Chapter 5: Tables & Figures(CH5FOD_Figures_Nov23 rev.1_Th.doc)

LDVs	24	.20
2-wheelers	1.20	
Heavy freight trucks	12	.48
Medium freight trucks	6.	77
Buses	4.	76
Rail	1.19	
Air	8.95	
Shipping	7.32	
Total	76.87	Source: IEA/SMP Model

 Table 5.1.
 2000 World Transport Energy Use, by mode (exajoules)

	Surface transp	ortation (vehicular)	S	Shipping	Av	viation
Forcing (derivative)	Forcing (+/-) mW m ⁻²	Technological mitigation measures	Forcing (+/-) mW m ⁻²	Technological mitigation measures	Forcing (+/-) ¹ mW m ⁻²	Technological mitigation measures
CO ₂	+ve	fuel efficiency	34.3 ²	fuel efficiency, ship modifications	25.3	fuel efficiency
$NO_{x}(O_{3})$	51 ³	combustion technology, catalysts	29 ⁴	combustion technology, catalysts	23	combustion technology
SO ₄ particles (direct effect)	-ve	fuel S content	-20 ⁵	fuel S content	-3.5	fuel S content
Black Carbon particles	64 - 160 ⁶	combustion technology, particle traps	+ve	combustion technology	2.5	combustion technology
Water vapour	negligible	_	negligible	_	2.0	fuel efficiency
					(but potentially larger for supersonics)	
Linear contrails	_	_	_	_	10	operational measures
Enhanced cloudiness	unknown	combustion technology,	-110 ⁷	combustion technology, fuel	30 ⁸	operational measures
		particle traps		S content	0 - 26 ⁹	
$\mathrm{CH_4}^{10}$	-ve (indirect)	combustion technology, catalysts	-20 (indirect) ¹¹	combustion technology, catalysts	-10.4 (indirect)	_
VOCs (O ₃)	+ve (indirect)	combustion technology, catalysts	+ve (indirect)	combustion technology, catalysts	+ve (indirect) but negligible	combustion technology
CO (O ₃)	+ve (indirect)	combustion technology, catalysts	+ve (indirect)	combustion technology, catalysts	+ve (indirect) but negligible	combustion technology

Table 5.2. Overview of impacts of present-day transportation sectors on climate change through radiative forcing (RF) and potential mitigation measures

¹ Aviation RFs taken from recent reanalysis of Sausen et al. (2005), excepting enhanced cloudiness

² Eyring et al. (2005 in prep.)

³ Niemeyer et al. (2005?)

⁴ Calculated from 0.7 DU tropospheric czone column chnage from Endresesen et al. (2003) and 0.042 W/m⁻²/DU (IPCC, 2001)

⁵ Endresen et al. (2003)

⁶ Schultz et al. (2004)

⁷ Capaldo et al. (1999)

⁸ Stordal et al. (2005)

⁹ Minnis et al. (2004)

¹⁰ CH₄ has complex impacts: it is a direct GHG (+ve RF); ambient CH₄ is destroyed by tropospheric chemistry and NO_x emissions (indirect –ve RF); it contributes through tropospheric chemistry to O₃ formation ¹¹ Endresen et al. (2003)

Technology scenario 1 (TS1) – 'Clean scenario'	Technology scenario 2 (TS2) – 'Medium scenario'	Technology scenario 3 (TS3) – 'IMO compliant scenario'	Technology scenario 4 (TS4) – 'BAU'
Low S content fuel $(1\%/0.5\%)$, aggressive NO _x reductions	Relatively low S content fuel $(1.8\%/1.2\%)$, moderate NO _x reduction	High S content fuel (2%/2%), NO _x reductions according to IMO stringency only	High S content fuel (2%/2%), NO _x reductions according to IMO stringency only
Fleet = 75% diesel, 25% alternative plant	Fleet = 75% diesel, 25% alternative plant	Fleet = 75% diesel, 25% alternative plant	Fleet = 100% diesel

Table 5. 3 Summary of shipping technology scenarios of Eyring	<i>et al.</i> (2005b)
---	-----------------------

‡Note that the fuel S percentages refer to values assumed in (2020/2050)

Table 5.4

Table 1

Energy and GHG Impacts of Ethanol: Estimates from Corn- and Wheat-to-Ethanol Studies

	production en efficiency effi (litres/tonne (en		Fuel process energy efficiency (energy in/out)	Well-to-wheels GHG emissions: compared to base (gasoline) vehicle (per km travelled)	
				Fraction of base vehicle	Percent reduction
GM/ANL, 2001	corn-a	372.8	0.50	n,∕a	n∕a
GM/ANL, 2001	corn-b	417.6	0.55	n,∕a	n/a
Pimentel, 2001/91	corn	384.8	1.65	1.30	-30% ^C
Levelton, 2000	corn	470.0	0.67	0.62	38%
Wang, 2001a	corn-dry mill	387.7	0.54	0.68	32%
Wang, 2001a	corn-wet mill	372.8	0.57	0.75	25%
Levy, 1993	corn-a	367.1	0.85	0.67	33%
Levy, 1993	corn-b	366.4	0.95	0.70	30%
Marland, 1991	corn	372.8	0.78	0.79	21%
Levington, 2000	wheat	348.9	0.90	0.71	29%
ETSU, 1996	wheat	346.5	0.98	0.53	47%
European Commission, 1994	wheat	385.4	1.03	0.81	19%
Levy, 1993	wheat-a	349.0	0.81	0.68	32%
Levy, 1993	wheat-b	348.8	0.81	0.65	35%

Note: Where a range of estimates is reported by a paper, "a" and "b" are shown in the feedstock column to reflect this.

