Tables & Figures chapter 2

Туре	Indicative examples of sources	Typical approaches and considerations
Unpredictabil- ity	Projections of human behaviour not easily amenable to prediction (e.g. evolution of political systems). Chaotic components of complex systems.	Use of scenarios spanning a plausible range, clearly stating assumptions, limits considered, and subjective judgments. Ranges from ensembles of model runs.
Structural un- certainty	Inadequate models, incomplete or com- peting conceptual frameworks, lack of agreement on model structure, ambiguous system boundaries or definitions, signifi- cant processes or relationships wrongly specified or not considered.	Specify assumptions and system defini- tions clearly, compare models with obser- vations for a range of conditions, assess maturity of the underlying science and de- gree to which understanding is based on fundamental concepts tested in other areas.
Value uncer- tainty	Missing, inaccurate or non-representative data, inappropriate spatial or temporal resolution, poorly known or changing model parameters.	Analysis of statistical properties of sets of values (observations, model ensemble re- sults, etc); bootstrap and hierarchical sta- tistical tests;comparison of models with observations.

 Table 2.4.4. A simple typology of uncertainties

Source: reproduced from Table 2 in IPCC Guidance Notes (2005).

Table 2.4.5. Qualitatively defined levels of understanding

consensus \rightarrow	High agreement limited evidence	 High agreement much evidence
agreement or		
Level of	Low agreement	 Low agreement much
	limited evidence	evidence

Amount of evidence (theory, observations, models) \rightarrow

Source: reproduced from Table 2 in IPCC (2005)

Table 2.4.6. Qualitatively calibrated levels of confidence

Terminology	Degree of confidence in being correct
Very high confidence	At least 9 out of 10 chance of being correct
High confidence	About 8 out of 10 chance
Medium confidence	About 5 out of 10 chance
Low confidence	About 2 out of 10 chance
Very low confidence	Less than 1 out of 10 chance

Source: reproduced from Table 3 in IPCC Guidance Notes (2005)

Terminology	Likelihood of the occur-
	rence/outcome
Virtually certain	> 99% probability of occurrence
Very likely	> 90% probability
Likely	> 66% probability
About as likely as no	33 to 66% probability
Unlikely	< 33% probability
Very unlikely	< 10% probability
Exceptionally unlikely	< 1% probability

Table 2.4.7. Qualitatively defined likelihood scale

Source: reproduced from Table 4 in IPCC Guidance Notes (2005)

1. MDG Goals	2. Sectoral Themes	3. Climate Change Links
To halve between 1990 and 2015, the proportion of the worlds population whose income is below 1US\$ a day	Energy: Energy for local enterprises Lighting to facilitate income generation Energy for machinery Employment related to energy provision	Energy: GHG emissions. Adaptive capacity increase due to higher income levels and decreased dependence on natural resources. production costs etc.
	Food/water: Increased food production Improved water supply Employment	Food/water: GHG emissions Increased productivity of agriculture can reduce climate change vulnerability. Improved water management can help adaptation
To halve between 1990 and 2015, the proportion of people who suffer from hunger	Energy: Energy for machinery and irrigation in agriculture Food/water: More efficient production processes that increases production and reduces waste Distribution of land and food	Energy: GHG emissions. Food/water: Increased GHG emissions from some agricultural activities but partly offset by more carbon sequestration and improved waste management. Adaptive capacity of farmers depend on income and land ownership.
To ensure that, by 2015, children everywhere will be able to complete a full course of primary schooling	Energy: Reduce time spent by children on energy provision. Lighting for reading Energy for educational media including TV and computers Food/water: Reduced time spend in this sector enables children to	Energy: Education can support adaptive and mitigative capacity. Food/water: Education can support adaptive and mitigative capacity
	spend more time on education Improved health increases childrens capacity to read	

Table 2.2.7. Relationship between MDG's, Energy-, Food-, and Water Access, and climate change

