in areas with higher rainfall, such as north-western and central Europe, New Zealand, parts of North and South America and Australia. Rangelands are found on every continent, typically in regions where temperature and moisture restrictions limit other vegetation types; they include deserts (cold, hot and tundra), scrub, chaparral and savannas.

- 45 Pastures and livestock production systems are very diverse, occurring under most climates and ranging
- 46 from extensive pastoral systems with free-ranging and grazing herbivores, to intensive systems based
- 47 on forage and grain crops, where animals are mostly kept indoors. These systems are complex:
- 48 production is the result of a mix of several plant and animal species that may be affected in different 49 ways by climate factors. The TAR identified that the combination of increases in CO₂ concentration.
- 50 in conjunction with changes in rainfall and temperature, were likely to have significant impacts on
- 51 grasslands and rangelands, with production increases in humid temperate grasslands, but decreases in
- 52 arid and semiarid regions.

2 3

1

5.4.3.1 New findings since TAR

4 **New Knowledge:** Plant community structure is modified by climate change and elevated CO_2 .

5 Grasslands consisting of fast-growing, often short-lived species are sensitive to CO₂ and climate 6 change and part of the impacts are related to the stability and resilience of plant communities (Mitchell 7 and Csillag, 2001). Experiments support the concept of rapid changes in species composition and 8 diversity under climate change. For instance, in a Mediterranean annual grassland, after 3 years, 9 elevated CO₂ and nitrogen deposition each reduced plant diversity, whereas elevated precipitation 10 increased it and warming had no significant effect (Zavaleta et al., 2003). The effects of elevated CO₂, N deposition, and precipitation on total diversity were driven mainly by significant gains and losses of 11 forb species. Elevated CO₂ influences plant species composition partly through changes in the pattern 12 of seedling recruitment (Edwards et al., 2001). For sown mixtures, the TAR indicated that elevated 13 14 CO₂ increased legume development. This finding has been extended to temperate semi-natural grasslands using free air CO₂ enrichment (Ross et al., Teyssonneyre et al., 2002). Other factors such as 15

- low phosphorus availability and low herbage use (Tevssonneyre et al., 2002) may, however, prevent 16
- 17 this increase in legumes under high CO₂.
- 18

19 How to extrapolate these findings is still unclear. A recent modeling study of 1350 European plant 20 species based on plant species distribution envelopes predicted that half of these species will become 21 classified as 'vulnerable' or 'endangered' by the year 2080 due to rising temperature and changes in 22 precipitation (Thuiller et al., 2005) (see Chapter 4). Nevertheless, with managed grasslands, such 23 model predictions have low confidence as they do not capture the complex interactions with factors 24 such as grazing, cutting and fertilizer supply.

25

26 New Knowledge: Changes in forage quality and grazing behaviour are confirmed. Animal

27 requirements for crude proteins from pasture range from 7 to 8% of ingested dry-matter for animals at

28 maintenance up to 24 % for the highest producing dairy cows. In conditions of very low N status,

- 29 possible reductions in crude proteins under elevated CO₂ may put a system into a sub-maintenance
- 30 level for animal performance. An increase in the legume content of swards may nevertheless 31
- compensate for the decline in the protein content of the non-fixing plant species (Allard et al., 2003; 32 Picon-Cochard *et al.*, 2004). C₄ grasses are a less nutritious food resource than C₃ grasses both in terms
- of reduced protein content and increased C/N ratios. Elevated carbon dioxide levels will likely reduce 33
- food quality to grazers both in terms of fine-scale (protein content, C/N ratio) and coarse-scale (C₃ 34
- versus C₄) changes (Ehleringer et al., 2002). Large areas of upland Britain are already colonised by 35
- relatively unpalatable plant species such as bracken, matt grass and tor grass. At elevated CO₂ further 36
- 37 changes may be expected in the dominance of these species, which could have detrimental effects on
- 38 the nutritional value of extensive grasslands to grazing animals (Defra, 2000).
- 39

40 New Knowledge: Thermal stress reduces productivity, conception rates and is potentially

life-threatening to livestock. The TAR indicated the negative role of heat stress for productivity. 41

42 Because ingestion of food/feed is directly related to heat production, any decline in feed intake and/or

43 energy density of the diet will reduce the amount of heat that needs to be dissipated by the animal.

- 44 Mader and Davis (2004) confirm that the onset of a thermal challenge often results in declines in
- 45 physical activity with associated declines in eating and grazing (for ruminants and other herbivores)

46 activity. New models of animal energetics and nutrition, (Parsons et al., 2001) have shown that high

47 temperatures in the tropics, puts a ceiling to dairy milk yield from feed intake at half to one third of the

48 potential of the modern (Friesians) cow breeds. The energy deficit of this genotype will exceed that

49 normally associated with the start of lactation, and decrease cow fertility, fitness and longevity (King et al., 2005).

50 51

52 Increases in air temperature and/or humidity have the potential to affect conception rates of domestic animals not adapted to those conditions. This is particularly the case for cattle, in which the primary
 breeding season occurs in the spring and summer months. Amundson *et al.*, (2005) reported declines in

- conception rates of cattle (*Bos taurus*) for temperatures above 23.4 °C and at high thermal heat index.
- 5 The impact on animal productivity due to increased variability in weather patterns will likely be far
- 6 greater than effects associated with the average change in climatic conditions. Lack of prior
- conditioning to weather events may result in large losses in the domestic livestock industry. Economic
 losses from reduced cattle performance likely exceed those associated with cattle death losses by
- 8 losses from reduced cattle performance likely exce
 9 several-fold (Mader, 2003).
- 10

New Knowledge: Increased climate variability and droughts may lead to livestock loss in arid pastoral systems. Many of the world's rangelands are affected by ENSO events. The TAR identified that these events are likely to intensify with climate change with subsequent changes in vegetation and water availability (Gitay *et al.*, 2001). In dry regions, there are risks that severe vegetation degeneration leads to a positive feedback between degradation of soils and vegetation and rainfall reduction with consequences in terms of loss of pastoral areas and of farmlands (Zheng *et al.*, 2002).

- 17
- 18 A number of studies in Africa (see Table 5.2.) and in Mongolia (Batima, 2003) show a strong
- 19 relationship between drought and animal death. Projected increased temperature, combined with
- 20 reduced precipitation in some regions (e.g. Southern Africa) would lead to increased loss of domestic

21 herbivores during extreme events in drought prone areas (Medium confidence). With increased heat

22 stress in the future, water requirements for livestock will also increase significantly when compared with

current conditions so that overgrazing near watering points is likely to expand (Batima *et al.*, 2005).

24 25

Table 5.2: Impacts on grasslands of incremental temperature change.

Local temperature change	Sub-sector	Region	Impact trends	Sign of impact	Scenario	Source
+0-2°C	Pastures and livestock	Temperate	Alleviation of cold limitation increasing productivity	+	Simulation	Riedo <i>et al.</i> , 2001
			Increased heat stress for livestock	-	IS92a	Turpenny <i>et al.</i> , 2001
		Semi-arid and Mediterranean	No increase in net primary productivity	0	EXP	Dukes <i>et al.</i> , 2005 Shaw <i>et al.</i> , 2002
		Tropical	Positive (irrigated conditions)	+	EXP	Newman <i>et al.</i> , 2001 Lilley <i>et al.</i> , 20011
+3°C	Pastures and livestock	Temperate	Neutral to small positive effect (depending on GMT)	0 to +	Simulation	Riedo <i>et al.</i> , 2001 Parsons, 2001
		Temperate	Negative on swine and confined cattle	-	HadCM CGCM	Frank and Dugas, 2001
		Semi-arid and Mediterranean	Productivity decline Reduction in ewe weight and pasture	-	EXP HadCM3 A2 and B2	Shaw <i>et al.</i> 2005 Batima <i>et al.</i> , 2005
			growth Increased animal heat stress	-		Howden <i>et al.,</i> 1999
		Tropical	No effect (no rainfall change assumed)	- to 0	EXP	Newman <i>et al.,</i> 2001
			Increased animal heat stress	-		Volder <i>et al.</i> , 2004

2 3 4

1

5.4.3.2 Impacts of incremental temperature change

5 A survey of experimental data worldwide suggested that a mild warming generally increases grassland 6 productivity, with the strongest positive responses at high latitudes (Rustad et al., 2001). Productivity 7 and plant species composition in rangelands are highly correlated with precipitation (Knapp and Smith, 8 2001) and recent findings from WG I (see Figure 5.1) show projected declines in rainfall in some major 9 grassland and rangeland areas (e.g. South America, South and North Africa, Western Asia, Australia 10 and Southern Europe). Elevated CO₂ can reduce soil water depletion in different native and semi-native temperate and Mediterranean grassland (Morgan et al., 2004). However, increased 11 variability in rainfall may create more severe soil moisture limitation and reduced productivity 12 13 (Laporte et al., 2002; Fay et al., 2003, Luscher et al., 2005). Other impacts occur directly on livestock 14 through the increase in the thermal heat load (see 5.4.3.1).

15

16 Table 5.2 summarises the impacts on grasslands for different temperature changes. Warming up to $2^{\circ}C$

17 suggests positive impacts on pasture and livestock productivity in humid temperate regions. By

18 contrast, negative impacts are predicted in arid and semiarid regions. Changes in rainfall patterns,

19 increased climate variability and extreme events, in addition to changes in mean temperature

20 conditions, may suppress positive effects and exacerbate negative impacts in all regions.

21 22

23 5.4.4 Industrial crops and biofuels

24 25 Minimal new knowledge of climate change impacts on industrial crops and biofuels was developed 26 since the TAR. Impacts of climate change and elevated CO₂ on perennial industrial crops will likely be 27 magnified with respect to those on annual crops, as both damages (for example, temperature stresses, 28 pest outbreaks, increased damage from climate extremes) and benefits (e.g., extension of latitudinal 29 optimal growing ranges) may accumulate through several years (Rajagopal et al., 2002). For example, 30 the cyclones that struck several states of India in 1952, 1955, 1996 and 1998 have destroyed so many 31 coconut palms that it will take years before the level of production can be brought back to that of the pre-cyclone period (Dash et al., 2002). The enhanced progression of phenological stages of the 32 33 grapevines due to increased temperatures would lead to early ripening. This will impact on the grapevines in either positive or negative ways depending on the present climate of the region. A 34 35 climatic warming will likely expand the suitable wine areas northwards and eastwards in Europe (Harrison et al., 2000). 36

37

38 The large increase in cotton yields due to climate change was well established in 1990s and hence there 39 have been few studies on this aspect since the TAR. Reddy et al. (2002), however, demonstrated that 40 large increases in cotton due to enhanced CO₂ were eliminated when all projected climatic changes were included and additional irrigation would be needed to satisfy the increased water demand of the 41 42 crop. Literature still does not exist on the probable impacts of climate change on other fibre crops such 43 as jute and kenaf.

44

45 Biofuel crops, increasingly an important source of energy, are being assessed for their critical role in 46 adaptation to climatic change and mitigation of carbon emissions (discussed in WGIII). Impacts of

47 climate change on typical liquid biofuel crops such as corn and sorghum, and wood (solid biofuel) have

- 48 been discussed earlier in this chapter. Recent studies indicate that the yield of sugar beet, another
- 49 important biofuel crop, may increase in Europe by 3-5 t/ha by 2080 in silt and loamy soils (Richter et
- al., 2006). Studies with other biofuel crops such as switchgrass (Panicum virgatum L.), a perennial 50
- 51 warm season, C₄ crop have shown yield increases with climate change similar to grain crops (Brown et
- 52 al., 2000). Although there is no information on the impact of climate change on non-food, tropical

biofuel crops such as Jatropha and Pongamia, it is likely that their response would be similar to other 1 2 crops of the region.

3 4

5

5.4.5 Key future impacts on Forestry

6 7 Forests cover almost 4B ha or 30% of land; 3.4B m3 of wood were removed in 2004 from this area, of 8 which 60% is industrial roundwood and the rest fuelwood (FAO 2005). Of the forest area, in 2005 only 9 3% were productive forest plantations, but this share is rapidly increasing by 2.5 mil. ha annually and 10 supplies over 35% of global roundwood, (FAO, 2000). This section focuses on commercial forestry (versus ecosystem services of forests in Chapter 4), including regional, national and global timber 11 supply and demand, and associated changes in land-use, accessibility for harvesting, and overall 12 13 economic impacts.

14

15 5.4.5.1 New findings since the TAR 16

17 **Confirmation of TAR:** Modeling studies predict increased global timber production. The new models 18 generally predict increasing global forest productivity under climate change, especially when positive 19 effects of elevated CO2 concentration are taken into consideration (Alig et al., 2002; Sohngen et al., 20 2001; Sohngen, 2005; Solberg, 2003b; Ireland, 2004). Changing timber supply will affect the market 21 and could impact supply for other uses, e.g., for biomass energy. Simulations with yield models show 22 that climate change can increase global timber production through location changes of forests and 23 higher growth rates. Sohngen et al. (2001, 2005) projected a moderate increase of timber yield due to 24 both rising NPP and poleward shift of the most productive species due to climate change. Global 25 economic impact assessments predict overall demand for timber production to increase only modestly 26 (see 5.3.2.2) with a moderate increase or decrease of wood prices in the future in the order of up to 27 +/-20% (Perez-Garcia et al., 2002; Nabuurs et al., 2002; Solberg, 2003a; Ireland, 2004; Sohngen et al., 2001 Sohngen, 2005), with benefits of higher production mainly going to consumers. For the US, Alig 28 29 et al., 2002) computed that the net impact of climate change on the forestry sector may be small. 30 Shugart et al., 2003 concluded that the United States timber markets have low susceptibility to climate 31 change, because of the large stock of existing forests, technological change in the timber industry, and 32 the ability to adapt. These and other simulation studies are summarized in the Table 5.3.

33

34 New Knowledge: Increased regional variability; change in non-timber forest products. Although

35 models suggest that global timber productivity will likely increase with climate change, regional

production may exhibit large variability, as discussed for crops. Mendelsohn, (2003), analyzing 36

37 production in California, projected that at first (2020s), climate change increases harvests by

38 stimulating growth in the standing forest. In the long run (up to 2100), these productivity gains were

39 offset by reductions in productive area for softwoods growth. Climate change may also substantially

40 impact other services, such as seeds, nuts, hunting, resins, plants used in pharmaceutical and botanical medicine, and in the cosmetics industry, but little if any analysis is done in this area. 41

42

43 New Knowledge: CO₂ enrichment effects may be overestimated in models; models need

44 *improvement*. New studies suggest that direct CO₂ effects on tree growth should be revised to towards

45 lower values than previously assumed in forest growth models. For example, in a free-air CO2

46 enrichment experiment Korner (2005) found little overall stimulation in stem growth of 32-35 m trees

47 after four years of exposure to CO₂ levels elevated to 530 ppm. Indeed, the initial increase in growth

48 increments may be limited by competition, disturbance, air pollutants, nutrient limitations and other

49 factors (Karonsky, 2003). As a contrast, models often presume large fertilization effects - e.g.,

50 Sohngen et al. (2001) used in their projections 35% NPP increase under 2xCO2 scenario. Still,

- 51 regardless of the isolated effect of CO2 enrichment, recent research (Boisvenue and Running, 2006)
- suggests that climate change impacts on forest productivity since the middle of the 20th century have 52

been overwhelmingly positive.

3 In spite of gains in forest modelling noted above, model limitations persist. Most of the major models

4 don't include key ecological processes. Further development of Dynamic Global Vegetation Models

5 (DGVMs), spatially explicit and dynamic transient models may allow better predictions of climate

6 induced vegetative changes (Cramer *et al.*, 2001;Moorcroft, 2003;Peng, 2000B; Brovkin, 2002; Sitch

- 7 *et al.*, 2003; Bachelet *et al.*, 2001), by simulating the composition of deciduous/evergreen trees, forest 8 biomass, production, water and putrient evaluations are well as first affects. There are still inconsistent size
- biomass, production, water and nutrient cycling, as well as fire effects. There are still inconsistencies
 however between the models used by ecologists to estimate the effects of climate change on forest
- 10 production and composition, and the models used by foresters to predict forest yield. Future
- 11 development of the models that integrate both the NPP and forestry yield approaches (Peng *et al.*,
- 12 2002; Nabuurs *et al.*, 2002) will significantly improve the predictions.
- 13 14

Study/location	Scenario	Impact
Sohngen et al.,	UIUC, Hamburg	Near-term growth of timber production by 5%, especially in low
2001	T-106 for 340	latitudes—gradually rising by 30% in long-term. Long-term
Global	(current) and 550	growth of timber production by 34-41% for North America, 4-24%
	(2060) ppmv	for Europe, 44-66% for FSU, 27-32% for China, 10-29% for
	CO2; no change	Oceania, 23-42% for South America, 29-47% for India, 11-28%
	after 2060	for Asia-Pacific, and 21-37% for Africa. Moderate increase in
		global timber prices from current \$75 to \$135 per m ³ by year 2100
		without climate change; with climate change: $\$110\pm\5 per m ³ .
Solberg, 2003b	Baseline, 20%	20% scenario: 7-9% roundwood price drop in Europe.
Global	growth increase;	40% scenario: 13-17% roundwood price drop in Europe.
	40% growth	Increased roundwood harvest in Western Europe, decreased in
	increase (climate	Eastern Europe, incl. Russia. Increased profits of forest industry and
	change assumed	forest owners
	one of several	
	potential growth	
	factors)	
Perez-Garcia et	MIT GCM and	Mid-term increase of harvest by $1.5 - 2.7\%$ and a small price drop
al., 2002	MIT EPPA	with an increase in welfare to producers and consumers. Highest
Global	emission	harvest increase in the US West (+2 - +11%), New Zealand
	scenarios	(10-12%), and Chile (+10 - +13%); lowest in Western Europe (-3 -
	(RRR,HHL,LLH)	+1%) and Canada (-31%). Price drop is greatest in West Europe
	. E.g., RRR is	and Scandinavia.
	similar to IS92a.	
Lee and Lyon,	ECHAM-3 under	Increase of the industrial timber harvest in 2080s by 65% (normal
2004	2xCO2	demand) and 150% (high demand). In the absence of climate
Global		change, increase by 25% and 56%, correspondingly.
Nabuurs et al.,	HadCM2 under	Near-term 18% extra increase in annual stemwood increment,
2002	IS92a	slowing down later.
Europe .		
Schroeter, 2004	IPCC A1f, A2,	Several management scenarios considered. Management explains
Europe	B1, B2.	60-80% of stock change between 2000 and 2100, climate explains
		10-30%, LUC explains 5-22%. Increased forest growth except for
		A1f; Increased stocks excl. in A1f; demand satisfied excl. A1f, A2.
Sohngen, 2005	UIUC, Hamburg	Increased global productivity, reduction in prices. Gain to
Global, USA	T-106 for 340	consumers; producers lose. Reductions in production in North
	and 550 (2060)	America and Russia; increased production in South America and
	ppmv CO2; no	Oceania.
	change after 2060	

15 **Table 5.3:** Simulated climate change impact on forestry: results of some global and regional models.