Negative greenhouse gas reduction estimate connotes an increase. n/a: not available. Sources: Except for Levelton, 2000, Wang 2001 a and CM/ANL 2001, data presented here for these studies are taken from the comparison conducted by CONCAWE, 2002.

Table 5.5

Country	Vehicles*	Refuelling Stations	VRA**	Last Updated
Argentina	1,413,664	1,342		Jan 05
Brazil	1,000,000	1000		Apr 05
Pakistan	800,000	740		Jul 05
Italy	420,000	504		Mar 05
India	204,000	198		Apr 04
USA	130,000	1,300	3,271	May 03
China	69,300	270		Apr 03
Egypt	52,000	79		Apr 04
Venezuela	50,000	140		Jan 04
Ukraine	45,000	130		Dec 03
Colombia	43,380	78		Sep 04
Russia	36,000	218	2	Dec 03
Bangladesh	31,988	79		Dec 04
Iran	22,058	40		Dec 04
Japan	24,000	288	658	Mar 05
Canada	20,505	222	3,208	Aug 01
Germany	27,175	539	450	Mar 05
Bolivia	28,790	59	46	May 05
Malaysia	14,700	39		May 05
Ireland	9,780	10	6	Jul 04
France	7,100	102	100	Dec 03
South Korea	5,585	158		Oct 04
Bielorussia	5,500	24		Dec 01
Chile	5500	13		Mar 05
Indonesia	4,660	28		Dec 01
Thailand	4,905	31		May 05
Sweden	4,260	44		Oct 03
Trinidad & Tobago	3,812			Nov 03
Australia	2,104	127	55	Aug 01
Mexico	2,000	4		Apr 03
New Zealand	1,555	30		Sep 03
Great Britain	875	34	40	Jul 03

Source: IANGV,2005

Table5. 6

1. Configuration	Empty Tonne	Payload Tonne	Fuel Tonne	Max TOW Tonne
Baseline	236	86	178	500
BWB	207	86	137	430
Laminar Flying Wing	226	86	83	395
LFW with UDF	219	86	72	377

Table 5.7: taxes and pricing in the transport sector in developing and developed countries

Instrument	Developing	Developed countries
	Countries/EIT	
Tax incentives to promote use of	Pakistan, Argentina,	Italy, Germany, Australia,
Natural gas	Colombia, Russia	Ireland, Canada, UK
Incentives to promote natural gas	Malaysia, Egypt	Belgium, UK, USA,
vehicles		Australia, Ireland
Annual Road tax differentiated by	Singapore and India (fixed	Germany
vintage	span and scrapping)	
Emission Trading	Chile	
Congestion Pricing including Area	Chile; Singapore	Norway
Licensing Scheme		
Vehicle Taxes based on emissions-tax	South Korea	Austria, Britain, Belgium,
deductions on cleaner cars e.g. battery		Germany, Japan, The
operated or alternative fuel vehicles		Netherlands, Sweden
Carbon tax by size of engine	Zimbabwe	
Cross subsidization of cleaner fuels	India	
(ethanol blending by gasoline tax-		
through imposition of lower surcharge		
or excise duty exemption		

Adapted from Pandey abd Bhardway (2000), Gupta (1999) and European Natural Gas Vehicle Asociation (2002)

Table 5.8	Impact of a p	permanent increase in real fuel prices by 10%	

Short run (within 1	Long run (5 years)
year)	
-1%	-3%
-2.5%	-6%
-1.5%	-4%
Less than -1%	-2.5%
	year) -1% -2.5% -1.5%

Source: Goodwin et al. (2004)

Tax/Pricing Measure	Potential Energy/ GHG Savings or transport improvements)	Reference
Optimal Road Pricing based on congestion charging (London UK)	37% CO2	Maddison et al 1996
Congestion Pricing of the Namsan Tunnels (Seoul S Korea)	34% reduction of peak passenger traffic volume Traffic flow from 20 to 30km/hr	World bank 2002b
Fuel Pricing and Taxation	15-20% for vehicle operators	Martin et al (1995)
Area Licensing Scheme (Singapore)	1.043GJ/day energy savings Vehicular traffic reduced by 50% Private traffic reduced by 75% Travel speed increased 20 to 33 km/hr	FWA, 2002
Urban Gasoline tax (Canada)	1.4 Megatonnesby 20102.6 megatonnesby 2020	In the case of Canada (Transportation in Canada, 1999- www.tc.gc.ca/pol/en/Report/anre1999/tc9905be.ht <u>m</u>

Table 5.10. Marginal CO2 abatement cost at selected emission reduction targets in selected cities, US\$/tonne CO2*

City	Total Comulative	Marginal Abatement Cost											
	CO2 Emission	5%	10%	15%	20%	25%	30%	40%					
	(10 ⁶ tonnes)												
Bandung	19	121	204	412	132503	NA	NA	NA					
Beijing	105	29	33	NA	37	NA	39	253					
Delhi	30	35	44	49	66	115	NA	NA					
Hangzhou	6	76	89	NA	100	962	NA	NA					
Jakarta	200	NA	112	NA	156	NA	269	246215					
Manila	182	178	327	528	NA	NA	NA	NA					
Mumbai	12	17	NA	19	21	24	47	NA					

* the figure for HCMC are 0.1, 0.5, 1.3 and 2.1 US\$/tonne of CO2 at 3%, 6%, % and 12% reduction targets respectively.