Ensuring that girls and boys have equal access to primary and secondary education, preferably by 2005, and to all levels of education no later than 2015	Energy: Modern energy services free girls and young women's time spend on energy provision New electronic educational media makes it easier for girls to get information from home	Energy: Education can support adaptive and mitigative capacity
	Food/water:	Food/water:
	Modern production practices in agriculture and improved water supply free girls and young women's time spend on energy.	Education can support adaptive and mitigative capacity
5. To reduce by two-thirds, between 1990	Energy:	Energy:
and 2015, the death rate for children under the age of five years	Energy supply can support health clinics Reduced air pollution from tradional fuels Reduced time spend on fuel collection can increase the time spend on childrens health care	GHG emissions
	Food/water:	Food/water:
	Improved health due to increased supply of high quality	Health improvements will decrease vulnerability to
	food and clean water	climate change and the adaptive capacity
	Reduced time spend on food and water provision can	
	increase the time spend on childrens health care	
To reduce by three-quarters between	Energy:	Energy:
1990 and 2015 the rate of maternal	Energy provision for health clinics	GHG emissions
mortality	Reduced air pollution from tradional fuels and other	
	health improvements.	
	Food/watan	Food/watan
	FOUL/ water.	Food/water. Health improvements will decrease vulnershility to
	food and clean water	climate change and the adaptive capacity
	Time savings on food and water provision can increase	
	the time spend on childrens health care	

6 HIV/AIDS, malaria and other major	Energy:	Energy:
diseases	Energy for health clinics	GHG emissions from increased health clinic services,
	Cooling of vaccines and medicine	but health improvements can also reduce the health
		service demand
	Food/water	Food/water:
	Health improvements from cleaner water supply	Health improvements will decrease vulnerability to
	Food production practices that reduces malaria potential	climate change and the adaptive capacity
To stop the unsustainable exploitation of	Energy:	Energy:
natural resources	Deforestation caused by woodfuel collection	GHG emissions
	Use of exhaustible resources	Carbon sequestration
	Food/water:	Food/water:
	Land degradation	Carbon sequestration
		Improved production conditions for land use activities
		will increase the adaptive capacity
To halve, between 1990 and 2015, the	Energy:	Energy:
proportion of people who are unable to	Energy for pumping and distribution systems, and for	GHG emissions
reach and afford safe drinking water	desalination and water treatment	
	Water:	Water:
	Improved water systems	Reduced vulnerability and enhanced adaptive capacity
Develop a global partnership for		
development		

Millennium development goals and global tar-	India's 10 th plan (2002-2007) and beyond tar-	How these address climate change con-
gets ¹	gets ^{2, 3, 4}	cerns?
Goal 1: Eradicate extreme poverty and hunger	Double the per capita income by 2012	Enhanced adaptation capacity due to im-
Target 1: Halve, between 1990 and 2015, the	Reduction of poverty ratio by 5 percentage	proved food security, health security and
proportion of people whose income is less than	points by 2007 and by 15 percentage points by	resilience to cope with risks from uncer-
<i>\$1 a day</i>	2012	tain and extreme events
Target 2: Halve, between 1990 and 2015, the	Reduce decadal population growth rate to	
proportion of people who suffer from hunger	16.2% between 2001-2011 (from 21.3% during	
	1991-2001)	
Goal 2: Achieve universal primary education	All children in school by 2003; all children to	Enhanced adaptation capacity due to im-
Target 3: Ensure that, by 2015, children every-	complete 5 years of schooling by 2007	proved skills, flexibility to shift voca-
where, boys and girls alike, will be able to com-	Increase in literacy rates to 75% by 2007 (from	tions/locations
plete a full course of primary schooling	65% in 2001)	
Goal 3: Promote gender equality and empower	At least halve, between 2002 and 2007, gender	Enhanced capacity of women to deal
women	gaps in literacy and wage rates	with added social risks from climate
Target 4: Eliminate gender disparity in primary		change
and secondary education, preferably by 2005 and		
in all levels of education no later than 2015		
Goal 4: Reduce child mortality	Reduction of Infant mortality rate (IMR) to 45	Enhanced resilience of children to health
Target 5: Reduce by two-thirds, between 1990	per 1000 live births by 2007 and to 28 by 2012	effects of climate change due to im-
and 2015, the under-five mortality rate	(115 in 1980, 70 in 2000)	proved access to health services
Goal 5: Improve maternal health	Reduction of MMR to 2 per 1000 live births by	Enhanced resilience of women to health
Target 6: Reduce by three-quarters, between	2007 and to 1 by 2012 (from 3 in 2001)	effects of climate change due to im-
1990 and 2015, the maternal mortality ratio		proved access to health services
(MMR)		

