Tables & Figures

Table 7.1.1. Industrial Sector Final Energy, Primary Energy, and Energy-Related Carbon Dioxide Emissions, 10 World Regions, 1971-2002. Source: Price et al., 2005a.

	Final Energy (EJ)		Primary Energy (EJ)			Energy-Related Carbon Dioxide (MtCO ₂)			
	1971	1990	2002	1971	1990	2002	1971	1990	2002
Pacific OECD	6.02	7.44	10.08	8.40	10.57	13.27	529.3	639.1	798.7
North America	20.21	19.18	22.05	25.90	26.17	31.58	1,532.5	1,492.9	1,692.7
Western Europe	14.78	14.89	16.07	19.71	19.61	21.68	1,404.0	1,176.1	1,150.7
Central and E. Europe	3.78	4.62	2.62	5.29	6.72	4.72	397.5	484.8	311.6
Former Soviet Union	11.22	18.59	9.36	13.87	22.98	16.36	962.6	1,464.7	1,004.4
Centrally Planned Asia	5.12	14.17	16.93	6.58	18.86	27.09	572.2	1,559.2	2,274.1
Other Asia	2.21	5.48	9.24	2.74	7.52	14.59	138.1	448.0	963.6
Latin America	2.78	5.94	7.45	3.43	7.43	12.91	170.2	325.8	644.5
Sub Saharan Africa	1.25	2.13	2.40	1.86	2.95	4.75	117.7	179.7	305.9
Middle East and N. Africa	0.83	3.60	5.66	1.05	4.31	9.99	62.7	237.6	575.6
World	68.20	96.04	101.87	88.83	127.12	156.94	5,886.7	8,007.8	9,721.7

Note: Biomass included

Table 7.1.2. Projected Industrial Sector Final Energy and Energy-Related Carbon Dioxide Emissions, Based on SRES Scenarios, 2000-2030. Source: Price et al., 2005a.

A1 Scenario

	Final Energy (EJ)			Primary Energy (EJ)			Energy-Related Carbon Dioxide (MtCO ₂)		
	2000	2010	2030	2000	2010	2030	2000	2010	2030
Pacific OECD	9.95	8.50	8.10	13.72	11.50	11.39	774.3	896.5	681.1
North America	23.09	26.18	29.55	31.36	32.43	33.76	1661.0	1,819.4	1,585.4
Western Europe	16.21	17.62	21.25	21.03	24.31	29.94	1107.7	1,322.7	1,216.9
Central and E. Europe	2.76	6.68	8.76	3.83	8.28	11.75	256.4	532.3	553.9
Former Soviet Union	9.41	23.82	31.24	13.03	29.68	42.12	800.5	1,820.0	1,893.7
Centrally Planned Asia	15.67	28.60	46.32	24.57	37.14	63.88	2012.2	3,321.7	4,483.3
Other Asia	8.66	16.27	36.26	12.75	21.95	45.67	765.5	1,755.9	3,274.3
Latin America	7.54	19.98	35.57	9.72	25.69	42.86	429.3	1,505.0	2,326.1
Sub Saharan Africa	2.28	6.85	13.62	3.26	10.71	21.15	194.6	750.8	1,296.3
Middle East and N. Africa	5.38	16.17	32.17	6.79	22.78	44.97	364.1	1,421.2	2,454.0
World	100.96	170.67	262.83	140.06	224.47	347.50	8365.7	15,145.7	19,764.9