NA - not available

	Fuel Economy, mpg gasoline-equivalent							
Propulsion System	Worst Case	Best Estimate	Best Case					
Gasoline DOD SI CD	20.2ª	21.3	22.4					
Baseline								
Gasoline DI SI CD	23.2	24.2	25.4					
Diesel DI CI CD	25.2	25.8	27.1					
E85 DOD SI CD	20.2ª	21.3	22.4					
CNG DOD SI CD	19.9ª	21.0	22.1					
H ₂ DOD SI CD	24.3ª	25.6	26.9					
Gasoline DOD SI HEV	24.5	26.5	34.0					
Gasoline DI SI HEV	27.0	29.2	33.6					
Diesel DI CI HEV	28.5	30.8	39.4					
E85 DOD SI HEV	24.5	26.5	34.0					
CNG DOD SI HEV	23.5	25.4	32.5					
H ₂ DOD SI HEV	29.2	31.6	40.5					
Gasoline/naphtha FP FCV	25.7	32.2	36.3					
Gasoline/naphtha FP FC	29.5	37.5	42.2					
HEV								
MeOH FP FCV	28.1	35.2	39.6					
MeOH FP FC HEV	32.7	40.8	45.9					
EtOH FP FCV	25.7	32.2	36.3					
EtOH FP FC HEV	29.5	37.5	42.2					
H ₂ FCV	47.6	50.8	54.5					
H ₂ FC HEV	52.6	56.1	59.8					

Table 5.11	Composite Fuel Economy Results for Best-Estimate, Best-Case, and Worst-Case
Scenarios	

^a Engine modeled without DOD for the worst-case scenario.

Source: General Motors, 2005

Abbreviation	ns
DOD	Displacement on demand
SI	Spark ignited
CD	Conventional drivetrain
DI	Direct injection
CI	Compression ignition
E85	85% ethanol/15% gasoline (by volume) fuel
CNG	Compressed natural gas
H_2	Hydrogen
HEV	Hybrid electric vehicle
FP	Fuel processor
FCV	Fuel cell vehicle
MeOH	Methanol
EtOH	Ethanol

Table 5.12 .Tank to Wheels and Well to Wheels CO ₂ Emissions from Compact Cars With Four
Different Powertrains (Owen and Gordon, 2003)

Technology	Year	CO ₂ Tank to Wheels	CO ₂ Well to Wheels
Baseline diesel	2004	149 g/km	167 g/km
Mild hybrid	2010	114 g/km	123 g/km
Parallel hybrid (Prius-type)	2012	92 g/km	103 g/km

Table 5.13 GHG Emissions from Vehicles and Transportation Modes in Developing Countries (Source: Sperling and Salon, 2002)

	Load Factor	CO2-Equivalent Emissions
	(average occupancy)	Per Passenger-Km (full energy cycle)
Car (gasoline)	2.5	130-170
Car (diesel)	2.5	85-120
Car (natural gas)	2.5	100-135
Car (electric)*	2.0	30-100
Scooter (two-stroke)	1.5	60-90
Scooter (four-stroke)	1.5	40-60
Minibus (gasoline)	12.0	50-70
Minibus (diesel)	12.0	40-60
Bus (diesel)	40.0	20-30
Bus (natural gas)	40.0	25-35
Bus (hydrogen fuel cel	11)** 40.0	15-25
Rail Transit*** 7	5 percent full	20-50

Note: All numbers in this table are estimates and approximations, and are best treated as illustrative.

*Ranges are due largely to varying mixes of carbon and non-carbon energy sources (ranging from about 20-80 percent coal), and also the assumption

that the battery electric vehicle will tend to be somewhat smaller than conventional cars.

Hydrogen is assumed to be made from natural gas. *Assumes heavy urban rail technology ("Metro") powered by electricity generated from a mix of coal, natural gas, and hydropower, with high passenger use (75 percent of seats filled on average).

Table 5.14	Tabl	e 5.	.14
------------	------	------	-----

Study	Mitigation Measure/Policy	Regio	CO2				CO2				mitigation	comments
		n	reduct	ion(%			reduct	ion			cost (\$/t-	
)				(Mt)				CO2)	
			2010	2020	2030	2050	2010	2020	2030	2050		
IEA2004	Alternative scenario	World	2.2	6.8	11.4		133	505	997			
		OEC	2	6.9	11.5		77	308	557			
		D										
		Devel	2.8	6.8	11.4		49	170	381			
		oping										
		Trans	2.3	6.2	11.2		8	27	59			
		itionE										
IEA2001	Improving Tech for Fuel	OEC		30%	40%							
	Economy	D										
	Diesel				5-							timeframe not clear
					15%							
	Policy Packages		16%									including transit improvements,
												parking restrictions and
												increased prices, and promotion
												of walking and bicycling
	Policy Packages		>30%									adds significant amounts of low
												greenhouse-gas alternative fuel
												(such as cellulosic ethanol) to