Table 2.2.8. Development goals, targets and climate change

Goal 6: Combat HIV/AIDS, malaria and other diseases Target 7: Have halted by 2015 and begun to re- verse the spread of HIV/AIDS Target 8: Have halted by 2015 and begun to re- verse the incidence of malaria and other major diseases	Have halted by 2007; 80 to 90% coverage of high risk groups, schools, colleges and rural areas for awareness generation by 2007 25% reduction in morbidity and mortality due to malaria by 2007 and 50% by 2010	Higher resilience of the population due to enhanced capacity to deal with epi- demics Enhanced resilience to added risk of Ma- laria and other vector borne diseases
Goal 7: Ensure environmental sustainability Target 9: Integrate the principles of sustainable development into country policies and pro- grammes and reverse the loss of environmental resources Target 10: Halve by 2015 the proportion of peo- ple without sustainable access to safe drinking water Target 11: Have achieved by 2020 a significant improvement in the lives of at least 100 million slum dwellers	Increase in forest and tree cover to 25% by 2007 and 33% by 2012 (from 23% in 2001) Sustained access to potable drinking water to all villages by 2007 Commission 14.4 GW hydro and 3 GW by other renewables in a total power generation capacity additions of 41.1 GW between 2002- 2007 Electrify 62,000 villages by 2007 through con- ventional grid expansion, remaining 18,000 by 2012 through decentralized non-conventional sources like solar, wind, small hydro and bio- mass. Cleaning of all major polluted rivers by 2007 and other notified stretches by 2012	Lower GHG emissions and local emis- sions; lower fossil fuel imports; reduced pressure on land, resources and ecosys- tems Higher adaptive capacity to climate vari- ability due to enhanced water supply Resilience to cope with health impacts of climate change due to access to clean water and electricity Higher adaptive capacity due to en- hanced reach of health/education facili- ties dependent on electrical equipments and flexibility of economic activities in rural areas
<u>Goal 8: Develop a global partnership for devel-</u>	Expeditious reformulation of the fiscal man-	Higher resilience to climate change due
opment	agement system to make it more appropriate	to enhanced supply of social infrastruc-
<i>Target 12: Develop further an open, rule-based,</i>	for the changed context	ture
predictable, non-discriminatory trading and fi-	Tenth plan includes state-wise break up of the	Higher mitigative and adaptive capacity
nancial system (includes a commitment to good	broad developmental targets.	from access to global resources and
governance, development, and poverty reduction	Higher integration with the global economy	technologies
- both nationally and internationally)	Create 50 million employment opportunities by	Enhanced flexibility of jobs and migra-

Target 16: In cooperation with developing coun-	2007 and 100 million by 2012 (current back-	tion
tries, develop and implement strategies for decent	log of unemployment is around 9%, equivalent	Improved capacity to deal with health
and productive work for youth	to 35 million persons)	risks due to access to advanced medicine
Target 17: In cooperation with pharmaceutical		and health services
companies, provide access to affordable essential		Enhanced adaptive capacity to deal with
drugs in developing countries		extreme events from access to advanced
Target 18: In cooperation with the private sector,		information and communication systems
make available the benefits of new technologies,		
especially information and communications tech-		
nologies		

Note: Millennium targets13 and 14 refer to special needs of least developed, land locked and small island countries. India is party to several international conventions and programmes assisting these countries. India is also implementing policies in line with target 15 that exhorts amelioration of debt of developing countries, including own debt, under global cooperation.