Lexer et al.,	A: IPCC IS92a;	A: Low climate change impact (integral index based on biomass,
2002	B: T +2C; C: T	composition, etc.) at 67% of sites (A), 18% (B), and 15.5% (C)
Austria	+2C and P -15%	Shift to broadleaved species.
	in summer.	
Rathgeber et	ALCM under	Production gain by 17-24% (without CO2 fertilization), 107-141%
al., 2003	2xCO2 scenario	(with fertilization).
France		
Alig et al.,	CGCM1,	Increase in timber inventory by 12% (mid-term); 24% (long-term).
2002	HadMC2 under	Small increase in harvest (few percent).
USA	IS92a	
Joyce et al.,	CGCM1,	Increase in forest inventory. Growth in price for standing timber by
2001	HadMC2 under	35 - 45%, following by decreasing consumer costs and a decrease
USA	IS92a	in forest total welfare. Major shift in species and an increase in
		burnt area by 25-50%. Decrease in consumer costs.

5.4.5.2 Additional factors not included in the models contribute uncertainty

6 shaped by fire frequency, size, intensity, and seasonality. There is evidence of both regional increase 7 and decrease in fire activity (Goldammer and Mutch, 2001; Mouillot and Field, ; Podur, 2002; 8 Bergeron et al., 2004; Girardin, 2004). Climate change will interact with fuel type, ignition source, 9 topography, in determining future damage risks to the forest industry, especially for paper and pulp operations; fire hazards will also pose health threats (Chapter 8.2) and affect landscape recreational 10 11 value. There is high uncertainty associated with most studies of climate change and forest fires (Lemmen and Warren, 2004; Shugart et al., 2003). Current modelling studies suggest that increased 12 13 temperatures and longer growing seasons will elevate fire risk in connection with increased aridity (Flannigan, 2005; Williams et al., 2001). For example, Crozier et al., 2002) indicated the possibility 14 15 of a 10% increase in the seasonal severity of fire hazard over much of the United States under

Fire, insects and extreme events are not well modeled. Both forest composition and production are

16 changed climate, while Flannigan, 2005 projected as much as 74-118% increase of the area burned in 17 Canada by the end of the 21^{st} century under a $3xCO_2$ scenario. However, the effects of climate

18 induced wildfires on timber production could be modest since much of the fire is expected in

19 inaccessible boreal forest regions.

20

21 For many forest types, insect outbreaks are major sources of natural disturbance. The effects vary

- 22 from defoliation and growth loss, to timber damage, to massive forest diebacks; it is very likely that
- 23 these natural disturbances will be altered by climate change and will have an impact on forestry (Alig
- and al., 2004). Warmer temperatures have already enhanced the opportunities for insect spread across
- 25 the landscape (Crozier *et al.*, 2002; Carroll, 2004). Climate change can shift the current boundaries of
- insect species and modify tree physiology and tree defence mechanisms. Modelling of climate change
 impacts on insect outbreaks remains limited.
- 28
- 29 The effects of climate extremes on commercial forestry could include reduced access to forestland,
- 30 increased costs for road and facility maintenance, direct damage to trees by wind, snow, frosts, or ice;
- 31 indirect damage from higher risks of wildfires and insect outbreaks, effects of wetter winters and early
- 32 thaws on logging, etc. Higher direct and indirect risks could affect timber supplies, market prices, and
- 33 cost of insurance. (DeWalle et al., 2003; Fleming, 2002). Globally, early model predictions mentioned
- in the SAR suggested extensive forest dieback and composition change, however such affects may be
- 35 mitigated by humans (Shugart *et al.*, 2003); changes in forest composition will likely occur gradually
- 36 (Hanson and Weltzin, 2000).
- 37
- Interaction between multiple disturbances is very important for understanding climate change impact
 on forestry. Wind events can damage trees through branch breaking, crown loss, trunk breakage, or

CONFIDENTIAL: Do Not Cite – Do Not Quote

complete stand destruction, especially due to faster build-up of growing stocks in a warmer climate. 1 2 This damage can be further aggravated by increased damage from insect outbreaks and wildfires 3 (Nabuurs et al., 2002). Severe drought increases mortality and is often combined with insect and pathogens damage and wildfires. For example, a positive feedback between deforestation, forest 4 5 fragmentation, wildfire, and increased frequency of droughts appear to exist in the Amazon basin, so 6 that warmer and drier regional climate may trigger massive deforestation (Laurence, Williamson, 7 2001; Nepstad et al., 2004). Only few if any models can simulate these effects (e.g., Blennow and 8 Sallnas, 2004).

9

10 5.4.5.3 Social and economic impacts

11

12 Climate change impacts on forestry will translate into social and economic impacts through the relocation of forest economic activity. Distributional affects would involve businesses, landowners, 13 14 workers, consumers, governments and tourism, with some groups and regions benefiting while others experience losses. Net benefits would accrue to regions experiencing increased forest production while 15 regions with declining activity will likely experiences net losses. If wood prices decline as most models 16 17 predict, consumers would experience net benefits, while producers experience net losses. Overall 18 economic benefits would exceed losses. Although forest-based communities in the developing would 19 (e.g., 60 million highly forest-dependent people living in the rainforests – FAO, 2004b) are likely to 20 have modest impact on global wood production, they may be especially vulnerable due to limited 21 adaptability in rural, resource dependent communities to respond to risk in a proactive manner 22 (Davidson et al., 2003; Lawrence, 2003).

23 24

25

5.4.6 Capture fisheries and aquaculture: marine and inland waters

26 27 World capture production of fish, crustaceans and molluscs in 2003 was more than twice the quantity of aquaculture (Table 5.4), but capture production decreased by nearly 5% since 1997, whereas 28 29 aquaculture increased by nearly 50%. By 2030 capture production and aquaculture are projected to be 30 closer to equality (93 M tons and 83 M tons respectively, (F.A.O., 2002). Aquaculture resembles terrestrial animal husbandry more than it does capture fisheries and therefore shares many of the 31 32 vulnerabilities and adaptations to climate change with that sector. Similarities between aquaculture and 33 terrestrial animal husbandry include ownership, control of inputs, diseases and predators and use of land and water.

- 34
- 35
- 36
- 37 Table 5.4: World Fisheries Production in 2003 (source: FAO, Yearbook of Fisheries Statistics 38 *http://www.fao.org/fi/statist/statist.asp*)

World production in M 1	Inland	Marine	
Capture production	Fish, crustaceans, molluscs etc.	8.9	81.3
A guageliture production	Fish, crustaceans, molluscs etc.	25.2	17.1
Aquaculture production	Aquatic plants	0.0	12.5

39 40

Some aquaculture, particularly of plants and molluses, depends on naturally occurring nutrients and 41

production, but rearing of fish and crustacea usually requires addition of suitable food, obtained mainly 42

43 from capture fisheries. Capture fisheries depend on the productivity of the natural ecosystems on which

44 they are based and are therefore vulnerable to changes in primary production and how this production

is transferred through the aquatic food chain. (Climate induced change in production in natural aquatic 45

- 46 ecosystems is dealt with in chapter 4).
- 47

1 5.4.6.1 TAR conclusions remain valid 2

3 The principal conclusions concerning aquaculture and fisheries set out in the TAR (see section 5.1.3)

4 remain valid and important. The negative impacts of climate change which the TAR identified,

5 particularly on aquaculture and freshwater fisheries, include (i) stress due to increased temperature and

oxygen demand and decreased pH (ii) uncertain future water supply (iii) extreme weather events (iv)
 increased frequency of disease and toxic events (v) sea-level rise and conflict of interest with coastal

defence needs (vi) uncertain future supply of fishmeal and oils from capture fisheries. Positive impacts

9 include (i) increased growth rates and food conversion efficiencies (ii) increased length of growing

10 season (iii) range expansion (iv) use of new areas due to decrease in ice cover.

11

27 28 29

30 31

32

33

34 35

36 37

38

12 Information which has appeared since the TAR from experimental, observational and modelling

studies supports these conclusions and provides more detail, especially concerning regional effects.
However, for aquatic systems we still lack the kind of experimental data and models which are used to

However, for aquatic systems we still lack the kind of experimental data and modepredict agricultural crop yields under different climate scenarios.

16 One of the few experimental studies showed positive effects on appetite, growth, protein synthesis and

17 oxygen consumption of a 2°C increase in winter, but negative effects of the same temperature increase

18 in summer, for Rainbow trout (Oncorhyncus mykiss). Thus rising temperature may cause seasonal

19 increases in growth, but also risks to fish populations living towards the upper end of their thermal

20 tolerance zone. Increasing temperature interacts with other global changes, including declining pH and

21 increasing nitrogen and ammonia to increase metabolic costs. The consequences of these interactions is

speculative and complex (Morgan *et al.*, 2001).

Fisheries and aquaculture are subject to multiple stresses due to human activity, as Box 5.3 on the
fisheries of the Mekong illustrates.

Box 5.3: Climate change and the fisheries of the lower Mekong

Fisheries are central to lives of the people, particularly the rural poor, who live in the lower Mekong countries. Two thirds of the basin's 60 million people are in some way active in fisheries, which represent about 10% of the GDP of Cambodia and Lao PDR. There are approximately 1000 species of fish commonly found in the river, with many more marine vagrants, making it one of the most prolific and diverse faunas in the world (MRC, 2003). Recent estimates of the annual catch from capture fisheries alone exceed 2.5 million tonnes (Hortle and Bush, 2003), with the delta contributing over 30% of this.

Direct effects of climate will occur due to changing patterns of precipitation, snow melt and rising sea
level which will affect hydrology and water quality. Indirect effects will result from changing
vegetation patterns that may alter the food chain and increase soil erosion. It is likely that human
impacts on the fisheries (caused by population growth, flood mitigation, increased water abstractions,
changes in land use and overfishing) will be greater than the effects of climate, but the pressures are
strongly interrelated.

An analysis of the impact of climate change scenarios on the flow of the Mekong (Hoanh *et al.*, 2004)
estimated increased maximum monthly flows of 35 – 41% in the basin and 16 – 19% in the delta (lower
value is for years 2010 – 38 and higher value for years 2070 – 99, compared with 1961 - 90 levels).
Minimum monthly flows were estimated to fall by 17 – 24% in the basin and 26 – 29% in the delta.
Increased flooding would be positive for fisheries yields, but a reduction in dry season habitat may
reduce recruitment of some species. However, planned water management interventions, primarily
dams, are expected to have opposite effects on hydrology, namely marginally decreasing wet season

1 flows and considerably increasing dry season flows (Anon, 2004).

Models indicate that even modest sea level rises of 20cm would cause contour lines of water levels in the Mekong delta to shift 25 km towards the sea during the flood season and salt water to move further upstream (although confined within canals) during the dry season (Wassmann *et al.*, 2004). Inland movement of salt water would significantly alter the species composition of fisheries, but may not be detrimental for overall fisheries yields.

8 9 10

11

3

4

5

6

7

5.4.6.2 New information on trends in distribution, production and disease

Direct effects of increasing temperature on marine and freshwater ecosystems are already evident, with
rapid poleward shifts in regions, such as the NE Atlantic, where temperature change has been rapid –
see Chapter 1, on changes in plankton, fish distribution and production in the NE Atlantic. Further
changes in distribution and production are expected due to continuing warming and freshening of the
Arctic (ACIA, 2005; Drinkwater, 2005). Local extinctions are occurring at the edges of current ranges,
particularly in freshwater and diadromous species e.g. salmon (Friedland *et al.*, 2003) and sturgeon
(Reynolds *et al.*, 2005).

20

21 Changes in primary production and transfer through the food chain due to climate will have a key

impact on fisheries. Such changes may be either positive or negative and the aggregate impact at global

level is unknown. There is evidence from the Pacific and the Atlantic that nutrient supply to the upperproductive layer of the ocean is declining due to reduced meridional overturning circulation and

25 upwelling (McPhaden and Zhang, 2002); (Curry and Mauritzen, 2005) and changes in windborne

nutrients. This has resulted in reduction in primary production (Gregg *et al.*, 2003), but there is

27 considerable regional variability (Lehodey *et al.*, 2003). The decline in pelagic fish catches in Lake

Tanganyika since the late 1970's has been ascribed to climate induced increase in vertical stability of

the water column, resulting in reduced availability of nutrients (O'Reilly et al., 2004).

30

Coupled simulations used six different models to determine the ocean biological response to climate warming between the beginning of the industrial evolution and 2050 (Sarmiento *et al.*, 2005). They show global increases in primary production of 0.7 to 8.1%, but with large regional differences, which are described in Chapter 4. Palaeological evidence and simulation modelling show North Atlantic

35 are described in Chapter 4.1 and of ogreat evidence and simulation modeling show A of a Atlantic 35 plankton biomass declining by 50% over a long time scale during periods of reduced meridional

36 overturning circulation (Schmittner, 2005). Such studies are speculative, but an essential step in

37 gaining better understanding. The observations and model evidence cited above provide grounds for

37 gaining better understanding. The observations and model evidence cited above provide grounds for
 38 concern that aquatic production, including fisheries production, will suffer regional and possibly global

39 decline and that this has already begun.

40

41 Climate change has been implicated in mass mortalities of many aquatic species, including plants, fish,

42 corals and mammals, but lack of standard epidemiological data and information on pathogens

43 generally makes it difficult to attribute causes (Harvell *et al.*, 1999). An exception is the northward

44 spread of two protozoan parasites (*Perkinsus marinus* and *Haplosporidium nelsoni*) from the Gulf of

45 Mexico to Delaware Bay and further north, where they have caused mass mortalities of Eastern oysters

46 (*Crassostrea virginica*). Winter temperatures consistently lower than 3°C limit the development of the

47 MSX disease caused by *Perkinsus* (Hofmann *et al.*, 2001) and the poleward spread of this and other

48 pathogens can be expected to continue as such winter temperatures become rarer.

49

50 Factoring in the number of fisher folks, nutritional dependency on fish products and poverty levels, a

51 recent modelling study predicts that, for the fisheries sector, climate change will have the greatest

52 impact on the national economies of Central and Northern Asian countries, the Western Sahel, coastal

tropical regions of South America (Allison *et al.*, 2005) as well as some small and medium-sized island
states (Aaheim and Sygna, 2000).

Indirect economic impacts of climate change will depend on the extent to which the local economies are able to adapt to new conditions in terms of labour and capital mobility. Change in natural fisheries production is often compounded by decreased harvesting capacity and reduced physical access to markets linked to the effects of extreme weather events on coastal and inland fishing communities

- 8 (Allison *et al.*, 2005).
- 9
- 10 5.4.6.3 Impacts of decadal variability and extremes
- 11

12 Most of the large global marine capture fisheries are affected by regional climate variability.

13 Recruitment of the two tropical species of tuna (skipjack and yellowfin) and the subtropical albacore

14 (*Thunnus alalunga*) in the Pacific is related to regimes in the major climate indices, ENSO and the 15 Pacific Decadal Oscillation (Lehodey *et al.*, 2003). Large-scale distribution of skipjack tuna in the

15 Pacific Decadal Oscillation (Lehodey *et al.*, 2003). Large-scale distribution of skipjack tuna in the 16 western equatorial Pacific warm pool can also be predicted from a model linked to changes in ENSO

17 (Lehodey, 2001). ENSO events, which are defined by the appearance and persistence of anomalously

18 warm water in the coastal and equatorial ocean off Peru and Ecuador for periods of 6 to 18 months, have

adverse effects on Peruvian anchovy production in the eastern Pacific (Jacobson *et al.*, 2001). However,

20 longer term, decadal anomalies appear to have greater long-term consequences for the food-web than the

21 short periods of nutrient depletion during ENSO events (Barber *et al.*, 2001). Models relating

22 interannual variability, decadal (regional) variability and global climate change must be improved in

23 order to make better use of information on climate change in planning management adaptations.

24

North Pacific ecosystems are characterised by "regimes shifts" - fairly abrupt changes in both physics

and biology which then persist for periods of a decade. These changes have major consequences for the

27 productivity and species composition of fisheries resources in the region (King, 2005). ENSO

28 influences the regional climate of the North Pacific quite strongly and it should therefore be possible to

29 extend the predictability of the system, which for ENSO is currently about 9 months.

30

Major changes in Atlantic ecosystems, from plankton to fish and birds, can also be related to regional climate indicators, in particular the NAO (Drinkwater *et al.*, 2003 - see also Chapter 1 on NE Atlantic plankton, fish distribution and production). Surplus production of fish stocks, such as cod in European waters, has been adversely affected by the positive trend in the NAO since the 1960's and the recruitment is more sensitive to climate variability when variability when spawning biomass and population structure are reduced (Brander, 2005). In order to reduce sensitivity to climate, stocks must

37 be maintained at higher levels.

Climate related reductions in surplus production cause fish stocks to decline at levels of fishing which
had previously been sustainable, therefore the effects of climate must be correctly attributed and taken
into account in fisheries management.