Note: Biomass included

B2 Scenario

	Final Energy (EJ)		Primary Energy (EJ)			Energy-Related Carbon Dioxide (MtCO ₂)			
	2000	2010	2030	2000	2010	2030	2000	2010	2030
Pacific OECD	9.95	9.00	8.17	13.72	12.89	10.97	774.3	926.5	650.4
North America	23.09	19.54	21.06	31.36	27.46	27.01	1,661.0	1,836.1	1,652.8
Western Europe	16.21	13.98	13.39	21.03	18.35	16.54	1,107.7	1,248.6	1,066.0
Central and E. Europe	2.76	3.06	4.48	3.83	4.00	5.59	256.4	294.2	382.1
Former Soviet Union	9.41	11.49	15.41	13.03	14.18	18.97	800.5	985.3	1,088.7
Centrally Planned Asia	15.67	25.55	37.81	24.57	31.50	47.58	2,012.2	2,549.2	3,301.7
Other Asia	8.66	12.91	26.01	12.75	16.77	32.43	765.5	1,135.0	1,862.9
Latin America	7.54	10.45	16.62	9.72	13.93	22.14	429.3	839.8	1,107.8
Sub Saharan Africa	2.28	2.54	9.25	3.26	3.75	12.21	194.6	243.5	622.3
Middle East and N. Africa	5.38	7.66	11.77	6.79	11.13	16.80	364.1	714.0	975.1
World	100.96	116.18	163.96	140.06	153.96	210.25	8,365.7	10,772.2	12,709.9

Note: Biomass included

<i>Table 7.1.3.</i> Projected Industrial Sector Emissions of Non-CO ₂ Gases, MtCO ₂ -eq.
Source: US EPA, 2006.

	1990	2000	2010	2020
Industrial sector				
Pacific OECD	38.7	83.0	106.0	128.9
North America	145.0	178.0	248.0	369.7
Western Europe	156.4	114.7	145.0	173.1
Central and Eastern Europe	27.4	16.0	20.7	24.9
Former Soviet Union	39.0	22.8	29.9	38.1
Centrally Planned Asia	19.8	24.3	48.9	68.6
Other Asia	4.3	9.9	16.0	23.0
Latin America	2.6	6.7	23.4	36.6
Sub Saharian Africa	28.3	85.9	156.9	222.3
Middle East and North Africa	16.7	28.7	53.7	71.8
World	478.2	570.1	848.6	1,157.1

Sector	Energy Efficiency		Fuel Switching		Power Recovery	Renewable Energ			
	Sector-wide	Process Specific	Sector- wide	Process Specific	Sector-wide	Process Specific	Sector-wide	Process Specific	
Iron & Steel	Motor systems (compressed air, pump, fan), efficient boil- ers, efficient	Smelt reduction, near net shape casting, scrap preheating, effi- cient furnace, dry coke quenching	Coal to Natural Gas	Natural Gas, Plas- tic Injection BF	Cogeneration	Top-gas pressure re- covery, coke oven gas Combined Cycle	Biomass boiler fuel, biogas from anaerobic digestion or	Charcoal	
Non-Ferrous Metals	burners, heat recovery, effi- cient lighting,	Inert anode, efficient cell designs						ne, pressure recovery	
Chemicals	efficient HVAC, effi- cient office equipment, energy man-	Efficient furnaces, process integration, membranes, reactive distillation		Natural gas		Pre-coupled gas tur- bine, pressure recovery turbine	omes		
Cement	agement sys- tems and prac- tices	Precalciner kiln, roller mill, fluidized bed kiln		Natural gas, waste fuels, bio- gas, biomass		Drying with gas turbine fluegas, bottom cycle using kiln exhaust		Biomass fuels, biogas	
Glass		Oxyfuel furnace		Natural gas in furnace		Pre-coupled gas turbine			n/a
Pulp & Paper		Efficient pulping technology, efficient drying, condebelt drying, shoe press		Biomass, landfill gas		Black liquor gasifica- tion combined cycle		Biomass fuels (bark, black liquor)	
Electronics		Continuous melt sili- con growth				RT-power recovery		n/a	
Food		Efficient drying, membranes				Anaerobic digestion, gasification		Biomass, by- products, solar drying	
Non-metallic minerals		Roller kiln		Landfill gas		n/a		Biogas, wood	