Source: Shukla et al., 2003

V 1	
	Specific policy example
Market oriented policies Market creation, possibly with public sector involve- ment in the transition period	Temporary support to specific demon- stration projects
Privatisation for example through the establishment of well-defined property rights and enforcement.	Land property rights
Regulate competition by introducing more market ac- tors.	Information campaigns, soft loans to de- velopers of renewable technologies
Environmental taxes Support efficiency in savings and investment decisions	Carbon taxes Support financing mechanisms
Launch technical standards to be met in a given time frame.	Efficiency standards for electricity appli- ances
Price liberalisation, support international competition	Exchange rate devaluation, subsidy re- moval
Policies targeting in-flexibility and constraints of estab- lished technical systems	
Timing of infrastructure investments	Long term planning of power production and transmission, transportation facilities
Subsidy to capital turnover projects Subsidised credit to support research, development and	Specific capital grants Demonstration and research programmes
learning processes Co-ordination and integration of specific climate change mitigation efforts in general investment policies	Information, capital subsidies
Institutional policies	

Table 2.4.5.3. Examples of Implementation Policies Related to Climate Change Mitigation

Establish monitoring and enforcement systems	Reporting systems
Establish and enforce property rights	Land reforms
Institutional set-up for the reduction of risks and/or risk pooling (notably capital market)	Offset market
Establishment of specific organisations to reduce uncer- tainty and transmit information.	Insurance schemes
Establish international mechanism for technology trans-	CDM
fer.	
Human capacity policies	
Training and education activities.	Capacity development programmes
Improvement of decision making processes	Participation, local governance
Educational programmes	Energy and transport provision to schools

1 7	Table 2.5.6 Input assumptio	ns in energy sector mitigatio	on studies (the table can be si	upplemented with assump	tions for other sectors)

Input assumptions	Meaning and relevance
Population	All else being equal, high growth increases GHG emissions.
Economic growth	Increased economic growth increases energy-using activities and also leads to increased investment, which speeds the turnover of energy- using equipment. Various assumptions on GHG emissions and resource intensities can be used foralternative scenarios.
Energy demand	Different sectors have different energy-intensities; structural change
Structural change	therefore has a major impact on overall energy use.
Technological change	This "energy-efficiency" variable influences the amount of primary
• Lifestyle	energy needed to satisfy given energy services required by a given
-	economic output.
	Innovation and penetration of new technologies.
	Explaines structural changes in consumer behaviour
Energy supply	Potential for fuel and technology substitution.
• Technology availability	The cost at which an infinite alternative supply of energy becomes
and cost	available; this is the upper bound of cost estimates.
Backstop technology	Technology costs related to time, market scale, and institutional ca-
• Learning	pacity.
	Innovation and penetration of new technologies.
Price and income elastic-	Relative changes in energy demand through changes in price or in-
ities of energy demand	come, respectively; higher elasticities result in larger changes in en-
	ergy use
Implementation and trans-	Implementation scale, regulatory framework, institutional capacity,
action costs	administration
Discount rates	Time perspective
	Opportunity cost of capital

	Social time preference
	Risk assumptions
	Uncertainty
Policy instruments and	Economic versus regulatory measures
regulation	Implementation costs, including costs of overcoming barriers either
• Instruments	in the form of institutional aspects or improvements in markets (in-
Barriers	cluding capacity building and institutional reforms); behavioral as-
	sumptions.
Existing tax systems and tax	Recycling of carbon taxes; substitution of distortionary taxes de-
recycling	creases costs
Ancillary benefits	Integration of local and regional environmental policies in most cases
	generates
	Secondary benefits.
	Social policy goals, like income distribution and employment, can
	result indifferent policy rankings.

	GNI Per Capita \$USD		Life Expectancy (LE) Years		Literacy (ILL) %	
	Average	C.Var	Average	C.Var	Average	C.Var
1980/90	3,764	4,915	61.2	0.18	72.5	25.3
2001	7,350	10,217	65.1	0.21	79.2	21.4
% Change Average		95%		6%		9%
% Change Co. Var.		6%		14%		-22%

Table 2.7.2 Measures of Inter-country Equity

Source: WB, 2005 (World Development Indicators)

Notes: Literacy Rates are for 1990 and 2001. GNI and LE data are for 1980, 1990, and 2001. 99 countries are included in the sample.