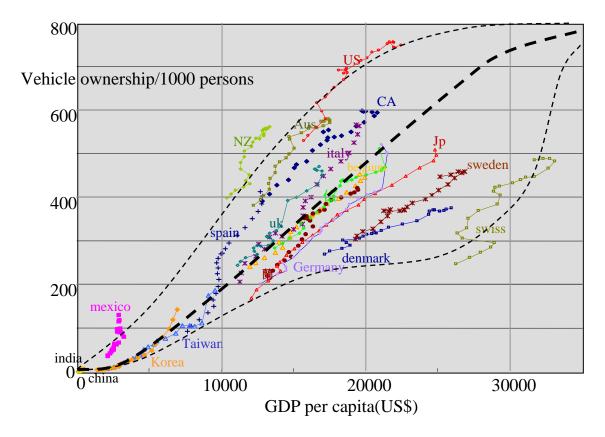
										the fuel economy improvement measures
IEA2002	All scenario included	NA	6.6	14.4			148	358		
	All scenario included	W.Eu rope	6.6	15.6			76	209		
	All scenario included	JA	8.3	16.1			28	61		
IEA2004	Improving Fuel Economy	World			18%					
	Biofuels				12%					
	FCV with Hydrogen Refuelling				7%					
	COMBINING THESE THREE				30%					
IEA2004	Reduction in fuel use per km	World		15%	25%	35%				Reduction in fuel use per kilometre, gasoline/diesel vehicles (compared with a reference case)
	Blend of biofuels			5%	8%	13%				Blend share in gasoline and diesel fuel of biofuels having 50% lower well-to-wheels GHG emissions per kilometre than gasoline
	Reduction in growth of LDV travel			5%	10%	20%				Reduction in growth of light-duty- vehicle travel(compared with a reference case)

	using hydrogen in vehicle			0%	3%	75%				using hydrogen in vehicle-
										reduction in well-to-wheels GHG
										emissions
ECMT										
	Driving training + technical	EU	5-						(-49)-54.5	timeframe not clear
	aids(shift indicators, fuel use		10%							
	indicators etc)									
	low rolling-resistance tyres		1-2%						(-327)-(-108)	timeframe not clear
	idle stop/start:Gasoline (dense traffic)		4-8%						(-50)-176	timeframe not clear
	idle stop/start:Diesel (dense traffic)		2-4%						(-18)-474	timeframe not clear
	adaptive cruise control :diesel(light traffic)		15%						(-42)	timeframe not clear
	adaptive cruise control:gasoline(light traffic)		10%						369	timeframe not clear
	All technologies to reduce on- road fuel consumption		>10%							timeframe not clear
EC	voluntary agreement	EU	7.6				75			
	add other operational		10.6				105			
	measures									
	Rolling Resistance (Freight)						10.9		 -90	1.25Euro=\$
	Variable Valve Lift Timing +						22.8		23.75	
	Cylinder Deactivation									

Do Not Cite or Quote Revised on 24/11/2005 12:49 PM 105

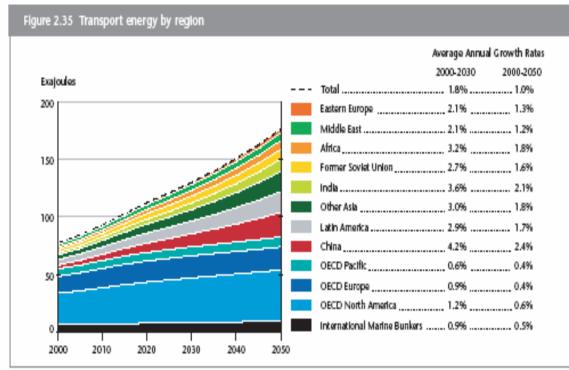
First Order draft

	(Passenger carsPetrol)								
	Driver Training - (Freight-HDV)					10.9)	23.75	
	Petrol to Diesel shift Passenger carsPetrol					7.8	3	102.5	
	Advanced Gasoline Direct Injec (advanced: "DISC") Passenger carsPetrol					1)	115	
	Lightweight structure - Petrol cars Passenger carsPetrol					9.9)	271.25	
ACEEE	A scenario	US	9.9	26.3		13	2 418	(-33.5)-(-27)	moderate tech+2%HEV
	B scenario		11.8	30.6		158	488	(-24)	moderate tech 47%+adv tech 47%+ 6%HEV
	C scenario		13.2	33.4		170	532	(-25)	adv tech +2%HEV
					2035				
MIT2004	baseline	US		3.4	16.8				increase in fuel economy
	medium HEV			5.2	29.9				HEV sale share of 50% in 2035
	composite			14.9	44.4				HEV+VMT constant beyond 2008
	combined policies		2.9- 6.2	13.7- 23.8	31.9- 50.4				Policy measures include CAFÉ,
			0.2	23.0	50.4				gasoline tax and ethanol (from cellulose) content increase.
PEW200	Efficiency Standards	US		2015					potential in whole transport
3									sector


Do Not Cite or Quote Revised on 24/11/2005 12:49 PM

	Light-duty vehicles		6(9)	18(31)						 	
	Heavy Trucks		2(9)	3(20)						 	
	Commercial Aircraft		1(9)	2(22)						 	
	Replacement & Alternative									 	
	Fuels										
	Low-Carbon Replacement		2(30)	7(100						 	
	Fuels)							
	Hydrogen Fuel (All LDV fuel)		1(1)	4(6)						 	
	Pricing Policies									 	
	Low-carbon fuel subsidy		2(30)	6(100)							
	Carbon pricing		3(3)	6(6)						 	
	Variabilization		6(8)	9(12)							
	Behavioral									 	
	Land Use & Infra-structure		3(5)	5(10)						 	
	System Efficiency		0(2)	1(5)						 	
	Climate Change Education		1(1)	2(2)							
	Fuel Economy Information		1(1)	1(2)							
	Total		22	48							
WEC	energy saving due to new	WR	30%		45.55						
	technologies				%						
WBCSD	Road transport	WR									
	WEDGE 1 - Diesels (LDVs)		0.9	2.1	1.8	61	160	181		 	