42 43

44

Box 5.4: Impact of coral mortality on reef fisheries

45
46 Coral reefs and their fisheries are subject to many stresses in addition to climate change (see chapter 4).
47 So far, events such as the 1998 mass coral bleaching in the Indian Ocean have not provided evidence of
48 negative short-term bio-economic impacts for coastal reef fisheries (Grandcourt and Cesar, 2003;
49 Spalding and Jarvis, 2002). In the longer term, there may be serious consequences for fisheries
50 production resulting from loss of coral communities, reef habitat and altered architecture. These are
51 currently being investigated.

2 3 4

1

5.4.7 Rural livelihoods: subsistence and smallholder agriculture

5 The impacts of climate change on subsistence and smallholder agriculture, pastoralism and artisanal 6 fisheries can be considered in terms of compound impacts specific to location and livelihood systems 7 in different ecosystems and regions of the world, all within a very specific context of high vulnerability 8 and limited capacity for adaptation (Adger et al., 2003). It is difficult to ascribe levels of confidence to 9 these predicted compound impacts. A conceptual model is shown in Figure 5.3. These livelihood 10 systems are typically complex; they produce a number of crop and livestock species, between which there are interactions – for example, intercropping practices or the use of draught animal power for 11 12 cultivation, and potential substitutions such as alternative crops. Many smallholder livelihoods will 13 also include use of wild resources, and non-agricultural strategies, such as use of remittances. The 14 interactions between all these elements will be different under "normal" conditions and when coping 15 with crises such as drought.

16

17 Impacts upon these systems will include:

- 18 The direct impacts of changes in temperature, CO₂ and precipitation on yields of specific food 19 and cash crops, and productivity of livestock and fisheries systems, as discussed in Sections 5.4.1 20 to 5.4.6 above. These will include both impacts of changing means and increased frequency of 21 extreme events, with the latter being more important in the short-term (to 2020). Positive and 22 negative impacts on different crops may occur in the same farming system. Agrawala et al. 23 (2003) suggest that impacts on maize, the main food crop, will be strongly negative for the 24 Tanzanian smallholder, while impacts on coffee and cotton, significant cash crops, may be 25 positive.
- Other physical impacts of climate change important to smallholders are: i) the effects of
 decreasing snowcap on major smallholder irrigation systems, particularly in the Indo-Gangetic
 plain, ii) the effects of sea level-rise on coastal areas, iii) increased frequency of landfall tropical
 storms (Adger, 1999), iv) effects on soils, and v) other forms of environmental impact still being
 identified, such as increased forest fire risk (Agrawala *et al.*, 2003 for the Mount Kilimanjaro
 ecosystem) and remobilization of dunes (Thomas *et al.*, 2005 for semi-arid Southern Africa);
- impacts on human health such as increased malaria risk (see Chapter 8) and thus ability to
 provide labour for agriculture, and on non-farm rural economic activities, such as tourism
 (Chapter 7);
- non-climate stressors as listed in 5.2.2 above.
- 36

For climate change impacts on the three major cereal crops most often grown by smallholders, we refer to Figure 5.2 (a-f) and discussion in 5.4.2 and 5.5.1. In section 5.4.1 above we discuss the various

39 negative impacts of increases in climate variability and frequency of extreme events on yields.

- 40 Projected impacts on world regions, some of which are disaggregated to smallholder and subsistence
- 41 farmers or similar categories, are reviewed in the respective regional chapters. An important study is
- 42 that of Jones and Thornton (2003) finding that aggregate yields of smallholder rainfed maize in Africa
- 43 and Latin America are likely to show a decrease of almost 10% by 2055, but that these results hide
- 44 enormous variability (see also Fischer *et al.*, 2002) and give cause for concern, especially in some areas
- 45 of subsistence agriculture.
- 46
- 47 The location of a large body of smallholder and subsistence farming households in the dryland tropics
- 48 therefore gives rise to especial concern over temperature-induced decline in crop yields, and increasing
- 49 frequency and severity of drought (see Summary for Policy Makers, Report of Working Group I).
- 50 These will lead to the following generalizations (*low confidence*):
- 51 increased likelihood of crop failure
- 52 increased mortality of livestock and/or forced sales of livestock at disadvantageous prices

Figure 5.3: Conceptual model of climate change impacts on small holder and subsistence agriculture

Understanding the interactions between these different forms of climate change impact, and the adaptations these will bring about, calls for modelling work. The multi-agent modelling of Bharwani *et al.* (2005) is one possible approach. Also important will be increased empirical research on how current strategies to cope with extreme events foster or constrain longer-term adaptation. Knowledge of crop responses to climate change also needs to be extended to more crops of interest to smallholders.

37

28

29

38 5.5. Adaptations: Options and Capacities39

40 Adaptation is used here to mean both the actions of adjusting practices, processes and capital in 41 response to the actuality or threat of climate change as well as changes in the decision environment 42 such as social and institutional structures and altered technical options that can affect the potential or 43 capacity for these actions to be realised (Chapter 17). We divide discussions on adaptation into two 44 categories: *autonomous*, which is the ongoing implementation of existing knowledge and technology in response to the changes in climate experienced, and *planned*, which increases adaptive capacity by 45 46 mobilizing institutions and policies to establish or strengthen conditions favourable for effective 47 adaptation activities and invests in new technologies and infrastructure. 48

The TAR noted agriculture has historically shown high levels of adaptability to climate variations and
 that whilst there were many studies of climate change impacts, there were relatively few that had

51 comparisons with and without adaptation. Generally the adaptations assessed were most effective in

52 mid-latitudes and least effective in low-latitude developing regions with poor resource endowments

and where ability of farmers to respond and adapt was low. There was limited evaluation of either the costs of adaptation or of the environmental and natural resource consequences of adaptation. Generally, adaptation studies have focussed on situations where climate changes are expected to have net negative consequences: there is a general expectation that if climate improves, then market forces and the general availability of suitable technological options will result in effective change to new, more profitable or resilient systems (e.g. Parsons, 2001)

7 8

9 5.5.1 Autonomous adaptations

10

Many of the autonomous adaptation options identified before and since the TAR are largely extensions or intensifications of existing risk management or production enhancement activities. For cropping systems there are many potential ways to alter management to deal with projected climatic and atmospheric changes (Alexandrov, 2002; Adams *et al.*, 2003; Tubiello *et al.*, 2002; Easterling *et al.*, 2003; Howden, 2003a; Howden and Jones, 2004; Aggarwal and Mall, 2003; Butt *et al.*, 2005). These adaptations include:

- altering inputs such as varieties/species to those with more appropriate thermal time and
 vernalisation requirements and/or with increased resistance to heat shock and drought, altering
 fertiliser rates to maintain grain or fruit quality consistent with the prevailing climate, altering
 amounts and timing of irrigation
- wider use of technologies to 'harvest' water, conserve soil moisture (e.g. crop residue retention)
 and to use water more effectively
- altering the timing or location of cropping activities
- diversifying income including through altering the integration with other farming activities such as livestock raising
- improving the effectiveness of pest, disease and weed management practices through wider use
 of integrated pest management, development and use of varieties and species resistant to pests
 and diseases and maintaining or improving quarantine capabilities, sentinel monitoring programs
- using seasonal climate forecasting to reduce production risk.
- 30

using seasonal enhance forecasting to reduce production fisk.

31 If widely adopted, these autonomous adaptations singly or in combination have substantial potential

32 to offset negative climate change impacts and take advantage of positive ones. For example, in

33 Modena, Italy, simple, currently practicable adaptations of varieties and planting times to avoid

34 drought and heat stress during the hotter and drier summer months predicted under climate change

35 altered significant negative impacts on sorghum (-48 to -58%) to neutral to marginally positive ones

(0 to +12%; 2002). We have synthesised results from many crop adaptation studies for wheat, rice and maize (Fig. 5.2). The benefits of adaptation vary with crops and across regions and temperature

and maize (Fig. 5.2). The benefits of adaptation vary with crops and across regions and temperature
 changes, however, on average, they provide approximately a 10% yield benefit. Another way of

39 viewing this is that these adaptations translate to damage avoidance in grain yields of rice, wheat and

40 maize crops caused by a temperature increase of up to 1.5 to 3° C in both temperate and tropical

41 regions. The benefits of autonomous adaptations tend to level off with increasing temperature

- 42 changes (Howden and Crimp, 2005).
- 43

44 While autonomous adaptations such as the above have the potential for considerable damage

- 45 avoidance from problematic climate change, there has been little evaluation of how effective and
- 46 widely adopted these adaptations may actually be given 1) the complex nature of farm
- 47 decision-making in which there are many non-climatic issues to manage, 2) the likely diversity of
- 48 responses within and between regions in part due to possible differences in climate changes, 3) the
- 49 difficulties that might arise if climate changes are non-linear or increase climate variability, 4) time
- 50 lags in responses and 5) the possible interactions between different adaptation options and economic,
- 51 institutional and cultural barriers to change. For example, the realisable adaptive capacity of poor
- 52 subsistence farming/herding communities, is generally considered to be very low (Leary *et al.*, 2006).

1 These caveats apply to the livestock, forestry and fisheries sectors as well.

23 Adaptations in field-based livestock include additional care to continuously matching stocking rates

4 with pasture production, altered rotation of pastures, modification of times of grazing, alteration of

5 forage and animal species/breeds, altered integration within mixed livestock/crop systems including

6 the use adapted forage crops, re-assessing fertilizer applications and the use of supplementary feeds

and concentrates (Daepp *et al.*, 2001; Hodden and Brereton, 2002; Adger *et al.*, 2003; Maltitz, 2005;
Batima *et al.*, 2005; Wehbe, 2005; Balgis). It is important to note however, that there are often

Batima *et al.*, 2005; Wende, 2005; Baigis). It is important to note nowever, that there are often
 limitations to these adaptations. For example, more heat tolerant livestock breeds often have lower

10 levels of productivity. In intensive livestock industries, in cold climates there may be reduced need for

11 winter housing and for feed concentrates but in warmer climates there could be increased need for

12 management and infrastructure to ameliorate heat stress-related reductions in productivity, fertility and

- 13 increased mortality (Gaughan et al., 2002).
- 14

15 A large number of autonomous adaptation strategies, have been suggested for planted forests including 16 changes in management intensity, hardwood/softwood species mix, timber growth and harvesting 17 patterns within and between regions, rotation periods, salvaging dead timber, shifting to species or 18 areas more productive under the new climatic conditions, landscape planning to minimize fire and 19 insect damage and provide connectivity, adjusting to altered wood size and quality and adjusting fire 20 management systems (Alig et al., 2002; Spittlehouse and Stewart, 2003; Spittlehouse, 2005; Natural 21 Resources Canada, 2004; Sohngen et al., 2001; Weih, 2004). Adaptation strategies to control insect 22 damage can include prescribed burning for reducing forest vulnerability to increased insect outbreaks, 23 non-chemical insect control (e.g., baculoviruses), adjusting harvesting schedules, so that those stands 24 most vulnerable to insect defoliation would be harvested preferentially. Under moderate climate 25 changes, these proactive measures may potentially reduce the negative economic consequences of

climate change (Shugart *et al.*, 2003). However, as with other primary industry sectors, there is likely

to be a gap between the potential adaptations and the realised actions. For example, large areas of

28 forests, especially in developing countries, receive minimal direct human management (FAO, 2000),

29 limiting adaptation opportunities. Even in more intensively managed forests where adaptation

activities may be more feasible (Natural Resources Canada, 2002; Shugart *et al.*, 2003) the long time
 lags between planting and harvesting trees will complicate the decisions as adaptation may take place

at multiple times during a forestry rotation.

33

34 Marine ecosystems are in some respects less geographically constrained than terrestrial systems. The rates at which planktonic ecosystems have shifted their distribution has been very rapid over the past 35 three decades and this can be regarded as natural adaptation to a changing physical environment (see 36 37 Chapter 1 and Beaugrand et al., 2002). Most fishing communities are dependent on stocks that fluctuate due to interannual and decadal climate variability and consequently have developed 38 39 considerable coping capacity (King, 2005). With the exception of aquaculture and some freshwater 40 fisheries, the exploitation by fisheries of natural populations with non-exclusive access to shared resources precludes the kind of management adaptations to climate change suggested for the crop, 41 42 livestock and forest sectors. Adaptation options thus centre around altering catch size and effort. 43 Three-quarters of world marine fish stocks are currently exploited at levels close to or above their 44 productive capacity (Bruinsma, 2003). Reductions in the level of fishing are therefore required in many 45 cases to sustain yields and may also benefit fish stocks which are sensitive to climate variability when 46 their population age structure and geographic sub-structure is reduced (Brander, 2005). The scope for 47 autonomous adaptation is increasingly restricted as new regulations governing exploitation of fisheries 48 and marine ecosystems come into force. Scenarios of increased level of displacement and migration are 49 likely to put a strain on communal-level fisheries management and resource access systems, and weaken local institutions and services. Despite their adaptive value for the sustainable exploitation of 50 51 natural resource systems, migrations are seen as a barrier to economic development (Allison et al., 2005). 52

In contrast to capture fisheries, there are likely to be a range of adaptation options available for
 aquaculture including the introduction of new species, development of tolerant and resistant varieties
 of existing species, control of diseases and harmful algal blooms, policy for regulating water demand
 and forecasting extreme events.

5 6

7

8 9

10

11

12 13

14

15

16

17

18

5.5.2 Planned adaptations

Autonomous adaptations may not be fully adequate for coping with climate change, thus necessitating deliberate, planned measures. Many options for planned (i.e., policy-based) adaptation to climate change have been identified for agriculture, forests and fisheries (Aggarwal *et al.*, 2004; Antle *et al.*, 2004; Bryant *et al.*, 2004; Howden, 2003a; Easterling *et al.*, 2004; Kurukulasuriya and Rosenthal, 2003). These can either involve adaptation activities such as developing infrastructure or building the capacity to adapt in the broader user community and institutions often by changing the decision-making environment under which management-level adaptation activities occur (Chapter 17). These factors are likely to have significant influence on adaptation activities even though these generally happen at the enterprise level. There are several pre-conditions for effective adaptation at the management unit level that can be aided by effective planning and capacity building including:

- To change their management, enterprise managers need to be convinced that the climate changes are real and are likely to continue (e.g. Parson *et al.*, 2003; C-CIARN Agriculture, 2002). This
 will be assisted by policies that maintain climate monitoring and communicate this information effectively. There could be a case also for targeted support of surveillance of pests, diseases, and other factors directly affected by climate.
- Managers need to be confident by that the projected changes will significantly impact on their
 enterprise and motivated to change by the knowledge of consequent risks or opportunities
 (Burton, 2002). This could be assisted by policies that support the research, systems analysis,
 extension capacity and industry and regional networks that can provide this information.
- There need to be technical and other options available to respond to the projected changes. The 28 3. 29 implications of integrating these options into the enterprise should be understood in the context of managers' aspirations, capacity to change and attitude to risk. Where the existing technical 30 options are inadequate to respond to the climate changes, investment in new technical or 31 32 management options may be required (e.g. improved crop, forage, livestock, forest and fisheries 33 germplasm) or old technologies revived in response to the new conditions (Bass, 2005). This will 34 be assisted by policies that support the development of new germplasm (including via biotechnology: see Box 5.6), techniques and technology and by maintaining the extension 35 36 capacity to help the flexible recombination of component technologies into production systems.
- 37 4. Where there are major land use changes, industry location changes, migration, and the like, then 38 there may be a role for governments to support these transitions via direct financial and material 39 support, creating alternative livelihood options including reduced dependence on agriculture, 40 supporting community partnerships in developing food and forage banks, enhancing capacity to develop social capital and share information, providing food aid and employment to the more 41 42 vulnerable, developing contingency plans (e.g. Olesen and Bindi, 2002; Winkels and Adger, 43 2002; Holling, 2004). Effective planning for and management of such transitions may also result 44 in less habitat loss, less risk of carbon loss (e.g. Goklany, 1998) and also lower environmental 45 costs such as soil degradation, siltation and reduced biodiversity (Stoate et al., 2001).
- 5. Develop new infrastructure, policies and institutions to support the new management and land
 use arrangements including through addressing climate change in development programs,
 enhanced investment in irrigation infrastructure and efficient water use technologies, ensuring
 appropriate transport and storage infrastructure, revising land tenure arrangements including
 attention to well-defined property rights (FAO, 2003), establishment of accessible,
- efficiently-functioning markets for products and inputs (seed, fertiliser, labour etc) and for
 financial services including insurance (Turvey, 2001), support for ongoing reduction of market

1 and trade barriers (e.g. WTO rounds).

- 6. The capacity to make continuing adjustments and improvements in adaptation by understanding
 what is working, what is not and why via targeted monitoring of adaptations to climate change
 and their costs and effects (Perez and Yohe, 2005).
- 5

6 It is important to note that the above planned adaptations to climate change will interact with, depend on or perhaps even be just a subset of policies on natural resource management, human and animal 7 8 health, governance and political rights amongst many others: the 'mainstreaming' of climate change 9 adaptation into policies intended to enhance broad resilience (Chapter 17.4.2). The capacity to plan and 10 implement adaptation at local, national and international levels, in most sectors of economy including agriculture and forestry, remains largely untested and uncertain. Moreover, it is difficult to assess in an 11 ex ante sense the capacity to adapt, because there is a limited understanding of the processes that 12 govern political decision making and institutional change in response to global changes (Dietz *et al.*,). 13 14 Nevertheless, the patterns of technological innovation in agriculture (often involving public research institutions) have generally served to reduce the dependence on the scarce resources (Hayami and 15 Ruttan, 1985). Stable political and economic systems that address underlying causes of social 16 17 vulnerability are also likely to be critical in allowing primary industry managers and communities to 18 effectively adapt (Eakin, 2000; Kelly, 2000).

19 20

21 22

23

Box 5.5: Will Biotechnology Assist Agricultural and Forest Adaptation?