Coefficient of variation is the standard deviation of a series divided by the mean. The standard deviation is given by the formula:

 $s = \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 / (n-1)}$ Where 'x' refers to the value of a particular observation, \bar{x} is the mean of the sample and 'n' is the number of observations.

6

2

3

4 5

1

	Effect of Climate Change				
Dimension of Equity	Within a Country	Across Countries			
Economic	Increased vulnerability of agricultural practices that are undertaken by poor people will increase inequality	With greater negative impacts in developing countries, inequality will increase			
Health	Poorer people suffer from lower general health standard and less access to health services and can therefore be more impacted, although some impacts will affect all sections	Major impacts of flooding, vector borne diseases etc. will be in developing countries			

Table 2.7.3. Impacts of Climate Change on Different Dimensions of Equity

Economic and Social	Probably affects all sections, bu	t Bigger effects will be in	
Security	those more dependent on natura	l developing countries	
_	resources will be hurt more.		
Gender	As major users of natural	Economic disparity along gender	
	resources e. g firewood for woo	d lines will increase	
	fuel and as contributors to		
	subsistence agriculture, women		
	will be severely affected by		
	climate change		
Access to Public Goods	Cuts in government expenditure	Costs of adaptation will be greate	
	to cope with climate change wi	l in poor countries, making them	
	affect all, but could fall	less able to maintain provision of	
	disproportionately on the poor.	other public goods.	
Political and Social	With possible social disruptions	, Effects of migration and could be	
Freedoms	freedoms could be eroded.	felt in all countries, including the	
		more well-to-do ones, affecting	
		traditional liberties.	
Table 2.8.1. Examples of	Disaggregating the World.		
Classifying Variable/s	Units	Examples of Analytical Interest	
UN Membership	Annex-1, non-Annex-1	Burden sharing, International climate	
		change cooperation	
	Permanent, temporary, and non-	?	
	members of UNSC		
	Various Groupings such as G-4,		
	G-7, G-8, G-19, G-77 Voluntary	Burden sharing, International climate	
	Associations	change cooperation	

Per Capita Income	Stage of Development (Least developed, developing, economies in transition, developed)	Vulnerability of climate change, Mitigative and adaptive
	Consumption	Emission projections, equity
Population Density	Urbanization	Infrastructure investments and land use policies
Pop. Density as a proxy	Light Pollution ?why that	Good proxy
Altitude above MSL	Areas at risk for inundation from sea level rise	CC impact analysis
Grid (formed by latitude and longitude)	Global Circulation Models to study climate change and impacts	General global cc projections, difficult to link to link to more detailed studies e.g. since sea and land in the same cell
Oil production, trade and consumption	Producing, exporting, importing, consuming	CO ₂ taxes and other policy options
Temperature and Precipitation zones	Biomes, forestry and agriculture	CC impacts

1 Figures

2

Figure 1: Classification of models in the IMCP

3 4 5

Figure 2.2.1 A schematic and simplified representation of an integrated assessment framework for considering anthropogenic climate change.

Figure 2.2.2. TAR figure on SD, adaptation and mitigation interactions

Figure 2.2.3. Interactions between the climate system, nature, and the socio-economic system and the relationships to SD and adaptation-mitigation