Do Not Cite or Quote Revised on 24/11/2005 12:49 PM 107


Fourth Assessment Report, Working Group III

WEDGE 2 - Hybrids (LDVs and MDTs)	2	.4	6.1	6.1	161	474	623		
WEDGE 3 - Biofuels - 80% low GHG sources by 2050	5	.7	15.6	29.5	386	1207	3030		
WEDGE 4 - Fuel Cells - fossil hydrogen	5	.9	16.7	32.7	400	1293	3364		
WEDGE 5 - Fuel Cells - 80% low-GHG hydrogen in 2050	5	.9	17.2	45.3	400	1333	4650		
WEDGE 6 - Mix Shifting 10% FE Improvement	6	.7	18.8	47.3	451	1455	4864		
WEDGE 7 - 10% vehicle travel reduction - all road vehicles	9	.4	22.8	51.9	639	1765	5335		

Fig 5.1 Vehicle Ownership as a Function of Per Capita Income (GDP/person)

Fig 5.2

Source: Sustainable Mobility Project calculations.

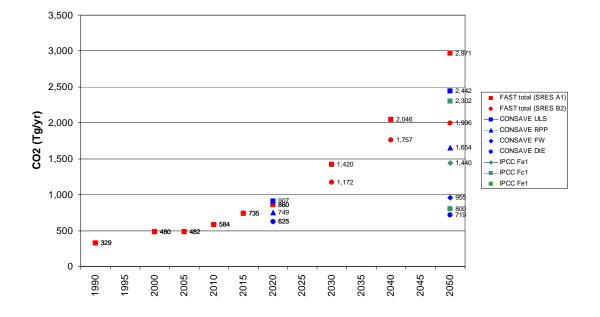
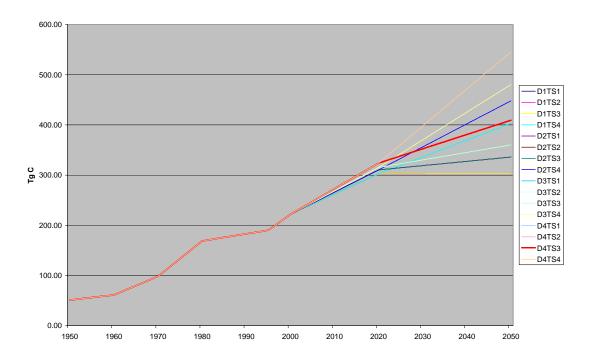



Figure 5.3: Comparison of calculated global emissions of total aviation CO_2 emissions, 1990 to 2050 with other estimates for 2050

Figure 5.4 Historical and projected emissions of seagoing shipping, 1990 to 2050 (Tg C yr⁻¹) adapted from Eyring et al. (2005a, b)

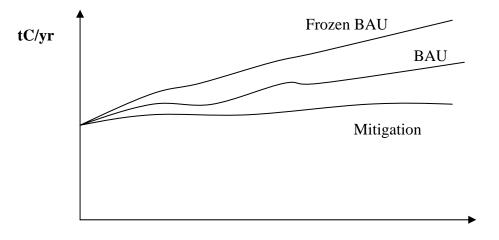
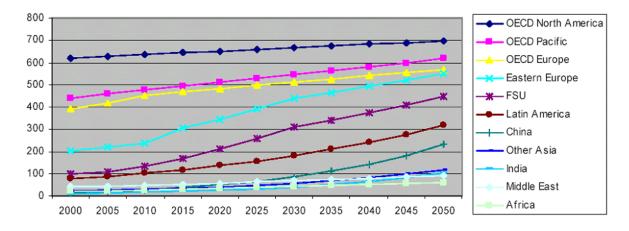
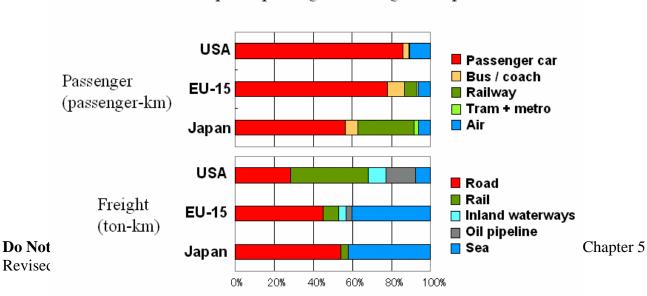
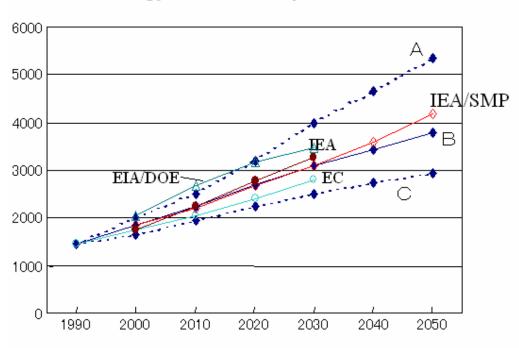


Figure 5.5. Schematic picture of various scenarios.