24 Breakthroughs in molecular genetic mapping of the plant genome have led to the identification of 25 bio-markers that are closely linked to known resistance genes such that their isolation is clearly feasible 26 in the future. Two forms of stress resistance especially relevant to climate change are drought and 27 temperature. A number of studies have demonstrated genetic modifications to target plants that 28 increased their water-deficit tolerance (as reviewed by Cheikh et al., 2000; Pilon-Smits et al., 1995; 29 Drennen et al., 1993; Kishor et al., 1995). Concern that water stress resistance found in the narrow 30 range of target plants may not extend to the wider range of crop plants exists among researchers but 31 they agree that the potential for progress is high. Cheikh et al. (2000) point out that less effort has gone 32 into genetic engineering for high-temperature resistance than low temperature resistance. It is generally 33 believed that plant cells respond to heat stress through the expression of heat shock proteins and that 34 heat-tolerance gain may be possible by engineering plants to over-express such proteins (Hinderhofer 35 et al., 1998). Yet, many research challenges lie ahead. Little is known about how the desired traits achieved by genetic modification perform in real farming and forestry applications. Moreover, 36 37 alteration of a single physiological process often is compensated or dampened so that little change in 38 plant growth and vield is achieved from modification of a single physiological process (Sinclair and 39 Purcell, 2005). Although biotechnology is not expected to replace conventional agronomic breeding, 40 Cheikh et al., 2000 and FAO, 2004a argue that it will be a crucial adjunct to conventional breeding both likely will be needed to meet future environmental challenges, including climate change. 41 42

- 43
- 44

45 **5.6** Costs and other socioeconomic aspects, including food supply and security

47 5.6.1 Global costs to agriculture

48

46

49 Fischer *et al.*, 2002 quantify the impact of climate change on global agricultural GDP by 2080 as

50 between -1.5% and + 2.6% with considerable regional variation. Overall, temperate zone agriculture

51 stands to benefit while agriculture in the tropics will be adversely affected. Fischer *et al.* (2002)

bowever suggest that, taking into account economic adjustment, global cereal production by 2080 falls

1 within a 2% boundary of the no-climate change reference production.

3 Impacts of climate change on world food prices are summarized in Figure 5.4. Overall, the effects of

4 higher GMT on food prices follow the expected changes in crop and livestock production. Higher

5 output associated with a moderate increase in the GMT is likely to result in a small decline in real world 6 prices for food (cereals), while GMT changes towards 5.5°C and above could lead to a pronounced

7 increase in food prices of, on average, 30%.

8

9 5.6.2 Global costs to forestry

10

Alig *et al.* (2004) suggest that climate variability and climate change may alter the productivity of forests thereby shifting resource management, economic processes of adaptation and forest harvests both nationally and regionally. Such changes may also alter the supply of products to national and international markets as well as change the prices of forest products and economic welfare. Current studies consider mainly impact of climate change on forest resources, industry and economy however some analyses include feedbacks in the ecological system and with the greenhouse gas cycling in forest ecosystems and forest products (e.g., Sohngen *et al.*,). There are a number of studies analyzing the

18 effects of climate change on the forest industry and the economy (e.g. Binkley, 1988; Joyce, 1995;

19 Perez-Garcia, 1997; Sohngen, 1998, Shugart et al., 2003).

20

21 Figure 5.4: Food prices (percent of baseline) versus global mean temperature change for major

22 modelling studies. Prices interpolated from point estimates of temperature effects.

23 24

If the world develops as the models predict, there will be a general decline of the wood raw material prices due to increased wood production (Perez-Garcia, 1997; Sohngen, 1998). The same authors conclude that the economic welfare effects are relatively small but positive with net benefits accruing to wood consumers. With respect to the non-wood services from the forest resources there is no solid

29 global analysis carried out but the impacts of climate change on many these services will likely be

- 30 spatially specific.
- 31
- 32

1 **5.6.3** Changes in trade

3 The principal impact of climate change on agriculture is an increased production potential in

4 temperate-zones and a declining one in the tropics. This relocation of production potentials is expected 5 to result into higher trade flows of temperate zones products (e.g. cereals and livestock products) to the

to result into higher trade nows or temperate zones products (e.g. cerears and investock products) to the
tropics. Fischer *et al.*, 2002 estimate that cereal imports by developing countries would rise by 10-40%
by 2080. A freer trading environment in agriculture would help facilitate these changes in regional

8 supply and demand.

9 10

5.6.4 Regional costs and associated socioeconomic impacts

Fischer *et al.* (2002) quantify the impacts for major countries and country groups as follows: globally
there will be major gains in potential agricultural land by 2080, particularly in North America
(20-50%) and the Russian Federation (40-70%). Losses of up to 9% are predicted for sub-Saharan
Africa. The regions that are likely to face the biggest challenges to their food security situation will be
Africa, particularly sub-Saharan Africa as well as Asia, particularly South Asia (FAO, 2006).

18 19 *Africa*

20 Yields of grains and other crops could decrease substantially across the African countries due to

21 increased frequency of drought, even if potential production should rise because of the increase in CO₂

22 concentrations. Some crops (e.g. maize) could be lost in some areas. Livestock production would suffer

23 due to deterioration in the quality of rangeland associated with higher concentrations of atmospheric

24 carbon dioxide and to changes in areas of rangeland (increase of unproductive shrub-land and desert).

25 Socio-economic factors influence responses to changes in crop productivity, with price changes and

- shifts in comparative advantage (Parry *et al.*, 2004).
- 27 28 Asia

29 According to Murdiyarso (2000) rice production in Asia could decline by 3.8% over the current

30 century. Similarly, a 2 °C increase in mean air temperature could decrease rice yield by about 0.75

31 tonne/ha in India and rain-fed rice in China could decrease by 5-12% (Lin *et al.*, 2004). Suitability for

32 wheat growing could decrease in large portions of South Asia and the southern part of East Asia

33 (Fischer *et al.*, 2002). For example, a 0.5 °C increase in winter temperature would reduce wheat yield

34 by 0.45 ton/ha in India (Naveen et al., 2003) and Chinese rain-fed wheat production could decrease by

4 to 7% by 2050, but wheat production would increase from 6.6 to 25.1% in 2050 if the CO₂

36 fertilization effect is taken into account (Lin *et al.*, 2004).

37 38

39 **5.6.5** Food security and vulnerability

40

For assessing the potential food security implication of climate change, four dimensions are important:
the effects on food availability, on access to food, on stability, and on utilisation (FAO, 2003a).

4344 Food Availability

45 Food availability depends on the actual production of food, but also on trade flows, stocks, and food

46 aid. Climate change will result in mixed and geographically varying impacts on food availability

47 (FAO, 2005b and FAO, 2003b). Globally an increased agricultural production potential due to climate

48 change should improve food availability (Fischer *et al.*, 2002), but this overall improvement is likely to

49 mask considerable differences at the regional and local level. A reduction in the production potential of

50 tropical developing countries, many of which are already faced with serious food insecurity, would add

- 51 to the burden of such countries (Fischer *et al.*, 2002).
- 52

1 **Stability**

2 Alterations in the patterns of extreme events, such as increased frequency and intensity of droughts,

3 according to FAO (FAO, 2005b) will have much more serious consequences for chronic and transitory

- 4 food insecurity than will shifts in the patterns of average temperature and precipitation. Frequent
- localized increases in food prices could be expected in areas with high transportation costs and other 5
- 6 barriers to trade. Subsistence producers growing orphan crops, such as sorghum, millets, etc, are likely
- to be at the greatest risk. Humid areas are also vulnerable to climate variability. They can suffer from 7
- 8 changes in the length of the growing season and from extreme events, such as tropical cyclones. Food
- 9 insecurity and loss of livelihood would be further exacerbated by the loss of cultivated land and nursery 10
- areas for fisheries through inundation and coastal erosion in low-lying areas of the tropics (FAO, 2005a).
- 11 12

13 Utilisation

- 14 There are a number of potential effects of climate change on nutrition and food utilisation. These need
- to be seen in close connection with other health-related aspects (see Chapter 8). Some studies (e.g. 15
- IPCC, 2001) suggest decreased water availability for populations in already water-scarce regions, 16
- 17 particularly in the sub-tropics. In other areas the risk of flooding of human settlements increase, from
- 18 both sea level rise and increased heavy precipitation may result in an increase in the number of people
- 19 exposed to vector-borne (e. g. malaria), and water-borne diseases (e.g. cholera). The links between
- 20 climate change and health issues affect not only the nutritional uptake of food, but also through its
- 21 direct effects, the availability of labour.

22

23 Overall, climate change could increase the number of people at risk of hunger (FAO, 2005a). In some

- 24 40 poor, developing countries, with a combined population of 2 billion, including 450 million
- 25 undernourished people, production losses due to climate change may drastically increase the number of
- 26 undernourished people, severely hindering progress in combating poverty and food insecurity (FAO, 2005b).

27

28 29

30 Implications for sustainable development 5.7

31

32 Sustainable economic development and poverty reduction remain top priorities for developing 33 countries (Aggarwal et al., 2004). Any climate change adaptation measures should be closely integrated into, overall development strategies and programmes, into country programmes, Poverty 34

- Reduction Strategy Programmes (Eriksen and Naess, 2003 and Pro- Poor strategies; Kurukulasuriya 35
- and Rosenthal, 2003), and be understood as a "shared responsibility" (Ravindranath and Sathaye, 2002 36
- 37 in: Climate change and developing countries: 86).
- 38

39 There are a number of international initiatives that could help make adaptation measures to climate 40 change conducive to sustainable development, both in terms of socio-economic and environmental sustainability. A broad and important initiative toward more sustainable overall development is the 41

42 pledge of world leaders to achieve by 2015 a set of eight development objectives: the Millennium

- 43 Development Goals (MDGs)
- 44
- 45 The MDGs established several targets for ensuring environmental sustainability. Key indicators
- 46 include measures of deforestation and use of solid fuels, as well as access to improved water and
- 47 sanitation facilities. Climate change poses an extra challenge in achieving these goals but appropriate
- 48 adaptation to it also affords an extra opportunity to meeting them. The following examples illustrate the 49 main challenges (FAO, 2005c).
- 50
- 51 Worldwide, forests were felled and burned during the 1990s at a rate of 9.4 million hectares a year (an 52 area roughly the size of Portugal). In proportional terms, the most rapid deforestation took place in

1 Africa and the Caribbean and among the countries with the least sustainable forms of agriculture and 2 highest prevalence of hunger. These countries are marked by the highest reliance on solid fuels, the

highest prevalence of hunger. These countries are marked by the highest reliance on solid fuels, the
lowest levels of access to safe water and sanitation and the slowest progress towards the MDG targets

4 (see Figures 5.5a, 5.5b and 5.5c).

5.8 Key Conclusions and their Uncertainties, Confidence Levels, Research Gaps

5.8.1 Findings and Key Conclusions

5 6 While moderate warming benefits crop and pasture yields in temperate regions, even slight 7 warming decreases yields in seasonally dry and tropical regions (medium confidence). The preponderance of evidence from models suggests that moderate local increases in temperature (to 3°C) 8 9 can have small beneficial impacts on major rainfed crops (maize, wheat, rice) and pastures in temperate 10 regions but even slight warming in seasonally dry and tropical regions reduces yield. Further warming has increasingly negative impacts in all regions. [5.4.2][See Figure 5.2]. Furthermore, modelling 11 studies that include extremes in addition to changes in mean climate show lower crop yields than for 12 13 changes in means alone, strengthening similar TAR conclusions. [5.4.1] A change in frequency of 14 extreme events is likely to disproportionately impact small-holder farmers and artisan fishers. [5.4.7]

15

1 2

3 4

16 New experimental research on CO₂ fertilisation suggests smaller effects on crop and forest

17 systems than earlier experimental results suggested – however, crop models include CO₂

18 estimates close to the upper range of new research (*high confidence*) while forest models may

19 overestimate CO₂ effects (*medium confidence*). Recent results from meta-analyses of Free Air

20 Carbon Enrichment (FACE) studies of carbon dioxide fertilisation confirm conclusions from the TAR

21 that crop yields at 550 ppm CO2 concentration increase by an average of 15%. Crop model estimates of

22 CO2 fertilisation are in the range of FACE results. [5.4.1.1]. Results from the FACE studies of CO2

enrichment to 550 ppm on trees suggest a smaller overall effect than is assumed by some of the forestsector models [5.4.1.1].

25

26 Globally, forestry production is estimated to change only modestly with climate change in the

27 short and medium term (high confidence). Local extinctions of particular fish species are

expected at edges of ranges (*high confidence*). Overall, global forest products output at 2020 and

29 2050 changes, ranging from a modest increase to a slight decrease depending on the assumed impact of

30 CO2 fertilisation and the effect of processes not well represented in the models (e.g., pest effects),

although regional and local changes will be large. [5.4.5.2] Regional changes in the distribution and

32 productivity of particular fish species will continue and local extinctions will occur at the edges of

33 ranges, particularly in freshwater and diadromous species (e.g. salmon, sturgeon). In some cases ranges

34 and productivity will increase. [5.4.6] Emerging evidence suggests concern that meridional

35 overturning circulation is slowing down, with serious potential consequences for fisheries. [5.4.6]

36

37 Food and forestry trade is projected to increase in response to climate change, with increased

38 food import-dependence of most developing countries (*medium to low confidence*). While the

39 purchasing power for food is reinforced in the period to 2050 by declining real prices, it would be

40 adversely affected by higher real prices for food from 2050 to 2080. [5.6.1, 5.6.2] Food security in

41 many of the regions expected to suffer more severe yield declines is already challenged. Agricultural

42 and forestry trade flows are foreseen to rise significantly. Exports of temperate zone food products to

43 tropical countries will rise, [5.6.2] while the reverse may take place in forestry. [5.4.5]

44

45 Simulations suggest rising relative benefits of adaptation with low to moderate warming

46 (medium confidence), although adaptation may stress water and environmental resources as

47 warming increases (*low confidence*). There are multiple adaptation options that imply different costs,

48 ranging from changing practices in place to changing locations of FFFF activities [5.5.1]. The

49 potential effectiveness of the adaptations varies from only marginally reducing negative impacts to in

50 some cases changing a negative impact into a positive impact. On average in cereal cropping systems

- 51 adaptations such as changing varieties and planting times enable avoidance of a 10-15% reduction in
- 52 yield. The benefit from adapting tends to increase with the degree of climate change up to a point

yreid. The benefit from adapting tends to increase with the degree of childre change up to a

1 [Figure 5.2]. Pressure to cultivate marginal land or to adopt unsustainable cultivation practices as 2 yields drop may increase land degradation and endanger biodiversity of both wild and domestic

3 species. Climate changes increase irrigation demand in the majority of world regions due to a

4 combination of decreased rainfall and increased evaporation arising from increased temperatures,

5 which combined with expected reduced water availability, adds another challenge to future water and

- 6 food security. [5.7]
- 7

8 Summary of Impacts and Adaptive Results by Temperature and Time. Major generalizations across the

- 9 FFFF sectors distilled from the literature are reported either by increments of temperature increase
- 10 (Table 5.5) or by increments of time (Table 5.6), depending on how the information is originally

11 reported. A global map of regional impacts of FFFF is shown in Figure 5.6.

12 13

Table 5.5: Summary of Selected Conclusions for Food, Fibre, Forestry, and Fisheries, by Warming
 Increments.

Temp.	Sub-sector	Region	Finding	Source
Change				Section
+1-2°C	Forestry	Global	Timber production +5%	Table 5.3
	Food crops	Temperate	Cold limitation alleviated for all crops.	Fig. 5.2
			Adaptation of maize and wheat increases yield	
			10-15%; rice yield no change—regional variation	
	Pastures and		is high	
	Livestock		Cold limitation alleviated for pastures; seasonal	Table 5.2
			increased frequency of heat stress for livestock	
	Food crops	Tropical	Wheat and maize yields reduced below baseline	Fig. 5.2
			levels. Rice is unchanged.	
			Adaptation of maize, wheat, rice maintains yield	
		a · · · 1	at current levels;	T 11 5 0
	Pastures and	Semi-arid	No increase in net primary productivity;	Table 5.2
	Livestock		seasonal increased frequency of heat stress for	
	Drigon	Clabal	A grigultural prices: 10 200/	Eig 5 4
12.290	Filces	Global	Timber and duction + 200/	Fig. 3.4
+2-3°C	Forestry	Giobai	1 limber production $\pm 20\%$	Table 5.5 Eig 5.2
	Food grops		550 ppin CO ₂ (approx. equal to ± 2 C) increases	Гlg. 3.2
	roou crops		temperature increase of $2^{\circ}C$ assuming no	
			adaptation and 3° C with adaptation	
	Prices		Agricultural prices: -10-+20%	Fig 5 4
	Food crops	Temperate	Adaptation increases all crops above baseline	Fig 5.2
	Fisheries	remperate	vield	1180.2
	Pastures and		Positive effect on trout in winter, negative in	5.4.6.1
	livestock		summer	
			Moderate production loss in swine and confined	Table 5.2
			cattle	
	Pastures and	Semi-arid	Reduction in animal weight, pasture production,	Table 5.2
	livestock		and increased heat stress for livestock	
	Food crops	Tropical	Adaptation maintains yields of all crops above	Fig 5.2
			baseline; yields drops below baseline for all crops	
			without adaptation.	

+3-5°C	Forestry	Global	Timber production +30%, regional variation	Table 5.3
	Prices and		4-66%	
	Trade		Reversal of downward trend in wood prices	5.4.5.1
			Agricultural prices: +10- +40%	Fig. 5.4
			Cereal imports of developing countries to	5.6.3
			increase by 10-40%.	
	Forestry	Temperate	Increase in fire hazard and insect damage	5.4.5.3
	Food crops		Adaptation maintains yields of all crops above	Fig 5.2
			baseline; yield drops below baseline for all crops without adaptation.	
	Pastures and		Strong production loss in swine and confined	Table 5.2
	Livestock		cattle	
		Tropical	Maize and wheat yields reduced below baseline	Fig 5.2
			regardless of adaptation, but adaptation maintains	
			rice yield at baseline levels.	
	Pastures and	Semi-arid	Reduction in animal weight and pasture growth.	Table 5.2
	Livestock		Increased animal heat stress and mortality.	