	Model type	ETC related to energy intensity	ETC related to carbon intensity	Other ETC	Exogenous TC
WIAGEM Kemfert 2002	CGE	 Factor substitution in CES production R&D investments affecting energy efficiency, triggered by climate damages 	Carbon-free energy from generic backstop technology	 Interregional spillovers 	 Total factor productivi- ty
AIM/Global Kainuma et al. 2003	CGE	 Factor substitution in CES production Investments in energy saving capital raises energy efficiency for coal, oil, gas, and electricity (in addition to AEEI) 	 Carbon-free energy from nuclear power 		 AEEI for energy from coal, oil, gas, and for electricity
DEMETER- ICCS Gerlagh et a. 2004	GE market model	Factor substitution in CES production	 Carbon-free energy from renewables and CCS Learning-by-Doing for both 	 Learning-by-Doing for fossil fuels 	Overall productivity
MERGE-ETL Kypreos 2004	hybrid	Factor substitution in CES production	 Carbon-free energy from backstop technologies (renewables (wind, pho- tovoltaics, biomass) and new nuclear concepts) Learning-by-Doing and Learning-by- Searching for energy technologies 	Interregional technology spillovers	 Autonomous costs re- duction for all tech- nologies
MIND Edenhofer et al. 2005	hybrid	 R&D investments improve energy effi- ciency Factor substitution in CES production 	 Carbon-free energy from backstop technologies (renewables and CCS) Learning-by-Doing for renewable energy 	 R&D investments in labor productivity Learning-by-Doing in re- source extraction 	Technological progress in resource extraction
DNE21+ Akimoto et al. 2004	ESM	Energy savings in end-use sectors mod- elled using the long-term price elastici- ty.	 Carbon-free energy from backstop technologies (renewables, CCS, and nuclear) Learning curves for energy technolo- gies (wind, photovoltaic and fuel cell vehicle) 		
GET-LFL Azar et al. 2005	ESM	Learning-by-Doing in energy conver- sion	 Carbon-free energy from backstop technologies (renewables and CCS) Learning curves for investmenst costs Spillovers in technology clusters 		

	Model type	ETC related to energy intensity	ETC related to carbon intensity	Other ETC	Exogenous TC
MESSA GE- MACRO Messner/Strube g- ger 1995	ESM	 Factor substitution in CES production in MACRO 	 Carbon-free energy from backstop technologies (renewables, carbon scrubbing and sequestration) Learning curves for energy technolo- gies (electricity generation, renew- able hydrogen production) 		Declining costs in ex- traction, production Demand
E3MG Barker et al. 2005	econo- metric	 Cumulative investments and R&D spending determine energy demand via a technology index 	Learning curves for energy technolo- gies (electricity generation)	Cumulative investments and R&D spending deter- mine exports via a tech- nology index Investments beyond base- line levels trigger a Key- nesian multiplier effect	
IMACLIM-R Crassous et al. 2005	dynam- ic re- cursive growth model	 Cumulative investments drive energy efficiency Fuel prices drive energy efficiency in transportation and residential sector 	Learning curves for energy technolo- gies (electricity generation)	Endogenous labor produc- tivity, capital deepening	
FEEM-RICE Bosetti et al. 2005	endoge - nous growth IAM	 Factor substitution in Cobb-Douglas production Energy technological change index (ETCI) increases elasticity of substitu- tion Learning-by-Doing in abatement raises ETCI R&D investments raise ETCI 	ETCI explicitly decreases carbon in- tensity see ETCI in the energy intensity col- umn		Total factor productivi- ty Decarbonization ac- counting for e.g. chang- ing fuel mix
ENTICE Popp 2004	endoge- nous growth IAM	 Factor substitution in Cobb-Douglas production 	Carbon-free energy from generic backstop technology		 Total factor productivi- ty Decarbonization ac- counting for e.g. chang- ing fuel mix
IMAGE/TIMER IMAGE-team 2001	Rule - based simula- tion IAM	 price elastic energy demand via substi- tution possibilities for energy by ener- gy savings capital 	 Carbon-free energy from backstop technology (nuclear/renewables, CCS) Learning-by-Doing for energy tech- nologies (oil, gas, coal, nuclear, so- lar/wind, biomass) 	Capital accumulation and depreciation	 Efficiency of power plants, partly energy ef- ficiency, transport and refining losses of fossil fuels and electricity

Figure 2.3.2 The scientific decision model goes from left to right

Figure 2.3.1 The dynamic nature of the climate change process. The squares are decision nodes, with arrows indicating the wide range of actions. The circles are outcome nodes, with wide range of potential consequences