Cars per 1000 people


Figure 5.7

Modal split in passenger and freight transport

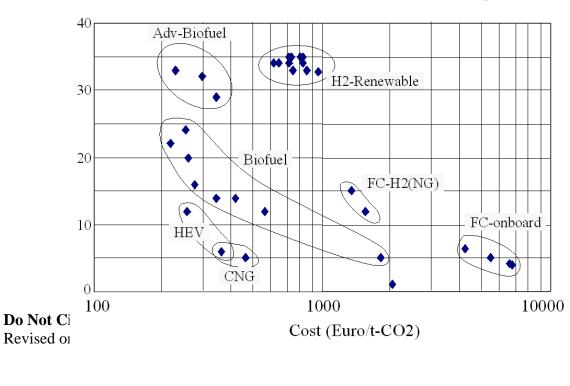

Chapter 5

Figure 5.8

Total Energy Use in Transport Sector- mtoe

Figure 5.9

GHG avoided from reference case (Mt-CO2eq)

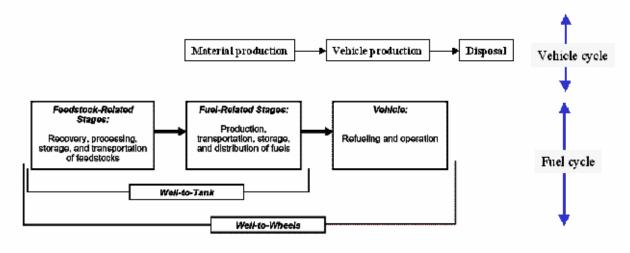
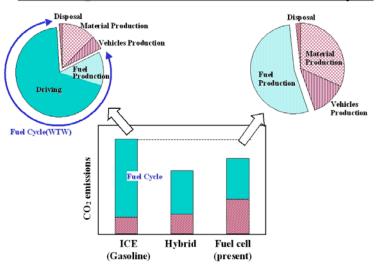
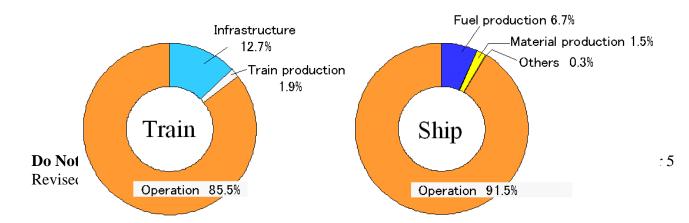




Figure 5.11

Total CO₂ Emissions In an Automobile's Lifecycle

Figure 5.12

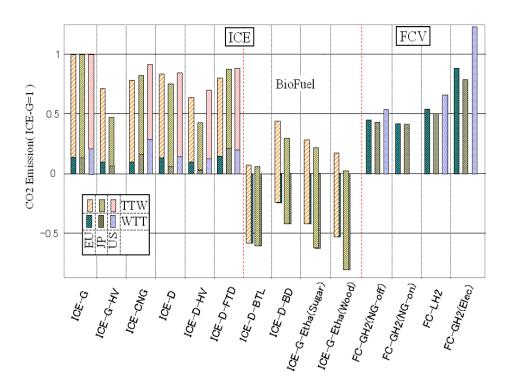
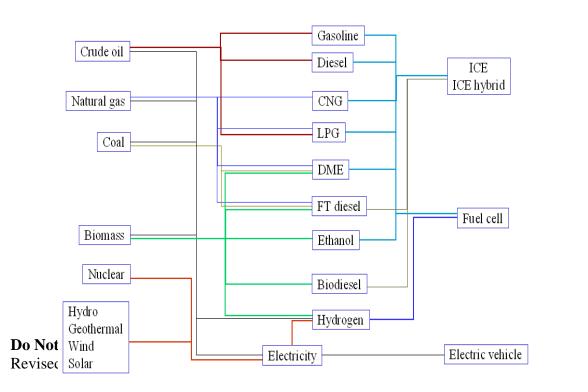
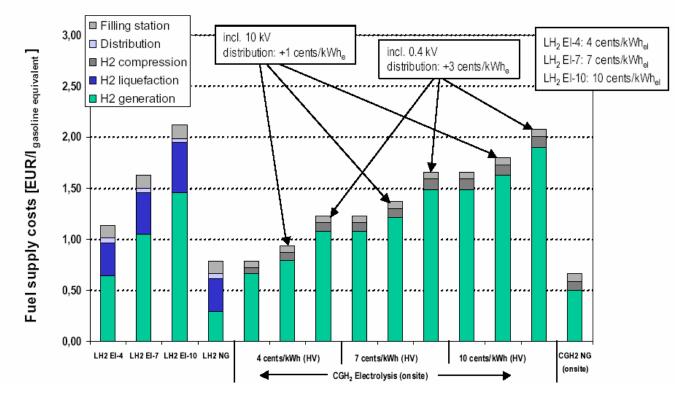
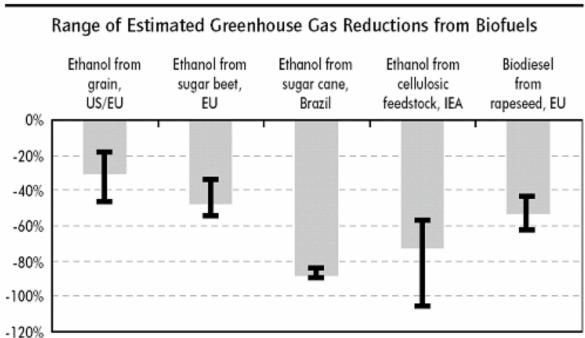
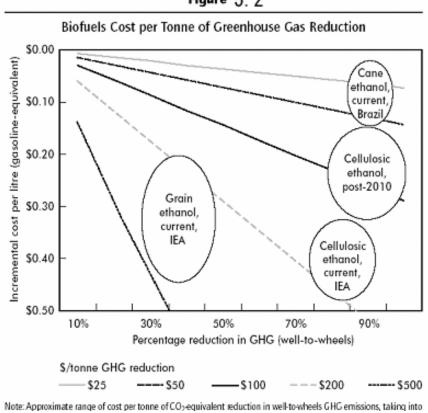
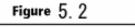