2 3

4

Table 5.6: Summary of Selected Findings for Food, Fibre, Forestry, and Fisheries, by Time Increment.

Time	Sub-sector	Location	Finding	Source
slice				
2020	Food crops	USA	Extreme events, i.e., increased heavy precipitation, cause crop losses to \$3 B by 2030 with respect to current levels	5.4.2
	Small-holder farming, fishing	Tropical, esp. E. and S. Africa	Decline in maize yields, increased risk of crop failure, high livestock mortality	5.4.7
	Small-holder farming, fishing	Tropical, esp. S. Asia	Early snow melt causing spring flooding and summer irrigation shortage	5.4.7
	Forestry	Global	Increase export of timber from temperate to tropical countries Increase in share of timber production from plantations	5.4.5.2
2050	Fisheries	Global	Marine primary production +0.7-8.1%, with large regional variation (see Ch 4)	5.4.6.2
	Food crops	Global	With adaptation, yields of wheat, rice, maize above baseline levels in the Temperate Zones and at baseline levels in the Tropics.	Fig 5-2
2080	Food crops	Global	Crop irrigation water requirement increases 5-20%, with range due to significant regional variation	5.4.2
	Agriculture sector	Global	Stabilization at 550 ppm ameliorates 70-100% of agricultural cost caused by unabated climate change	5.4.2

5 6

Figure 5.6: Major impacts of climate change on crop and livestock yields, and forestry production by 2050 based on literature and expert judgment of Chapter 5 Lead Authors. Adaptation is not taken into account.

5.8.2 Research Gaps and Priorities

Key knowledge gaps hindering assessments of climate change consequences for FFFF and theiraccompanying research priorities are listed in Table 5.7.

31 32

33

22

23

24

25 26 27

28

Knowledge Gap	Research Priority
There is a lack of knowledge of CO ₂ response	FACE type experiments needed on expanded range of crops,
for many crops other than cereals, including	pastures, forests, and locations, especially in developing
many of importance to the rural poor, such as	countries.
root crops, millet.	
Understanding of the combined effects of	Basic knowledge of pest, disease, weed response to elevated
elevated CO_2 and climate change on pests,	CO_2 and climate change needed.
weeds and disease is insufficient.	
Much uncertainty of how changes in	Improved prediction of future impacts of climate change
frequency and severity of extreme climate	requires better representation of climate variability at scales
events with climate change will affect all	from short term (including extreme events), to interannual and
sectors remains.	decadal in FFFF models.
Calls by the TAR to enhance crop model	Improvements and further evaluation of
inter-comparison studies have remained	economic/trade/technological components within integrated
largely unheeded.	assessment models are needed.
Few experimental or field studies have	Future trends in aquatic primary production depend on
investigated the impacts of future climate	nutrient supply and on temperature sensitivity of primary
scenarios on aquatic biota.	production. Both of these could be improved with a relatively
	small research effort.

Table 5.7: Key Knowledge Gaps and Research Priorities for Food, Fibre, Forestry, and Fisheries

In spite of a decade of prioritization,	A fuller range of adaptation strategies must be examined in
adaptation research has failed to provide	modelling frameworks in FFFF. Accompanying research that
generalized knowledge of adaptive capacity	estimates the costs of adaptation is needed. Assessments of
of FFFF systems across a range of climate	how to move from potential adaptation options to adoption
and socioeconomic futures, and across	taking into account decision-making complexity, diversity at
developed and developing countries	different scales and regions, non-linearities and timelags in
(including commercial and small-holder	responses and biophysical, economic, institutional and
operations).	cultural barriers to change are needed. Particular emphasis to
	developing countries should be given.
The global impacts of climate change on	Given the importance of this assumption, more research is
agriculture and food security will depend on	needed to assess the future role of agriculture in overall
the future role of agriculture in the global	income formation (and dependence of people on agriculture
economy. While most studies available for	for income generation and food consumption) in essentially
the FAR assumed a rapidly declining role of	all developing countries; such an exercise could also afford an
agriculture in the overall generation of	opportunity to review the assumption made in the various
income, no consistent and comprehensive	SRES scenarios and address the critique re the overall
assessment was available.	economic plausibility of these scenarios.
Relatively moderate impacts of climate	More research is required to identify highly vulnerable
change on the overall agro-ecological	micro-environments and associated households and to provide
conditions are likely to mask much more	agronomic and economic coping strategies for the affected
severe climatic and economic vulnerability at	populations.
the local level. Little is known about such	
vulnerability.	

1	References
2	
3	Aaheim, A. and L. Sygna, 2000: Economic Impacts of Climate Change on Tuna Fisheries in Fiji
4	Islands and Kiribati 4, Cicero, Oslo, 21 pp.
5	Abou-Hadid, Unknown, and Unknown, 2003.
6	ACIA, 2005: Arctic Climate Impact Assessment. Cambridge University Press, 1042 pp.
7	Adams, R.M., B.A. McCarl, and L.O. Mearns, 2003: The effects of spatial scale of climate scenarios on
8	economic assessments: An example from US agriculture. Climatic Change, 60(1-2), 131-148.
9	Adger, W.N., 1999: Social vulnerability to climate change and extremes in coastal Vietnam. World
10	Development, 27(2), 249-269.
11	Adger, W.N., S. Huq, K. Brown, D. Conway, and M. Hulme, 2003: Adaptation to climate change in the
12	developing world. Progress in Development Studies, 3(3), 179-195.
13	Aggarwal, P.K., and Mall, R.K. 2002. Climate change and rice yields in diverse agro-environments of
14	India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Climate
15	Change: 52:331-343
16	Aggarwal, P.K., P.K. Joshi, J.S. Ingram, and R.K. Gupta, 2004: Adapting food systems of the
17	Indo-Gangetic plains to global environmental change: Key information needs to improve policy
18	formulation. Environmental Science & Policy, 7, 487-498.
19	Agrawala, S., A. Moehner, A. Hemp, M. van Aalst, S. Hitz, J. Smith, H. Meena, S.M. Mwakifwamba,
20	T. Hyera, and O.U. Mwaipopo, 2003: Development and climate change in Tanzania: focus on
21	Mount Kilimanjaro. Environment Directorate and Development Co-operation Directorate,
22	Organisation for Economic Co-operation and Development, Paris.
23	Agrell, J., P. Anderson, W. Oleszek, A. Stochmal, and C. Agrell, 2004: Combined effects of elevated
24	CO2 and herbivore damage on alfalfa and cotton. J. Chem. Ecology, 30(11), 2309-2324.
25	Ainsworth, E.A., P.A. Davey, G.J. Hymus, C.E. Osborne, A. Rogers, H. Blum, J. Nosberger, and S.E.
26	Long, 2003: Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration
27	maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen
28	fertilization levels under Free Air CO2 Enrichment (FACE). Plant Cell and Environment, 26(5),
29	/05-/14.
30	Ainsworth, E.A. and S.P. Long, 2005: What have we learned from 15 years of free-air CO2 enrichment
31	(FACE)? A meta-analysisof the responses of photosynthesis, canopy properties and plant
32 22	production to fising CO2. New Phytologist, 165, 351-372.
33 24	Alexandratos, N., 2005: Countries with rapid population growth and resources constraints: Issues of
34 25	Alia D.J. D.M. Adama and D.A. MaCarl. 2002. Designation imports of alabel alignets above on the
33 26	Alig, R.J., D.M. Adams, and B.A. McCarl, 2002. Projecting impacts of global climate change on the
27	0.5 forest and agriculture sectors and carbon budgets. Forest Ecology & Management, $109(1-2)$, 2 14
28	$\frac{3-14}{100}$
30	Allerd Unknown and Unknown 2004
40	Allard V PCD Newton M Lieffering H Clark C Matthew and V Grav 2003: Nitrogen cycling
40 41	in grazed pastures at elevated CO2: N returns by ruminants. Global Change Biology 9
$\frac{1}{42}$	1731-1742
43	Allard V: Newton PCD: Lieffering M: et al. 2005: Increased quantity and quality of coarse soil
44	organic matter fraction at elevated CO2 in a grazed grassland are a consequence of enhanced root
45	growth rate and turnover Plant and Soil 276 (1-2). 49-60 Oct 2005
46	Allison E H W N Adger M C Badieck K Brown D Conway N K Dulvy A Halls A Perry and
47	J.D. Reynolds, 2005: Effects of climate change on the sustainability of capture and enhancement
48	fisheries important to the poor: analysis of the vulnerability and adaptability of fisherfolk living
49	in poverty Project No R4778J, Fisheries Management Science Programme London, MRAG for
50	Department for International Development, 167 pp, <u>http://www.fmsp.org.uk</u> .
51	Allison, E.H. and F. Ellis, 2001: The livelihoods approach and management of small-scale fisheries.
50	

52 Marine Policy, 25(5), 377-388.

1	Amundson II TI Mader RI Rashy and OS Hu 2005 Temperature and temperature-humidity
2	index effects on pregnancy rate in beef cattle Proc. 17th Intl. Congress on Biometeorology
2	September 2005 Dettscher Wetterdienst, Offenbach, Germany
<u>ј</u>	Anon 2004: Modelled Observations on Development Scenarios in the Lower Mekong Basin, Phnom
5	Penh 142 nn http://www.mrcmekong.org/documentonline/documentonline.htm
6	Antle IM S M Canalbo and I Hewitt 2004: Adaptation Spatial Heterogeneity and the
7	Vulnerability of Agricultural Systems to Climate Change and CO2 Fertilization: An Integrated
8	Assessment Approach Climate Change 64(3) 289-315
9	Araniuelo I I I Irigoven P Perez R Martinez-Carrasco and M Sanchez-Diaz 2005. The use of
10	temperature gradient tunnels for studying the combined effect of CO2 temperature and water
11	availability in N2 fixing alfalfa plants. Annals of Applied Biology, 146(1), 51-60
12	Arnell, N.W. 2004: Climate change and global water resources: SRES emissions and socio-economic
13	scenarios. Global Environmental Change. 14(1), 31-52.
14	Arnold, M.G., G. Köhlin, R. Persson, and G. Shephard, 2003: Fuelwood Revisited: What has Changed
15	in the Last Decade? CIFOR Occasional Paper No. 39. Center for International Forestry Research
16	(CIFOR). Indonesia.
17	Bachelet, D., J.M. Lenihan, C. Daly, R.P. Neilson, D.S. Ojima, and W.J. Parton, 2001; MC1: a
18	dynamic vegetation model for estimating the distribution of vegetation and associated carbon,
19	nutrients, and water-technical documentation. Gen. Tech. Rep. PNW-GTR-508. U.S.
20	Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR,
21	1-95.
22	Baker, J.T., 2004: Yield responses of southern U.S. rice cultivars to CO2 and temperature. Agr. For.
23	Meterology, 122(3-4), 129-137.
24	Bale, J.S., G.J. Masters, and I.D. Hodkinson, 2002: Herbivory in global climate change research: direct
25	effects of rising temperature on insect herbivores. Global Change Biology, 8, 1-16.
26	Balgis.
27	Barber, R., J.H. Steele, S.A. Thorpe, and K.K. Turekian, 2001: Upwelling ecosystems. In:
28	Encyclopedia of Ocean Sciences, Academic Press, London, 3128.
29	Barton, D. and J. Morton, 2001: Livestock Marketing and Drought Mitigation in Northern Kenya. In:
30	Drought, Planning and Pastoralists: Experiences from Northern Kenya and Elsewhere, J.
31	Morton, Ed., NRI, Chatham.
32	Bass, B., 2005: Measuring the Adaptation Deficit. Discussion on Keynote Paper: Climate Change and
33	the Adaptation Deficit. In: Climate Change: Building the Adaptive Capacity, Environment
34	Canada, 34-36.
35	Batima P., Bat B., D. Tserendash, L. Bayarbaatar, S. Shiirev-Adya, G. Tuvaansuren, L. Natsagdorj, and
36	1. Chuluun, 2005. Adaptation to Climate Change. eds: Batima P. and D. Iserendorj. Ulaanbaatar.
3/	Admon publisning: 59-115. ISBN: 99929-0-613-8.
38 20	Batima, P., 2003: Climate change: Pasture-Livestock. Synthesis report. In: Potential Impacts of
39 40	Livesteel Sector in Mongolia ADMON nublishing Illeenheeter n 26.47
40	Livestock Sector in Mongolia., ADMON publishing, Utaanbaatar, p. 30-47.
41	Atlantia marina appended biodiversity and alimate. Science, 206(5572), 1602, 1604
4Z 42	Attaintic marine copepod blourversity and crimate. Science, 290(5575), 1092-1094.
43	Erequency in the Canadian Boreal Forest: Implications for Sustainable Forest Management
44 15	Ambia 6, 356, 360
45	Amolo, 0, 550-500. Patta P.A. P.M. Cox. M. Colling and at al. 2004: The role of accessistem atmosphere interactions in
40 47	simulated Amazonian precipitation decrease and forest dieback under global climate warming
- /	sinnality Annazonian precipitation decrease and iorest dicuated under global chinate walling.
48	Theoretical and Applied Climatology 78(1-3) 157-175
48 49	Theoretical and Applied Climatology, 78(1-3), 157-175. Bharwani S. M. Bithell, T.E. Downing, M. New, R. Washington, and G. Ziervogel. 2005; Multi-agent
48 49 50	Theoretical and Applied Climatology, 78(1-3), 157-175. Bharwani, S., M. Bithell, T.E. Downing, M. New, R. Washington, and G. Ziervogel, 2005: Multi-agent modelling of climate outlooks and food security on a community garden scheme in Limpopo
48 49 50 51	Theoretical and Applied Climatology, 78(1-3), 157-175. Bharwani, S., M. Bithell, T.E. Downing, M. New, R. Washington, and G. Ziervogel, 2005: Multi-agent modelling of climate outlooks and food security on a community garden scheme in Limpopo, South Africa. Philosophical Transactions of the Royal Society B: Biological Sciences

1	Binkley, 1988.
2	Blennow, K. and O. Sallnas, 2004: WINDA - a system of models for assessing the probability of wind
3	damage to forest stands within a landscape. Ecological Modelling, 175(1), 87-99.
4	Boisvenue, C. and S.W. Running, 2006: Impacts of climate change on natural forest productivity -
5	evidence since the middle of the 20th century. Global Change Biology, 2006(12), 1-21.
6	Brander, K.M., 2005: Cod recruitment is strongly affected by climate when stock biomass is low. ICES
7	Journal of Marine Science, 62, 339-343.
8	Briones, M., M.M. Dey, and Ahmed, 2004: The future for fish in the food and livelihoods of the poor in
9	Asia. NAGA, 50 WorldFish Center Quarterly, 27(3&4), 48.
10	Brooks, N., W.N. Adger, and P.M. Kelly, 2005: The determinants of vulnerability and adaptive
11	capacity at the national level and implications for adaptation. Global Environmental Change, 15,
12	151-163.
13	Brovkin, V., 2002: Climate-vegetation interaction. Journal de Physique IV, 12(PR10), 57-72.
14	Brown, R.A., N.J. Rosenberg, C.J. Hays, W.E. Easterling, and L.O. Mearns, 2000: Potential
15	production and environmental effects of switchgrass and traditional crops under current and
16	greenhouse-altered climate in the central United States: A simulation study. Agriculture,
17	Ecosystems and Environment, 78(1), 31-47.
18	Bruinsma, J., Ed., 2003: World agriculture: towards 2015/2030: an FAO perspective. Earthscan,
19	London and FAO, Rome, 432 pp. pp.
20	Bryant, C.R., P. Andre, JP. Thouez, B. Singh, S. Frej, D. Granjon, J.P. Brassard, and G. Beaulac,
21	2004: Agricultural adaptation to climate change: the incidental consequences of managing risk.
22	In: The structure and Dynamics of Rural Territories: Geographical Perspectives, D. Ramsey and
23	C. Bryant, Eds., Rural Development Institute, Brandon University.
24	Burton, I. and B. Lim, 2005: Achieving adequate adaptation in agriculture. Climatic Change, 70(1-2),
25	191-200.
26	Butt, T.A., B.A. McCarl, J. Angerer, P.T. Dyke, and J.W. Stuth, 2005: The economic and food security
27	implications of climate change in Mali. Climatic Change, 68(3), 355-378.
28	C-CIARN Agriculture, 2002: Report from Producer Survey at Canada's Outdoor Farmshow,
29	Woodstock.
30	Caldwell, C.R., S.J. Britz, and R.M. Mirecki, 2005: Effect of temperature, elevated carbon dioxide, and
31	drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.)
32	Merrill] grown in controlled environments. J. Agr. Food Chem., 53(4), 1125-1129.
33	Caliapietra, C., B. Gielen, A.N.J. Galemma, and <i>et al.</i> , 2003: Free-air CO2 enrichment (FACE)
34	enhances biomass production in a short-rotation poplar plantation. Tree Phys., 23, 805-814.
35	Carbone, G.J., W. Kiechle, and C. Locke, 2003: Response of soybean and sorghum to varying spatial
36	scales of climate change scenarios in the southeastern United States. Climatic Change, 60, 73-98.
3/ 20	Carrell A L. Taylor S.W. Degring J. Safranyily L. 2004. Effects of alignets shares on games
38 20	Carroll, A.L., Taylor, S.W., Regniere, J., Salranyik, L., 2004. Effects of climate change on range
39 40	Canadian Forest Service, Pagific Forestry Contro Information Popert PC V 200, T.L. Shore
40	Drocks LE Stone LE Ed Victoria DC 222 222
41 12	Diouss, J.E., Stolic, J.E., Eu., Victoria DC, 223-232.
42 Δ3	protecting natural resources and improving environmental quality. Annual Review of
ΑJ ΛΛ	Environment and Resources 28, 315-358
45 45	Centritto M 2005: Photosynthetic limitations and carbon partitioning in cherry in response to water
46	deficit and elevated [CO2] Agriculture Ecosystems and Environment 106(2-3 SPEC ISS.)
47	233-242
48	Chakraborty S and S Datta 2004
49	Chambers, R., A. Pacey, and L.A. Thrupp. Eds., 1989; Farmer First: Farmer Innovation and
50	Agricultural Research. Intermediate Technology Publications.
51	Cheikh, N., P.W. Miller, and G. Kishore, 2000: Role of Biotechnology in Crop Productivity in a
52	Changing Environment. In: Global Change and Crop Productivity, K.R.R.a.H.F. Hodges, Ed.,