	Model type	ETC related to energy intensity	ETC related to carbon intensity	Other ETC	Exogenous TC
MESSA GE- MACRO Messner/Strubeg- ger 1995	ESM	 Factor substitution in CES production in MACRO 	 Carbon-free energy from backstop technologies (renewables, carbon scrubbing and sequestration) Learning curves for energy technolo- gies (electricity generation, renew- able hydrogen production) 		Declining costs in ex- traction, production Demand
E3MG Barker et al. 2005	econo- metric	 Cumulative investments and R&D spending determine energy demand via a technology index 	Learning curves for energy technolo- gies (electricity generation)	Cumulative investments and R&D spending deter- mine exports via a tech- nology index Investments beyond base- line levels trigger a Key- nesian multiplier effect	
IMACLIM-R Crassous et al. 2005	dynam- ic re- cursive growth model	 Cumulative investments drive energy efficiency Fuel prices drive energy efficiency in transportation and residential sector 	Learning curves for energy technolo- gies (electricity generation)	 Endogenous labor produc- tivity, capital deepening 	
FEEM-RICE Bosetti et al. 2005	endoge- nous growth IAM	 Factor substitution in Cobb-Douglas production Energy technological change index (ETCI) increases elasticity of substitu- tion Learning-by-Doing in abatement raises ETCI R&D investments raise ETCI 	ETCI explicitly decreases carbon in- tensity see ETCI in the energy intensity col- umn		 Total factor productivi- ty Decarbonization ac- counting for e.g. chang- ing fuel mix
ENTICE Popp 2004	endoge- nous growth IAM	 Factor substitution in Cobb-Douglas production 	Carbon-free energy from generic backstop technology		 Total factor productivi- ty Decarbonization ac- counting for e.g. chang- ing fuel mix
IMAGE/TIMER IMAGE-team 2001	Ruk- based simula- tion IAM	 price elastic energy demand via substi- tution possibilities for energy by ener- gy savings capital 	 Carbon-free energy from backstop technology (nuclear/renewables, CCS) Learning-by-Doing for energy tech- nologies (oil, gas, coal, nuclear, so- lar/wind, biomass) 	Capital accumulation and depreciation	 Efficiency of power plants, partly energy ef- ficiency, transport and refining losses of fossil fuels and electricity

Figure 2.3.2. The scientific decision model goes from left to right

Figure 2.9.1. Emissions impacts of exploring the full spectrum of technological uncertainty in a given scenario without climate policies. Relative frequency (percent) of 130,000 scenarios of full technological uncertainty regrouped into 520 sets of technology dynamics with their corresponding carbon emissions (GtC) by 2100 obtained through numerical model simulations for a given scenario of intermediary population, economic output, and energy demand growth. Also shown is a subset of 13,000 scenarios grouped into 53 sets of technology dynamics that are all "optimal" in the sense of statisfying a cost minimization criterion in the objective function. The corresponding distribution function is bi-modal, illustrating "technological lock-in" into low or high emissions futures respectively that arise from technological interdependence and spillover effects. Baseline emissions are an important determinant for the feasibility and costs of achieving particular climate targets that are ceteris paribus cheaper with lower baseline emissions. Source: Adapted from Gritsevskyi and Nakicenovic, 2000.

Figure 2.9.2. Impact of technology on global carbon emissions in reference and climate mitigation scenarios. Global carbon emissions (GtC) in four scenarios developed within the IPCC SRES and TAR (A2, B2 top and bottom of left panel; A1FI and A1B top and bottom of right panel). Grey shaded area indicated the difference in emissions between the original no-climate policy reference scenario compared with a hypothetical scenario assuming frozen 1990 energy efficiency and technology, illustrating the impact of technological change incorporated already into the reference scenario. Color shaded areas show the impact of various additional technology options deployed in imposing a 550 ppmv CO2 stabilization constraint on the respective reference scenario including energy conservation (blue), substitution of high-carbon by low- or zero-carbon technologies (orange), as well as carbon capture and sequestration (black). Of particular interest are the two A1 scenarios shown on the right hand side of the panel that share identical (low) population and (high) economic growth assumptions making thus differences in technology assumptions more directly comparable. Source: Adapted from SRES (2000), TAR (2001), Riahi and Roehrl (2001), and Edmonds (2004).