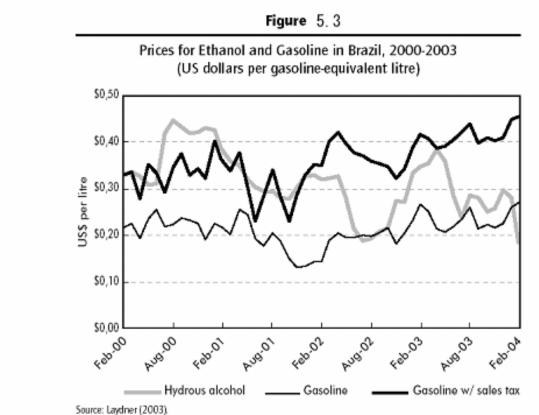
Figure 5.14



Fuel supply cost per liter gasoline equivalent:


Figure 5.16




Do N Revi Note: This figure shows reductions in well-to-wheels CO₂-equivalent GHG emissions per kilometre from various biofuel/feedstock combinations, compared to conventional-fuelled vehicles. Ethanol is compared to gasoline vehicles and biodiesel to diesel vehicles. Blends provide proportional reductions; *e.g.* a 10% ethanol blend would provide reductions one-tenth those shown here. Vertical black lines indicate range of estimates; see Chapter 3 for discussion.

5

Figure 5.18

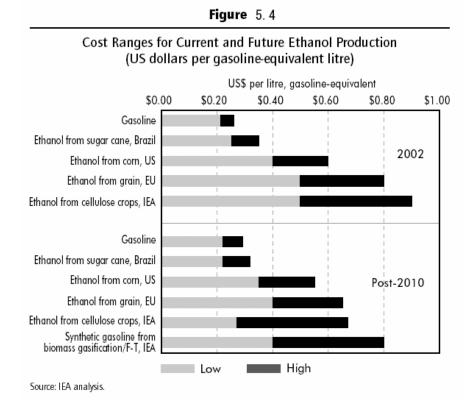
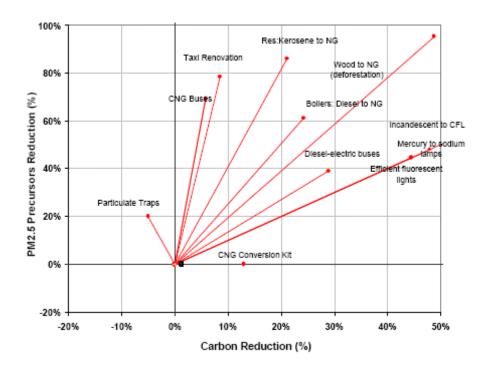



Figure 5.20

Source: Cifuentes et al., 2001

Note: Figure also shows co-benefits from some non-transport policies

Do Not Cite or Quote Revised on 24/11/2005 12:49 PM

Figure 5.21 Two Possible Scenarios for Greenhouse Gas Reductions in Light-Duty Vehicles Source: IEA, 2004b