1	CAP International New York 425-436
2	Chen F G E Feng and M N Parajulee 2005b. Impact of elevated CO2 on tri-trophic interaction of
3	Gossynium hirsutum Anhis gossynii and Leis axyridis Environ Entom 34(1) 37-46
4	Chen F G Wul F Ge M N Paraiulee and R B Shrestha 2005a. Effects of elevated CO2 and
5	transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the
6	cotton bollworm Entomologia Experimentalis et Applicata 115(2) 341-347
7	Chen, F.J., G. Wu, and F. Ge. 2004: Impacts of elevated CO ₂ on the population abundance and
8	reproductive activity of aphid Sitobion avenae Fabricius feeding on spring wheat. J. Env. Nutr.,
9	128(9-10), 723-730.
10	Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Oge, and <i>et al.</i> , 2005: Europe-wide reduction in
11	primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529-534.
12	Cocu, N., R. Harrington, A. Rounsevell, S.P. Worner, M. Hulle, and et al., 2005: Geographical
13	location, climate and land use influences on the phenology and numbers of the aphid, Myzus
14	persicae, in Europe. J. Biogeogr., 32, 615-632.
15	COPA-COFEGA, 2003B: Committee of Agricultural Organisations in the European Union General
16	Committee for Agricultural Cooperation in the European Union. CDP 03 61 1, Press release,
17	Brussels, michelle.roverelli@copa-cogeca.be.
18	COPA COGEGA, 2003a: Committee of Agricultural Organisations in the European Union General
19	Committee for Agricultural Cooperation in the European Union. Assessment of the impact of the
20	heat wave and drought of the summer 2003 on agriculture and forestry.
21	Coppock, D.L., 1994: The Borana Plateau of Southern Ethiopia: Synthesis of Pastoral Research,
22	Development and Change., ILCA Systems, Addis Ababa.
23	Cornish, G.A., 1998: Modern irrigation technologies for smallholders in developing countries. Vol.
24	Report OD/TN 87, TDR Project R6649, HR Wallingford Ltd., Wallingford, UK.
25	Cramer, W., A. Bondeau, F.I. Woodward, I.C. Prentice, R.A. Betts, V. Brovkin, P.M. Cox, V. Fisher, J.
26	Foley, A.D. Friend, C. Kucharik, L. M.R., N. Ramankutty, S. Sitch, B. Smith, W. A., and C.
27	Young-Molling, 2001: Global response of terrestrial ecosystem structure and function to CO2
28	and climate change: results from six dynamic global vegetation models. Global Change Biology,
29	7(4), 357-373.
30 21	Crozier, Unknown, and Unknown, 2002.
21	Ciozier, L., 2002. Climate change and its effect on species range boundaries. A case study of the
32 22	Sachem Skipper butterny, Atalopedes campestris. In. whome responses to chinate change, 1.L. Root, Schneider, S.H., Ed. Island Press, Washington, DC, 57,01
33 34	Curry R and C Mauritzen 2005: Dilution of the Northern North Atlantic Ocean in Recent Decades
35	Science 308 1772-1774
36	Daeph M I Nosberger and A Luscher 2001: Nitrogen fertilization and developmental stage alter
37	the response of Lolium perenne to elevated CO ₂ New Phytologist 150 347-358
38	Dash DK DP Ray and HH Khan 2002. Extent of damage to coconut palms caused by super
39	cvclone in Orissa and pattern of their recovery. CORD, 18, 1-5.
40	Davidson, D.J., T. Williamson, and J.R. Parkins, 2003: Understanding climate change risk and
41	vulnerability in northern forest-based communities. Canadian Journal of Forest Research,
42	33(11), 2252-2261.
43	Davis, J.R., 2004: The Rural-Non-Farm Economy, Livelihoods and Their Diversification: Issues and
44	Options. Natural Resources Institute, Chatham, UK.
45	Defra, 2000: Impact of Climate Change on Grasslands and Livestock. In: Climate Change &
46	Agriculture in the United Kingdom.
47	Delgado, C.L., N. Wada, M.W. Rosegrant, S. Meijer, and M. Ahmed, 2003: Fish to 2020 - Supply and
48	Demand in Changing Global Markets. Jointly published by the International Food Policy
49	Research Institute (IFPRI) and WorldFish Center, 226pp pp.
50	Desta, S. and D.L. Coppock, 2002: Cattle population dynamics in the Southern Ethiopian Rangelands,
51 52	1980-97. Journal of Kange Management 55, 439-451.
32	Develeux, 5. and C. Tapscou, 1995. Coping Mechanisms of Communal Farmers in Response to

1	Drought. In: Coping with Aridity: Drought Impacts and Preparedness in Namibia, R. Moorsom,
2	J. Franz, and M. Mupotola, Eds., Brandes and Apsel/NEPKU, Frankfurt and Windhoek.
5	Dewalle, D.K., A.K. Buda, and A. Fisner, 2003: Extreme weather and forest management in the
4	Dietz T. E. Ostrom and P.C. Stern 2002: The struggle to govern the commons. Science, 202
5 6	1907-1912.
7	Doherty, R.M., L.O. Mearns, K. Rajareddy, M.W. Downton, and L. Mcdaniel, 2003: Spatial Scale
8	Effects Of Climate Scenarios on Simulated Cotton Production In The Southeastern U.S.A.
9	Climatic Change, 60, 99-129.
10	Döll, P., 2002: Impact of Climate Change and Variability on Irrigation Requirements: A Global
11	Perspective. Climatic Change, 54(3), 269-293.
12	Drennen, P.M., M. Smith, D. Goldsworthy, and J. van Staten, 1993: The occurrence of trahaolose in
13	the leaves of the desiccation-tolerant angiosperm Myronthamnus flabellifoliius Welw. Journal of
14	Plant Physiology, 142, 493-496.
15	Drinkwater, K.F., 2005: The response of Atlantic cod (Gadus morhua) to future climate change. ICES
16	Journal of Marine Science, 62(7), 1327-1337.
17	Drinkwater, K.F., A. Belgrano, A. Borja, A. Conversi, M. Edwards, C.H. Greene, G. Ottersen, A.J.
18	Pershing, H. Walker, J.W. Hurrell, Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: The response
19	of marine ecosystems to climate variability associated with the North Atlantic Oscillation. In:
20	The North Atlantic Oscillation: climatic significance and environmental impact, Geophysical
21	monograph, American Geophysical Union, Washington, 211.
22	single and multiple global environmental changes. PLOS Biology 2(10), 1820, 1827
23	Eakin H 2000: Smallholder maize production and climatic risk: A case study from Mexico. Climatic
25	Change 45(1) 19-36
26	Eakin H and M C. Lemos 2006. Adaptation and the state: Latin America and the challenge of
27	capacity-building under globalization Global Environmental Change 16 7-18
28	Easterling, W.E., N. Chhetri, and X.Z. Niu, 2003: Improving the realism of modeling agronomic
29	adaptation to climate change: Simulating technological submission. Climatic Change, 60(1-2),
30	149-173.
31	Easterling, W.E., B.H. Hurd, and J.B. Smith, 2004: Coping with Global Climate Change: The Role of
32	Adaptation in the United States, Pew Center on Global Climate Change,
33	http://www.pewclimate.org/docUploads/Adaptation.pdf.
34	Edwards, G.R., H. Clark, and P.C.D. Newton, 2001: The effects of elevated CO ₂ on seed production
35	and seedling recruitment in a sheep-grazed pasture. Oecologia, 127(3), 383-394.
36	Ehleringer, J.R., T.E. Cerling, and M.D. Dearing, 2002: Atmospheric CO ₂ as a global change driver
37	influencing plant-animal interactions. Integrative and Comparative Biology, 42(3), 424-430.
38	Eriksen, S. and L.O. Naess, 2003: Pro-Poor Climate Adaptation. In: Norwegian development
39	cooperation and climate change adaptation: an assessment of issues, strategies and potential
40	ELUDG 2002: The Expert First Liferrational Climate and Environmental Research, Usio, p. 8 (table).
41	EU-JRC, 2003. The European Forest Fires Information System (EFFIS) Results on the 2005 Fire
42 13	Evert F MDA Rounsevell I Reginster MI Metzger and R Leemans 2005: Euture scenarios of
43	European agricultural land use. Estimating changes in cron productivity. A griculture
45	Ecosystems and Environment 107 101-116
46	FAO 1984: Report of an Animal Feed Security Mission to Botswana Rome
47	FAQ. 1998.
48	FAO, 2000: Global Forest Resources Assessment 2000. FAO Forestry Paper 140., FAO. Rome.
49	FAO, 2001: Forest genomics for conserving adaptive genetic diversity. Paper prepared by Konstantin.
50	V. Krutovskii, and David B. Neale. Forest Genetic Resources Working Papers. Working Paper
51	FGR/3 (July 2001), Forest Resources Development Service, Forest Resources Division, FAO,
52	Rome, http://www.fao.org/DOCREP/003/X6884E/x6884e02.htm#TopOfPage.

1	FAO, 2003: Future climate change and regional fisheries: a collaborative analysis. Vol. 452, Fisheries
2	Technical Paper, 75 pp. pp.
3	FAO, 2003a: Strengthening coherence in FAO's initiatives to fight hunger (Item 10). Conference
4	Thirty-second Session, Rome. Accessed, http://internal.fao.org/bodies/conf/c2005/conf.htm.
5	FAO, 2003b: Impact of Climate Change on Food Security and Implications for Sustainable Food
6	Production Committee on World Food Security. Twenty-ninth Session., Rome. Accessed,
7	ftp://ftp.fao.org/docrep/fao/meeting/009/j5411e.pdf.
8	FAO, 2004a: Agricultural Biotechnology: Meeting the needs of the poor. In the State of Food and
9	Agriculture 2003-04. Rome, Italy.
10	FAO, 2004b: Trade and Sustainable Forest Management - Impacts and Interactions. Analytic Study of
11	the Global Project GCP/INT/775/JPN: in the Promotion of Sustainable Forest Management.
12	FAO, 2005a: Special Event on Impact of Climate Change, Pests and Diseases on Food Security and
13	Poverty Reduction. Background Document. 31st Session of the Committee on World Food
14	Security. Accessed, <u>ftp://ftp.fao.org/docrep/fao/meeting/009/j5411e.pdf</u> .
15	FAO, 2005b: The State of Food Insecurity in the World (SOFI), Eradicating Hunger - Key to
16	Achieving the Millennium Development Goals. Rome.
17	FAO, 2005c: World agriculture: towards 2050Highlights. Global Perspective Studies Unit, FAO,
18	Ed., Rome.
19	FAO, 2006, "World agriculture: towards 2030/2050 - Interim report", Rome.
20	FAO., F.D., 2002: The State of World Fisheries and Aquaculture (SOFIA) 2002, FAO, Rome, 153 pp.
21	FAO Fisheries Department, 2004: The State of World Fisheries and Aquaculture (SOFIA) 2004.,
22	http://www.fao.org/sof/sofia/index_en.htm.
23	Fay, P.A., J.D. Carlisle, A.K. Knapp, and et al., 2003: Productivity responses to altered rainfall patterns
24	in a C-4-dominated grassland. Oecologia, 137(2), 245-251.
25	Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., Prinn, R., 2004: Effects of ozone on net
26	primary production and carbon sequestration in the conterminous United States using a
27	biogeochemistry model. Tellus, 56B, 230-248.
28	Fischer, G., M. Shah, F.N. Tubiello, and H. Van Velthuizen, 2005: Integrated assessment of global
29	crop production. Phil. Trans. Royal. Ac. Sc., B, 360, 2067-2083.
30	Fischer, G., M. Shah, and H. van Velthuizen, 2002: Climate Change and Agricultural Vulnerability,
31	International Institute for Applied Systems Analysis. Laxenburg, Austria.
32	Fischer, G., F.N. Tubiello, H. van Velthuizen, and D. Wiberg, 2006: Climate changea and water use in
33	agriculture. Tech. Forecasting and Soc. Ch., in press.
34	Flannigan, M.D., Logan, K.A., Amiro, B.D., Skinner, W.R., Stocks, B.J., 2005: Future Area Burned in
35	Canada. Climatic Change, 72(1), 1-16.
36	Fleming, R.A., Candau, J.N., McAlpine, R.S., 2002: Landscape-scale analysis of interactions between
37	insect defoliation and forest fire in Central Canada. Climatic Change, 55, 251-272.
38	Foley, J.A., R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, F.S. Chapin, M.T. Coe,
39	G.C. Daily, H.K. Gibbs, J.H. Helkowski, T. Holloway, E.A. Howard, C.J. Kucharik, C.
40	Monfreda, J.A. Patz, C. Prentice, N. Ramankutty, and Snyder, 2005: Global consequences of
41	land use. Science, $309(5/34)$, $5/0-5/4$.
42	Frank, A.B. and W.A. Dugas, 2001: Carbon dioxide fluxes over a northern, semiarid, mixed-grass
43	prairie. Agricultural and Forest Meteorology, 108(4), 317-326.
44	Friedland, K.D., D.G. Reddin, J.R. McMenemy, and K.F. Drinkwater, 2003: Multidecadal trends in
45	North American Atlantic salmon (Salmo salar) stocks and climate trends relevant to juvenile
40	Survival. Canadian Journal of Fisheries and Aquatic Sciences, 60, 563-583.
4/	Funrer, J., 2003: Agroecosystem responses to combination of elevated CO2, ozone, and global climate
4ð 40	Con L 2004: Pick and damage of southern nine bestle outbreaks under slobel alimete shares. Forest
49 50	Uaii, J., 2004. Kisk and damage of southern pine decile outdreaks under global climate change. Forest Easlogy & Management $101(1, 2)$, 61, 71
50	Coughan Unknown and Unknown 2002
51	Cill D A HW Dollaw H D Johnson and at al. 2002: Nonlinear greatland rear anges to next and
52	Oni, K.A., H. W. Foncy, H.D. Johnson, and <i>et al.</i> , 2002. Nonlinear grassiand responses to past and

1	future atmospheric CO ₂ . Nature, 417(6886), 279-282.
2	Girardin, M.P., Tardif, J., Flannigan, M.D., Wotton, B.M., Bergeron, Y., 2004: Trends and
3	periodicities in the Canadian Drought Code and their relationships with atmospheric circulation
4	for the southern Canadian boreal forest. Can. J. For. Res., 34, 103-119.
5	Gitay, H., S. Brown, W.E. Easterling, B. Jallow, J. Antle, M. Apps, R. Beamish, C. Cerri, J. Frangi, J.
6	Laine, L. Erda, J. Magnuson, I. Noble, T. Root, E.D. Schultze, S. Semenov, and J.F. Soussana,
7	2001: Chapter 5. Ecosystems and Their Services. In: Impacts, Adaptation and Vulnerability to
8	Climate Change., Third Assessment Report of the Intergovernmental Panel on Climate Change.,
9	Cambridge University Press, 236-342.
10	Goklany, I.M., 1998: Saving Habitat and Conserving Biodiversity on a Crowded Planet. BioScience,
11	48, 941-953.
12	Goldammer, J.G. and R.W. Mutch, Eds., 2001: Global forest fire assessment 1990-2000. FAO.
13	Gommes, R., J. du Guerny, and M.H. Glantz, 2004: Climate and HIV/AIDS, a Hotspots Anaylsis to
14	Contribute to Early Warning and Rapid Response Systems, FAO, Rome.
15	Grandcourt, E.M. and H.S.J. Cesar, 2003: The bio-economic impact of mass coral mortality on the
10	Crazz W.W. M.E. Carbricht D. Circum, LE. O'Deilly, and N.W. Cazay 2002; Occar primary
1 / 1 0	Gregg, w.w., M.E. Conkright, P. Ginoux, J.E. O Kenny, and N. w. Casey, 2003. Ocean primary
18	Disaghlam B 2004: Duginges Opportunities in Equatry Sector, World Don't Seminiar "Duginges
19 20	Opportunities in Forestry Sector, Joelda Däyry, Helsinki, Finland, Helsinki
20	Hagler, P. 1008: The Global Timber Supply/Demand Balance to 2030: Has the Equation Changed? A
$\frac{21}{22}$	Multi-Client Study by Wood Resources International Reston, Virginia USA
22	Hanson P I and I F Weltzin 2000: Drought disturbance from climate change: response of United
23	States forests. The Science of the Total Environment, 262, 205-220
25	Harrison M 2005: The development of seasonal and inter-annual climate forecasting Climatic
26	Change 70 210-220
27	Harrison, P.A., R.E. Butterfield, and J.L. Orr. 2000: Modelling climate change impacts on wheat.
28	potato and grapevine in Europe. In: Climate change, climatic variability and agriculture in
29	Europe., T.E. Downing, P.A. Harrison, R.E. Butterfield, and K.G. Lonsdale, Eds. Research
30	Report No. 21, Environmental Change Institute, University of Oxford, Oxford, 367-390.
31	Harvell, C.D., Kim.K, J.M. Burkholder, R.R. Colwell, P.R. Epstein, D.J. Grimes, E.E. Hofmann, E.K.
32	Lipp, A.D.M.E. Osterhaus, R.M. Overstreet, J.W. Porter, G.W. Smith, and G.R. Vasta, 1999:
33	Emerging Marine DiseasesClimate Links and Anthropogenic Factors. Science, 285(5433),
34	1505.
35	Hayami, Y. and V.W. Ruttan, 1985: Agricultural Development: An International Perspective. Johns
36	Hopkins University Press, Baltimore, Maryland, 367 pp.
37	Hazell, P., 2004: Smallholders and pro-poor agricultural growth. DAC Network on Poverty Reduction,
38	Organisation for Economic Co-operation and Development, Paris.
39	Hendrick, 2005.
40	Henry, H.A.L., E.E. Cleland, C.B. Field, and P.M. Vitousek, 2005: Interactive effects of elevated CO2,
41	N deposition and climate change on plant litter quality in a California annual grassland.
42	Oecologia, 142(3), 465-473.
43	Hinderhofer, K., G. Egger-Schumacher, and F. Schoffl, 1998: HSF3, a new heat shock factor from
44	Arabidopsts thaliana, depresses the heat shock response and confers thermotolerance when
45	overexpressed in transgenic plants. Molecular General Genetics, 258, 269-278.
46	Hoann, C. I., H. Guttman, P. Droogers, and J. Aerts, 2004: Will we produce sufficient food under
4/	Climate change / Mekong Basin (South-east Asia). In: Climate Change in Contrasting River
4ð 40	Dasins: Adaptation Strategies for water, Food, and Environment, J.C.J.H. Aerts and P. Droogers, Eds. CADI Dublishing Wallingford UV 157 190
47 50	Lus., CADI rubiising, wannigibid, UK, 137-180. Hoddon and Provaton, 2002
50	Hofmann E. S. Ford F. Powell and I. Klinek 2001: Modeling studies of the effect of elimeter
51	voriability on MSV diagona in anstern aveter (Crossostron virginian) nonvlationa. Hydrobiologia