Figure 2.9.3. Impact of technological change assumptions on costs of alternative stabilization (750, 650, and 550 ppmv) scenarios. Costs are total discounted (at XX percent) systems costs over the period 1990 to 2100. For each of the three stabilization targets, three alternative technology scenarios are shown. Two reference (BAU) scenarios one with frozen 1990 technologies (BAU-1990), one with "business as usual" rates of technological change (BAU-Tech+) and one scenario assuming accelerated development and deployment of low emissions and carbon capture technologies ("advanced technology" scenario). The results confirm the critical importance of technological change in determining future costs of energy supply and of climate stabilization that emerge as robust finding from a number of scenario and modeling studies). While feasibility and costs of future technologies remain inherently uncertain, modeling studies help to assess the relative importance for costs and for emissions reduction of new technologies that can guide technology development strategies and subsequent niche market deployment strategies that are important preconditions for subsequent improvements in economics and for large-scale diffusion. Source: adapted from Edmonds et al. (1997).

Figure 2.9.4. The impacts of different technology assumptions on energy systems costs on emissions (cumulative 1990-2100 CO2 emissions in GtC) in no-climate policy baseline (reference) scenarios and on the costs of alternative stabilization targets. Total cumulative (1990-2100) undiscounted total energy systems costs (in trillion 1990\$) in four scenario based on the SRES A1 scenario family, shown here for better comparability as sharing identical assumption concerning future population and economic growth. Also shown are corresponding total cumulative costs of scenarios meeting increasingly stringent stabilization targets (at 750, 650, 550 and 450 ppmv respectively). For comparison: the total cumulative (undiscounted) GDP of the scenarios is around 30,000 trillion US\$ over the 1990-2100 time period. The cost difference across the scenarios are dominated by baseline uncertainties. Compared to that the cost differences between alternative stabilization targets (with exception of the A1C-450 stabilization scenario) is much smaller. Costs of stabilization increase also non-linearly with the stringency of the stabilization target adopted. Ceteris paribus, the higher the rates of technological change particularly in low-carbon technologies are in any particular scenario, the lower future emissions even in absence of climate policies and the lower the costs of achieving any given stabilization target. These results suggest the importance of technology policies in lowering future "baseline" emissions in order to enhance feasibility, flexibility, and economics of meeting alternative stabilization targets that due to persistent uncertainty cannot be determined at the present. Source: Roehrl and Riahi (2002).

Figure 2.9.5. The value of improved technology. Modeling studies enable to calculate the economic value of technology improvements that increase particularly drastically with increasing stringency of stabilization targets (750, 650, 500, and 450 ppmv respectively) imposed upon a reference scenario (modeling after the IS92a scenario in this particular modeling study). Detailed model representation of technological interdependencies and competition and substitution is needed for a comprehensive assessment of the economic value of technology improvements. Top panel: cost savings (billions of 1990 US\$) compared to the reference scenario when lowering the costs of solar photovoltaic from a reference value of 9 US cents per kWh (top) by 1, 3, 4, and 6 cents/kWh respectively. For instance the value of reducing PV costs from 9 to 3 cents per kWh could amount to up to 1.5 trillion Dollars in an illustrative 550 ppmv stabilzation scenario compared to the reference scenario in which costs remain at 9 cents/kWh). Bottom panel: cost savings resulting from availability of an ever larger and diversified portfolio of carbon capture and sequestration technologies. For instance, adding soil carbon sequestration to the portfolio of carbon capture and sequestration technology options reduces costs by 1.1 trillion Dollars in an illustrative 450 ppmv stabilization scenario. Removing all carbon capture sequestration technologies would triple the costs of stabilization for all concentration levels analyzed. Source: GETS (2001).

Figure 2.9.6. Describing the technology development cycle and its main driving forces. Note that important overlaps and feedbacks exist between the stylized technology life-cycle phases illustrated here and therefore the Figure does not suggest a "linear" model of innovation. It is important to recognize the need for finer terminological distinction of "technology", particularly when discussion different mitigation and adaptation options. Source: Adapted from Foxon (2003) and Grubb (2005).

Figure 2.9.7. A General Framework for Technology Transfer