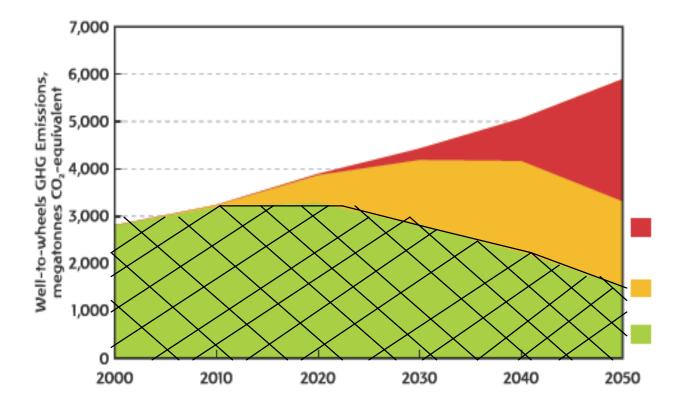
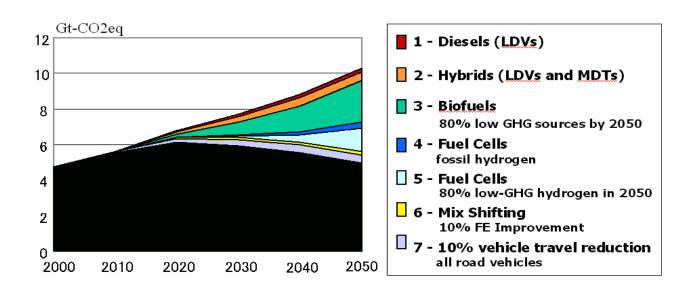
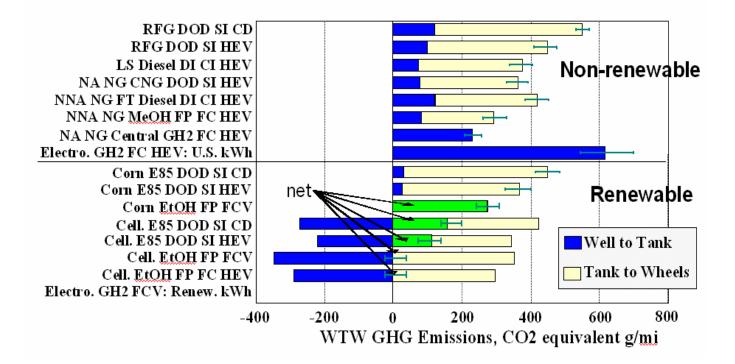
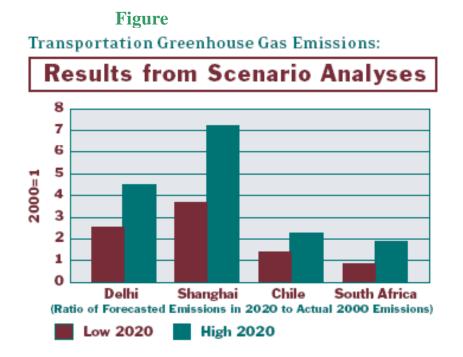
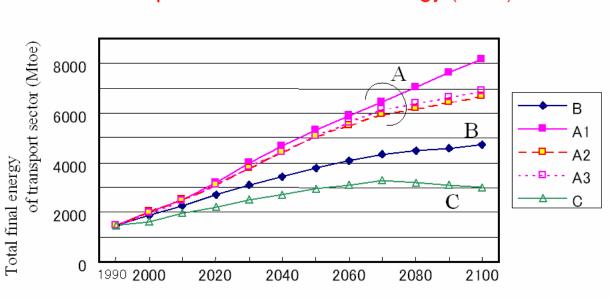
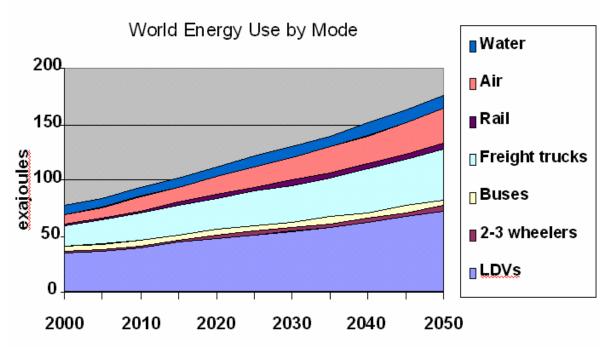



Figure 5.22


Figure 5.24

Transport sector / total final energy (Mtoe)

Figure 5.26

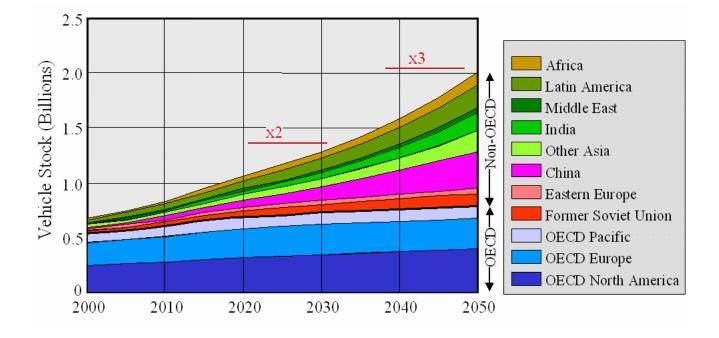
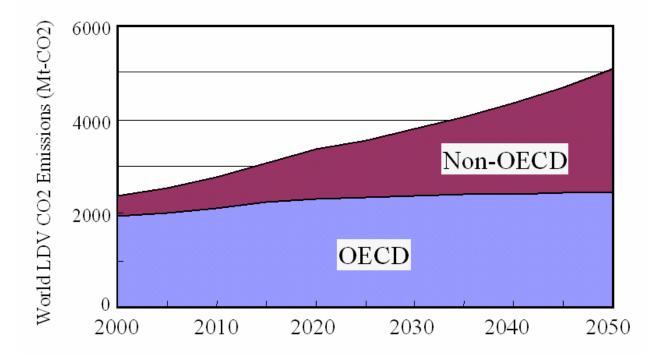
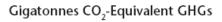
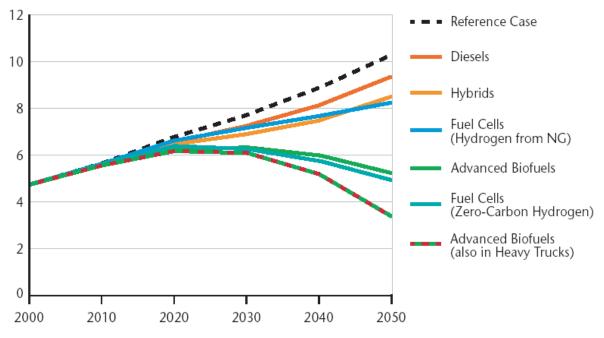
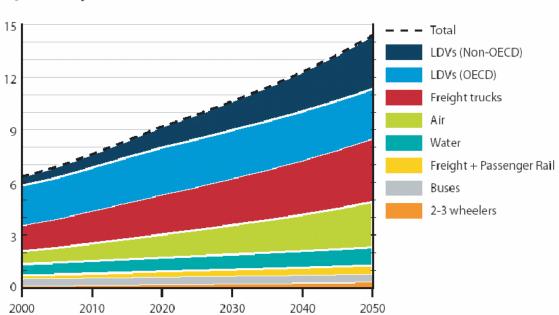






Figure 5.28

Gigatonnes CO2-Equivalent GHGs/Year

Do Not Cite or Quote Revised on 24/11/2005 12:49 PM