CONFIDENTIAL: Do Not Cite – Do Not Quote

1	460, 195-212.
2	Hogg, E.H. and P.Y. Bernier, 2005: Climate change impacts on drought-prone forests in western
3	Canada. Forestry Chronicle, 81, 675-682.
4	Holling, C.S., 2004: From complex regions to complex worlds. Ecology and Society, 9(1), 11,
5	http://www.ecologyandsociety.org/vol9/iss1/art11/.
6	Hortle, K. and S. Bush, 2003: Consumption in the lower Mekong basin as a measure of fish yield. In:
7	New Approaches for the Improvement of Inland Capture Fishery Statistics in the Mekong Basin,
8	T. Clayton, Ed., FAO RAP Publication 2003/01, 76-88.
9	Howden, S.M., Hall, W.B and Bruget, D. 1999: Heat stress and beef cattle in Australian rangelands:
10	recent trends and climate change. In: D. Eldridge & D. Freudenberger (eds) People and
11	Rangelands: Building the Future. Proceedings of the VI International Rangeland Congress, pp
12	43-45, Townsville, Australia.
13	Howden, S.M., Ash, A.J., Barlow, E.W.R. Booth, Charles, S., Cechet, R., Crimp, S., Gifford, R.M.,
14	Hennessy, K., Jones, R.N., Kirschbaum, M.U.F., McKeon, G.M., Meinke, H. Park, S. Sutherst,
15	R., Webb, L. Whetton, P.J. 2003a: An overview of the adaptive capacity of the Australian
16	agricultural sector to climate change – options, costs and benefits. Report to the Australian
17	Greenhouse Office, Canberra, Australia, pp157.
18	Howden, S.M., H., Meinke, B. Power and G.M. McKeon. 2003b: Risk management of wheat in a
19	non-stationary climate: frost in Central Queensland. Post, D.A. (ed.) Integrative modelling of
20	biophysical, social and economic systems for resource management solutions. Proceedings of the
21	International Congress on Modelling and Simulation, July 2003, Townsville, pp 17-22.
22	Howden, M. and R.N. Jones, 2004: Risk Assessment of Climate Change Impacts on Australia's Wheat
23	Industry. New Directions for a Diverse Planet: Proceedings of the 4th International Crop Science
24	Congress, Brisbane, Australia. Accessed.
25	Howden, S.M. and S. Crimp, 2005: Assessing Dangerous Climate Change Impacts on Australia's
26	Wheat Industry. In: MODSIM 2005 International Congress on Modelling and Simulation., A.
27	Zerger and R.M. Argent, Eds., Modelling and Simulation Society of Australia and New Zealand,
28	
29	IFAD, 2001: Rural Poverty Report 2001: The Challenge of Ending Rural Poverty. IFAD, Rome.
30 21	Ireland, 2004.
31	Jabionski, L.M., X. wang, and P.S. Curtis, 2002: Plant reproduction under elevated CO2 conditions: A
32 22	meta-analysis of reports on /9 crop and wild species. New Phytologist, 156(1), 9-26.
22 24	Jacobson, L.D., J.A.A. De Oliveira, M. Barange, K. F, IIX-Uraga, J.K. Hunter, J.Y. Kim, M. Jiquen, C.
24 25	production variability and alimete alonge in the great cardine and anabout ficharies. Canadian
33 26	Journal of Fisherios and Aquatia Sciences, 58, 1801
30	Journal Of Fisheries and Aquatic Sciences, 56, 1691.
38	Africa and Latin America in 2055. Global Environmental Change 13, 51-59
30	Iovee 1995
40	Joyce, 1995. Joyce L.A. J. Aber, S. McNulty, V. Dale, A. Hansen, L. Irland, R. Neilson, and K. Skog, 2001.
41	Potential consequences of climate variability and change for the forests of the United States. In:
42	National Assessment Synthesis Team Climate change impacts on the United States: the potential
43	consequences of climate variability and change. Cambridge University Press, Cambridge, U.K.
44	489-522
45	Karonsky, D.F., 2003: Impact of elevated atmospheric CO2 on forest trees and forest ecosystems:
46	knowledge gaps. Environment International, 29, 161-169.
47	Kates, R.W. and T.J. Wilbanks, 2003: Making the global local: Responding to climate change concerns
48	from the ground up. Environment, 45(3), 12-23.
49	Kelly, P. M. and Adger, W. N. (2000) Theory and practice in assessing vulnerability to climate
50	change and facilitating adaptation. Climatic Change, 47, 325-352.
51	King, J.R., 2005: Report of the Study Group on Fisheries and Ecosystem Responses to Recent Regime
52	Shifts. PICES Scientific Report, 28, 162pp.

1 2	King J.M., D. J. Parsons, J. R. Turnpenny, J. Nyangaga, P. Bakari, C. M. Wathes, 2005. Ceiling to milk yield on Kenya smallholdings requires rethink of dairy development policy British Society
3	of Animal Science Annual Conference, York, April 2005, p25. Also available from:
4	http://www.bsas.org.uk/downloads/BSAS_prog_text.pdf
5	Kishor, P.B.K., Z. Hong, G. Miao, C. Hu, and D. Verma, 1995: Overexpression of
6	Δ I-pyrroline-5-carboxylase synthase increases praline production and confers osmotolerance in
7	transgenic plants. Journal of Plant Physiology, 108, 1387-1394.
8	Knapp, A.K. and M.D. Smith, 2001: Variation among biomes in temporal dynamics of aboveground
9 10	primary production. Science, 291(5503), 481-484.
10	Romer, C., R. Assnori, O. Dignucolo, S. H?uenschwner, S.G. Keel, S. Pelaez-Kieul, S. Pepin, K. P. T.W. Siegwolf and G. Zotz. 2005: Carbon Elux and Growth in Matura Daciduous Forest Trees.
12	Exposed to Elevated CO2 Science 300 1360-1362
12	Kurukulasuriya P and S Rosenthal 2003: Climate Change and Agriculture: A Review of Impacts and
14	Adaptations Vol 91 World Bank Climate Change Series World Bank Environment
15	Department 96 pp pp
16	Laporte, Unknown, and Unknown, 2002.
17	Laurance, W.F. and G.B. Williamson, 2001: Positive feedbacks among forest fragmentation, drought,
18	and climate change in the Amazon. Source Conservation Biology, 15(6), 1529-1535.
19	Lawrence, A., 2003: No forest without timber? International Forestry Review, 5(2), 87-96.
20	Leary, N., J. Adejuwon, W. Bailey, V. Barros, M. Caffera, S. Chinvanno, C. Conde, A. De
21	Comarmond, A. De Sherbinin, T. Downing, H. Eakin, A. Nyong, M. Opondo, B. Osman, R.
22	Payet, F. Pulhin, J. Pulhin, J. Ratnasiri, E. Sanjak, G. von Maltitz, M. Wehbe, Y. Yin, and G.
23	Ziervogel, 2006: For Whom the Bell Tolls: Vulnerabilities in a Changing Climate. A Synthesis
24	from the AIACC Project.
25	Lee, D.M. and K.S. Lyon, 2004: A dynamic analysis of the global timber market under global
26	warming: an integrated modeling approach. Southern Economic Journal, 70(3), 467-489.
27	Leff, Unknown, and Unknown, 2004.
28	Lehodey, P., 2001: The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling
29	and biological consequences of ENSO. Progress in Oceanography, 49, 439-469.
30 21	Lenodey, P., F. Chai, and J. Hampton, 2003: Modelling climate-related variability of tuna populations
22	12(4.5) 482 404
32	Lemmen DS and FL Warren 2004: Climate Change Impacts and Adaptation: A Canadian
34	Perspective Natural Resources Canada Ottawa ON
35	Lexer M I K Honninger H Scheifinger C Matulla N Groll H Kromp-Kolb K Schadauer F
36	Starlinger and M Englisch 2002 [•] The sensitivity of Austrian forests to scenarios of climatic
37	change: a large-scale risk assessment based on a modified gap model and forest inventory data.
38	Forest Ecology & Management, 162, 53-72.
39	Liberloo, M., S.Y. Dillen, C. Calfapietra, S. Marinari, B.L. Zhi, P. De Angelis, and R. Ceulemans,
40	2005: Elevated CO2 concentration, fertilization and their interaction: Growth stimulation in a
41	short-rotation poplar coppice (EUROFACE). Tree Physiology, 25, 179-189.
42	Lilley, J.M., T.P. Bolger, and R.M. Gifford, 2001: Productivity of Trifolium subterraneum and Phalaris
43	aquatica under warmer, high CO2 conditions. New Phytologist, 150(2), 371-383.
44	Lin, E., X. Yinlong, J. Hui, and W. Xiong, 2004: Possible adaptation decisions from investigating the
45	impacts of future climate change on food and water supply in China. AIACC Asia-Pacific region
46	workshop, Manila, Philippines.
47	Lipton, M., 2004: Crop Science, Poverty and the Family Farm in a Globalising World. Plenary Paper.
48	4th International Crop Science Congress, Brisbane, Australia.
49 50	EVIL, S.F., E.A. AIIISWOITH, A. ROGEIS, and D.K. OII, 2004. KISING atmospheric carbon dioxide: Plants
50	Lova WM KS Pregitzer NL Karberg IS King and LP Giardina 2003. Reduction of soil carbon
52	formation by tropospheric ozone under increased carbon dioxide levels. Nature, 425, 7075-707?

1 2 2	Lüscher A, Fuhrer J, Newton PCD (2005) Global atmospheric change and its effect on managed grassland systems. In: McGilloway D.A. (ed) Grassland: a global resource. Wageningen
3 4 5	Mader, T. L. 2003. Environmental stress in confined beef cattle. J. Anim Sci. 81(electronic suppl.
5 6	2):110-119. Mader TL and MS Davis 2004 [:] Effect of management strategies on reducing heat stress of feedlot
7	cattle: feed and water intake. Journal of Animal Science, 82(10), 3077-3087.
8	Maltitz, V., 2005.
9 10	McPhaden, M.J. and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean Nature 415, 603-608
11	Mendelsohn R 2003 [•] A California model of climate change impacts on timber markets Accessed
12	February 10, http://www.energy.ca.gov/pier/final_project_reports/500-03-099c.html.
13	Mendelsohn, R., A. Dinar, A. Basist, P. Kurukulasuriya, M.I. Ajwad, F. Kogan, and C. Williams, 2004:
14	Cross-sectional Analyses of Climate Change Impacts. World Bank Policy Research Working
15	Paper 3350, Washington, DC.
16	Mitchell, S. W. and F. Csillag (2001). "Assessing the stability and uncertainty of predicted vegetation
17	growth under climatic variability: northern mixed grass prairie." 139 (2-3): 101-121.
18	Monirul, M. and Q. Mirza, 2002: Global warming and changes in the probability of occurrence of
19	floods in Bangladesh and implications. Global Environmental Change, 12, 127-138.
20	Moorcroft, P.R., 2003: Recent advances in ecosystem-atmosphere interactions: an ecological
21	perspective. Proceedings of the Royal Society of London - Series B: Biological Sciences.,
22	270(1521), 1215-1227.
23	Morgan, J. A., D. E. Pataki, et al. (2004). Water relations in grassland and desert ecosystems exposed
24	to elevated atmospheric CO2.' Oecologia 140, 11-25
25	Morgan, I., D.G. McDonald, and C.M. Wood, 2001: The cost of living for freshwater fish in a warmer,
20	more polluted world. Global Change Biology, 7, 345-355.
27	reconstruction for the 20th contury. Global Change Piology, 11, 208, 420
20	MRC 2003: State of the Basin Report: 2003 Melong River Commission Phnom Penh 300 nn
30	Murdivarso D 2000: Adaptation to climatic variability and change: Asian perspectives on agriculture
31	and food security Environmental Monitoring and Assessment 61(1) 123-131
32	Nabuurs G I A Pussinen T Karialainen M Erhard and K Kramer 2002. Stemwood volume
33	increment changes in European forests due to climate change - a simulation study with the
34	EFISCEN model. Global Change Biology, 8(4), 304-316.
35	Nakicenovic, N. and R. Swart, Eds., 2000: Special report on emissions scenarios: a special report of
36	Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University
37	Press, 612 pp.
38	Natural Resources Canada, 2002.
39	Naveen, K., P.K. Aggarwal, S. Chander, H. Pathak, R. Choudhary, A. Chaudhary, S. Mukesh, H.K.
40	Rai, U.A. Soni, S. Anil, M. Jolly, U.K. Singh, A. Owrs, and M.Z. Hussain, 2003: Impacts of
41	Climate Change on Agriculture in Climate Change and India: Vulnerability Assessment and
42	Adaptation. In: P.R. Shukla, Subodh, K.S., Ravindranath, N.H., Garg, A., Bhattacharya, S., Ed.,
43	University Press, India, 191-226.
44	Ndikumana, J., J. Stuth, R. Kamidi, S. Ossiya, R. Marambii, and P. Hamlett, 2000: Coping
45	Mechanisms and their Efficacy in Disaster-Prone Pastoral Systems of the Greater Horn of Africa:
46	Effects of the 1995-97 Drought and the 1997-98 El Nino Rains and the Responses of Pastoralists
4/	and Livestock., International Livestock Research Institute, Nairobi.
48 49	rates: A review Journal of Soil and Water Conservation 59 43-50
50	Nelson R and P Kokic 2004: Forecasting the regional impact of climate variability on Australian
51	crop farm incomes., Prepared for the Grains Research and Development Corporation, Canberra.

1	Ray, and J.G. Benito, 2004: Amazon drought and its implications for foret flammability and tree growth: a basin wide analysis. Global Change Biology, 10(5), 704, 717
2	Northy B. J. J. J. adford, C.D. Boilly, N.E. Millor, and E.G. O'Noill, 2004; Fina root production
5 1	dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the
	National Academy of Sciences of the United States of America, 101(26), 9680-9603
5	National Academy of Sciences of the Officer States of America, 101(20), 9089-9095.
7	canopy: no response to elevated CO2 Oecologia 136, 574, 584
8	Nowak R S D S Ellsworth and S D Smith 2004: Tansley review: Functional responses of plants to
0	elevated atmospheric Con-Do photosynthetic and productivity data from EACE experiments
10	support early predictions? New Phytologist 162, 253-280
11	O'Brien K L and R M Leichenko 2000: Double exposure: assessing the impacts of climate change
12	within the context of economic globalization. Global Environmental Change 10, 221-232
13	O'Meagher B 2005: Policy for agricultural drought in Australia: an economics perspective In: From
14	disaster response to risk management: Australia's natinal drought policy. L.C. Botterill and D.
15	Wilhite Eds Springer Dordrecht
16	O'Reilly C M S R Alin P D Plisnier A S Cohen and B A McKee 2004. Climate change
17	decreases aquatic ecosystem productivity of Lake Tanganvika Africa Nature 424 766-768
18	Olesen J E and M Bindi 2002: Consequences of climate change for European agricultural
19	productivity land use and policy European Journal of Agronomy 16 239-262
20	Parry, M., C. Rosenzweig, and M. Livermore, 2005: Climate change, global food supply and risk of
21	hunger. Phil. Trans. R. Soc. B, 360, 2125-2138.
22	Parry, M.L., 2004: Global impacts of climate change under the SRES scenarios. Global Environmental
23	Change, 14(1), 1-2.
24	Parry, M.L., C. Rosenzweig, A. Iglesias, G. Fischer, and M. Livermore, 1999: Climate change and
25	world food security: a new assessment. Global Environmental Change, 9, 51-67.
26	Parry, M.L., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer, 2004: Effects of climate
27	change on global food production under SRES emissions and socio-economic scenarios. Global
28	Environmental Change, 14(1), 53-68.
29	Parson, E.A., R.W. Corell, E.J. Barron, V. Burkett, A. Janetos, L. Joyce, T.R. Karl, M.C. Maccracken,
30	J. Melillo, M.G. Morgan, D.S. Schimel, and T. Wilbanks, 2003: Understanding climatic impacts,
31	vulnerabilities, and adaptation in the United States: Building a capacity for assessment. Climatic
32	Change, 57(1-2), 9-42.
33	Parsons, D. J., A. C. Armstrong, et al. (2001). "Integrated models of livestock systems for climate
34	change studies. 1. Grazing systems." <u>Global Change Biology</u> 7(1): 93-112.
35	Peng, C.H., 2000: From static biogeographical model to dynamic global vegetation model: a global
36	perspective on modelling vegetation dynamics. Ecological Modelling, 135(1), 33-54.
37	Peng, C.H., L. J.X., Q.L. Dang, M.J. Apps, and H. Jiang, 2002: TRIPLEX: a generic hybrid model for
38	predicting forest growth and carbon and nitrogen dynamics. Ecological Modelling, 153(1-2),
39	109-130.
40	Peng, S., J. Huang, J.E. Sneeny, and <i>et al.</i> , 2004: Rice yields decline with higher hight temperature
41	from global warming. Proceedings of the National Academy of Sciences of the United States of
42	America, 101(27), 9971-9975.
43	Perez-Garcia, 1997.
44	glabal forest sector. Climatic Change 54, 420, 461
43	Boraz P.T. and G. Vaha 2005: Continuing the adaptation process. In: Adaptation Policy Frameworks
40 17	for Climate Change Cambridge University Press New York
	Picon-Cochard P F Teyssonneyre IM Resle and IF Soussana 2004. Effects of elevated CO. and
49	cutting frequency on the productivity and herbage quality of a semi-natural grassland. Furguean
50	Journal of Agronomy 20 363-377
51	Pilon-Smits E A H M I Ebskamp M Ebskamp M Paul M Jeuken P Weisbeek and S Smeekens
52	1995: Improved performance of transgenic fructan-accumulating tobacco under drought stress.

1	Plant Physiology, 107, 125-130.
2	Podur, J., Martell, D.L., Knight, K., 2002: Statistical quality control analysis of forest fire activity in
3	Canada. Can. J. Forest Res., 32(2), 195-205.
4	Porter, J.R. and M.A. Semenov, 2005: Crop responses to climatic variation. Philosophical Transactions
5	of the Royal Society B: Biological Sciences, 360, 2021-2035.
6 7	Rafoss, T. and M.G. Saethre, 2003: Spatial and temporal distribution of bioclimatic potential for the Codling moth and the Colorado beetle in Norway: model predictions versus climate and field
8	data from the 1990s. Agr. and Forest Meteorol., 5, 75-85.
9	Rajagopal, V., K.V. Kasturi Bai, and S. Naresh Kumar, 2002: Drought management in plantation
10	crops. In: Plantation Crops Research and development in new Millennium, P. Rathinam, H.H.
11	Khan, V.M. Reddy, P.K. Mandal, and K. Suresh, Eds., Coconut Development Board, India,
12	30-35.
13	Rathgeber, C., A. Nicault, J.O. Kaplan, and J. Guiot, 2003: Using a biogeochemistry model in
14	simulating forests productivity responses to climatic change and CO2 increase: example of Pinus
15	halepensis in Provence (south-east France). Ecological Modelling, 166(3), 239-255.
16	Ravindranath, N.H. and J. Sathaye, 2002: Climate change and developing countries. Advances in
17	Global Change Research, 86, 300 pp.
18	Reddy, K.R., P.R. Doma, L.O. Mearns, M.Y.L. Boone, H.F. Hodges, A.G. Richardson, and V.G.
19	Kakani, 2002: Simulating the impacts of climate change on cotton production in the Mississippi
20	Delta. Climatic Research, 22, 271-281.
21	Reid, P. and C. Vogel, 2006: Living and responding to multiple stressors in South AfricaGlimpses
22	Boilly, C.D. Unknown and Unknown 2002
25	Reinly, C.D., Ulknowli, and Ulknowli, 2005. Pownolds ID T I Wabb and I A Howking 2005: Life history and acological correlates of
24 25	extinction risk in European freshwater fishes. Canadian Journal of Fisheries and Aquatic
25	Sciences 62 854-862
27	Riedo M D Gvalistras and <i>et al.</i> 2001: Pasture responses to elevated temperature and doubled CO2
28	concentration: assessing the spatial pattern across an alpine landscape., 17(1), 19-31.
29	Rosenzweig, C. and F.N. Tubiello, 2006: The interactions of adaptation and mitigation strategies in
30	agriculture. Mitigation and Adaptation Strategies for Global Change, in press.
31	Rosenzweig, C., F.N. Tubiello, R. Goldberg, and et al., 2002: Increased crop damage in the US from
32	excess precipitation under climate change. Global Environmental Change, 12, 197-202.
33	Ross, D.J., P.C.D. Newton, and K.R. Tate, 2004: Elevated [CO ₂] effects on herbage production and soil
34	carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally
35	dry sand. Plant and Soil, 260(1-2), 183-196.
36	Rustad LE, Campbell JL, Marion GM, et al. A meta-analysis of the response of soil respiration, net
37	nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming
38	OECOLOGIA 126 (4): 543-562 FEB 2001
39	Salinari, F., S. Giosue, F.N. Tubiello, A. Rettori, V. Rossi, F. Spanna, C. Rosenzweig, and M.L.
40	Guilino, 2006: Downy mildew epidemics on grapevine under climate change. Global Ch. Biol.,
41	In press. Sermionte II – R. Slater R. Derher I. Denn, S.C. Deney, A.C. Hirst, I. Klayman, R. Mateer, H.
4Z 12	Mikolajowicz, P. Monfrey, I. Orr. V. Soldetov, S.A. Spall and P. Stouffer, 2005: Posponso of
43	Ocean Ecosystems to Climate Warming, Global Biogeochemical Cycles, 18
44 45	Schmittner A 2005: Decline of the marine ecosystem caused by a reduction in the Atlantic
46	overturning circulation Nature 434 628-633
47	Schroeter D 2004 [•] ATEAM Advanced Terrestrial Ecosystem Analysis and Modelling Final
48	Report., Potsdam Institute for Climate Impact Research. Postdam Germany
49	http://www.pik-potsdam.de/ateam.
50	Sedjo, B.S. and K.S. Lyon, 1990.
51	Sedjo, B.S. and K.S. Lyon, 1996.
52	Sénat, 2004: Information report no. 195 - France and the french face the canicule: The lessons of a

⁵⁶ of 59

CONFIDENTIAL: Do Not Cite - Do Not Quote

1	crisis: appendix to the minutes of the session of February 3, 2004. 59-62,
2	http://www.senat.fr/rap/r03-195/r03-195.html.
3	Shafer, Unknown, and Unknown, 2002.
4	Shaw, M.R., E.S. Zavaleta, and <i>et al.</i> , 2002: Grassland responses to global environmental changes
5	suppressed by elevated CO ₂ . Science, 298, 1987-1990.
6	Shibru M 2001 Pastoralism and Cattle Marketing. A Case Study of the Borana of Southern Ethiopia
7	Forton University nn
8	Shugart H. R. Sedia and B. Sahngen 2003: Forests and Glabal climate change Potential Impacts on
0	U.S. Forest Resources, Vol. Eab. 2003, Pew Center on Global Climate Change. Arlington, VA
10	Shukla 2002
10	Silukia, 2003. Singleir, T.D. and I. C. Durgell 2005: Is a physical graph perspective relevant in a 'generality's gas?
11	Sinciali, T.K. and L.C. Fulcen, 2003. Is a physiological perspective relevant in a genocentric age?
12	Journal of Experimental Bolany, 50(421), 2777-2782.
13	Sitch, S., B. Smith, I.C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J.O. Kaplan, S. Levis, W. Lucht,
14	M. I. Sykes, K. Thonicke, and S. Venevsky, 2003: Evaluation of ecosystem dynamics, plant
15	geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global
16	Change Biology, 9(2), 161-185.
17	Sohngen, 1998.
18	Sohngen, B., R. Mendelsohn, and B.S. Sedjo, 1999.
19	Sohngen, B., R. Mendelsohn, and R. Sedjo, 2001: A global model of climate change impacts on timber
20	markets. Journal of Agricultural and Resource Economics, 26(2), 326-343.
21	Sohngen, B., Sedjo, R., 2005: Impacts of climate change on forest product markets: Implications for
22	North American producers. Forestry Chronicle, 81(5), 669-674.
23	Solberg, 2003a.
24	Solberg, B., Moiseyev, A., Kallio, AMI, 2003b: Economic impacts of accelerating forest growth in
25	Europe. Source Forest Policy & Economics, 5(2), 157-171.
26	Spalding, M.D. and G.E. Jarvis, 2002: The impact of the 1998 coral mortality on reef fish communities
27	in the Seychelles. Marine Pollution Bulletin, 44, 309-321.
28	Spittlehouse, D.L. and R.B. Stewart, 2003: Adaptation to climate change in forest management. BC
29	Journal of Ecosystems and Management, 4(1), 1-11.
30	http://www.forrex.org/iem/2003/vol4/no1/art1.pdf
31	Stacey D A and M D E Fellows 2002: Influence of elevated CO_2 on interspecific interactions at
32	higher trophic levels 2002 Global Change Biology 8 668-678
33	Stoate C ND Boatman R I Borralho C Rio Carvalho G R de Snoo and P Eden 2001
34	Ecological impacts of arable intensification in Europe Journal of Environmental Management
35	62 227 265
36	Surtech 1003: Isiala Meat Factory Project: Feasibility Study for Isiala Abattair - PO Box 52514
37	Nairobi
38	Tao F.I. M. Vokozawa, V. Havashi, and <i>et al.</i> 2003: Future climate change, the agricultural water
20	avala and agricultural production in China. Agricultura Ecosystems and Environment 05
<i>1</i> 0	202 215
40 41	205-215. Tayagannayra E. Diagn Cachard C. Ealaimagna D. Sayagana J.E. (2002a) Effects of alayated CO
41	and outting frequency on plant community structure in a temperate grassland. Clobal Change
42 42	Diology 9, 1024, 1046
43	$\begin{array}{c} \text{Biology 8, 1034-1040.} \\ \text{TI} \qquad \text{D} \ \text{G} \ \text{O} \ \text{M} \ \text{K} \ \text{i} \ \text{i} \ \text{i} \ \text{O} \ \text{C} \ \text{D} \ \text{i} \ $
44	I nomas, D.S.G., M. Knight, and G.F.S. Wiggs, 2005: Remobilization of southern African desert dune
45	systems by twenty-first century global warming. Nature, 435, 1218-1221.
46	I homas, J.M.G., K.J. Boote, L.H. Allen Jr., M. Gallo-Meagher, and J.M. Davis, 2003: Elevated
4/	temperature and carbon dioxide effects on soybean seed composition and transcript abundance. $(1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$
48	Crop Science, 43(4), 1548-1557.
49	I huiller, W., S. Lavorel, M.B. Araujo, M.T. Sykes, and I.C. Prentice, 2005: Climate change threats to
50	plant diversity in Europe. Proceedings of the National Academy of Sciences, USA, 8245-8250.
51	Accessed.
52	Toulmin, C., 1986: Pastoral Livestock Losses and Post-Drought Rehabilitation in Subsaharan Africa:

1	Policy Options and Issues. African Livestsock Policy Analysis Network, Network Paper No. 8,
2	Addis Ababa.
3	Tubiello, F.N., 2005: Climate Variability and Agriculture: Perspectives on Current and Future
4	Challenges. In: Impact of Climate Change, Variability and Weather Fluctuations on Crops and
5	Their Produce Markets, B. Knight, Ed., Impact Reports, Cambridge, UK.
6	Tubiello, F.N., W.E. Easterling, C. Rosenzweig, K. Boote, and et al., 2006: Response of crops to
7	elevated CO ₂ : how do models implement it. Global Eng. Ch., submitted.
8	Tubiello, F.N. and F. Ewert, 2002: Modeling the effects of elevated CO ₂ on crop growth and yield: A
9	review. Eur. J. Agr., 18(1-2), 57-74.
10	Tubiello, F.N. and G. Fischer, 2006: Reducing climate change impacts on agriculture: Global and
11	regional effects of mitigation. Tech. Forecasting and Soc. Ch., in press, 1990-2080.
12	Tubiello, F.N., C. Rosenzweig, R.A. Goldberg, and et al., 2002: Effects of climate change of US crop
13	production simulation results using two different GCM scenarios. Part I: Wheat, potato, maize,
14	and citrus. Climate Research, 20(3), 259-270.
15	Turvey, C., 2001: Weather derivatives for specific event risks in agriculture. Review of Agricultural
16	Economics, 23(2), 335-351.
17	UN, 2004: World Population to 2300 Document ST/ESA/SER.A/236, United Nations, New York.
18	van Ittersum, M.K., Howden, S.M., Asseng S. (2003) Sensitivity of productivity and deep drainage of
19	wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and
20	precipitation, Agriculture, Ecosystems and Environment, 97:255-273.
21	Vanhatalo, M., J. Back, and S. Huttunen, 2003: Differential impacts of long-term (CO2) and O3
22	exposure on growth of northern conifer and deciduous tree species. Trees - Structure and
23	Function, 17(3), 211-220.
24	Varaprasad, P.V., K.J. Boote, L. Hartwell-Allen, and J.M.G. Thomas, 2003: Super-optimal
25	temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at
26	both ambient and elevated carbon dioxide. Global Change Biology, 9, 1775-1787.
27	Vasquez-Leon, M., C.T. West, and T.J. Finan, 2003: A comparative assessment of climate
28	vulnerability: Agriculture and ranching on both sides of the US-Mexico border. Global
29	Environmental Change, 13, 159-173.
30	Vogel, C., 2005: "Seven fat years and seven lean years?" Climate change and agriculture in Africa. IDS
31	Bulletin, 36, 30-35.
32	Volder, A., E.J. Edwards, J.R. Evans, B.C. Robertson, M. Schortemeyer, and R.M. Gifford, 2004:
33	Does greater night-time, rather than constant, warming alter growth of managed pasture under
34	ambient and elevated atmospheric CO2? New Phytologist, 162(2), 397-411.
35	Volney, W.J.A., Fleming, R.A., 2006: Climate change and impacts of boreal forest insects.
36	Agriculture, Ecosystems and Environment, 82, 283-294.
3/	Vorley, B., 2002: Sustaining Agriculture: Policy, Governance and the Future of Family-Based
38	Farming. International Institute for Environment and Development, London.
39	Wassmann, R., N.X. Hein, C.I. Hoann, and I.P. Tuong, 2004: Sea level rise affecting the vietnamese
40	Mekong Delta: water elevation in the flood season and implications for fice production. Climatic
41	Change, $66(1-2)$, $89-107$.
42	Weib M 2004: Intensive short rotation forestry in barcel elimeters: present and future perspectives
43	Con L For Des. 24, 1260, 1279
44	Call. J. FOI. Kes., 54, 1309-1578. Wheeler, T.D., D.O. Crauford, D.H. Ellia, J.D. Dortor, and D.V. Vara Dragod, 2000; Tormporature
43	wheeler, T.K., P.Q. Clautord, K.H. Ellis, J.K. Porter, and P.V. Vara Prasad, 2000. Temperature
40	White Unknown and Unknown in pross
4/ 18	Williams A A L D I Karoly and N Tannar 2001. The consistivity of Australian fire denger to elimete
40 40	change Climatic Change $AQ(AQ)$ 171 101
77 50	Winkels A and W N Adgar 2002: Sustainable livelihoods and microtion in Vietnam: the importance
50	of social capital International Symposium on Sustaining Food Security and Managing Natural
52	Resources in Southeast Asia_Challenges for the 21st Century Chiang Mai Thailand
54	resources in bouncust risin chanenges for the 21st Century, Chang Mai, Thanand.

- Wittig, V.E., C.J. Bernacchi, X.-G. Zhu, C. Calfapietra, R. Ceulemans, P. Deangelis, B. Gielen, F. 1 2 Miglietta, P.B. Morgan, and S.P. Long, 2005: Gross primary production is stimulated for three 3 Populus species grown under free-air CO2 enrichment from planting through canopy closure. 4 Global Change Biology, 11(4), 644-656. 5 Wollenweber, B., J.R. Porter, and J. Schellberg, 2003: Lack of interaction between extreme 6 high-temperature events at vegetative and reproductive growth stages in wheat. J. Agron. Crop 7 Sci., 189, 142-150. 8 Wullschleger, S.D., T.J. Tschaplinski, and R.J. Norby, 2002: Plant water relations at elevated CO2 -9 Implications for water-limited environments. Plant Cell Environ., 25(2), 319-331. 10 Xiao, G., W. Liu, Q. Xu, Z. Sun, and J. Wang, 2005: Effects of temperature increase and elevated CO2 concentration, with supplemental irrigation, on the yield of rain-fed spring wheat in a semiarid 11 12 region of China. Agricultural Water Management, 74(3), 243-255. 13 Yohe, G. and R.S.J. Tol, 2001: Indicators of social and economic coping capacity--Moving toward a 14 working definition of adaptive capacity. Global Environmental Change, 12, 25-40. 15 Zavaleta, E.S., M.R. Shaw, N.R. Chiariello, B.D. Thomas, E.E. Cleland, C.B. Field, and H.A. Mooney, 16 2003: Grassland responses to three years of elevated temperature, CO2, precipitation, and N 17 deposition. Ecological Monographs, 73(4), 585-604. 18 Zhao, D., K.R. Reddy, V.G. Kakani, J.J. Read, and J.H. Sullivan, 2003: Growth and physiological 19 responses of cotton (Gossypium hirsutum L.) to elevated carbon dioxide and ultraviolet-B 20 radiation under controlled environmental conditions. Plant, Cell and Environment, 26, 771-782. 21 Zhao, Y., C. Wang, S. Wang, and L. Tibig, 2005: Impacts of present and future climate variability on 22 agriculture and forestry in the humid and sub-humid tropics. Climatic Change, 70, 73-116. 23 Zheng, Unknown, and Unkngwon, 2002.
- 24 Ziska, 2004.
- Zvereva, E.L. and M.V. Kozlov, 2006: Consequences of simultaneous elevation of carbon dioxide and
 temperature for plant-herbivore interactions: a meta-analysis. Global Change Biology, 12, 27-41.
- 27 28