 Table 7.2.1. Industrial Technology for Reducing Greenhouse Gas Emissions

Table 7.2.1 continued

Sector	Feedstock	Product	Material	Non-CO ₂	CO ₂
	Change	Change	Efficiency	GHG	sequestration
Iron & Steel	Scrap	High Strength steel	Recycling, high strength steel, reduction process losses	n/a	CO ₂ /O ₂ combustion of blast furnace and BOF-gas
Non-Ferrous Metals	Scrap		Recycling, thinner film and coating	PFC-controls	
Chemicals	Recycled plastics, bio-feedstock	LLDPE, high- performance plastics	Recycling, thinner film and coating, reduction process losses	N ₂ O controls (nitric acid, nylon), PFC, CFC, HCFC controls	Ammonia, ethylene oxide
Cement	Slags, fly-ash, ground limestone	Geo-polymers			CO ₂ /O ₂ combustion in kiln
Glass	100% cullet for glass container, recycling flat glass	high-strength thin containers	Re-usable glass containers		CO ₂ /O ₂ combustion
Pulp & Paper	Recycling, non- wood fibers	Fiber orientation to increase strength, thinner paper	Reduction cutting and process losses		
Electronics				PFC, SF6 controls	
Food			Reduction process losses, filtering waste water		
Non-metallic minerals	wood chips in clay	Hollow bricks			

Table 7.4.1. Emission Reduction Potential for Major Energy Conservation Technologies in the Ironand Steel Industry

(Mt-CO ₂ /Yr.)	CDQ	TRT	СС	BOF recovery	Total
North America	3	5	0	2	10
Europe	5	5	1	4	15
FSU	4	3	8	2	17
South Korea	0	0	0	1	1
China	17	25	2	7	51
India	1	3	1	1	7
Other Developing	4	8	1	3	16
Total	34	49	13	20	117

CDQ = Coke dry quenching

TRT = Blast furnace top gas pressure recovery turbine

CC = Continuous casting

BOF recovery = Basic oxygen furnace process gas recovery

Potential: + = 0-0.1 MtC/yr; ++ = 0.1-03. MtC/yr; +++ = 0.3-1 MtC/yr; ++++ = >1 MtC/yr

	Specific CO ₂ -	World CO ₂ -	Comment
	emissions (tCO _{2/} t product) ⁴	emissions (kt CO ₂)	
Primary aluminium	1.55	44,700	Not considering significant electricity consumption and PFC emissions
Titanium dioxide	0.49	900	
Ferrosilicon	2.92	10,500	
Silicon metal ²	4.85	3,500	
Calcium silicon	2.71	n.a.	
Ferromanganese ²	1.79	1,205	
Silicomanganese 5	1.66	5,800	
Ferrochromium	1.63	9,500	
Ferrochromiumsilicon	2.82	(incl. in FeCr)	
Lead	0.64	3,270	
Nickel	0	0	Exothermic reduction process from sulfide ores - some fossil fuel use
Ferronickel	1.36	1,150	
Magnesium	0.05	4	Not considering significant electricity consumption and SF ₆ emissions
Tin	1.12	280	
Zinc	0.43	3,175	
Copper	0.18^{4}	2,480	Indicative estimate – range of processes and fuels. USGS- Production data
Chromium	0	0	Alumino-themic reduction using aluminium metal dominates – limited
Calcium carbide	1.10	4,475	
Silicon carbide	2.30	n.a.	
TOTAL:		91,000	

Table 7.4.2. Emission factors and estimated global emissions from electrode use and reductant use for various non-ferrous metals. **Indirect emissions and non-CO₂ greenhouse gas emissions are not included.** After: Sjradin (2003).

Production values taken from BREF, 2001 (World value is only: Russia, US, Poland and South Korea)

Silicon metal is usually about one-fifth of world production of ferrosilicon (Jones, 1998)

ImnI, 2002

⁴ All emission factors (except for copper) are NEAT values as reported by Sjradin (2003). n.a. – production data not available.

Metal	Global Annual Emissions,	Source and Year
	Mt CO ₂ -eq./yr.	
Aluminium		
CO ₂ -Mining and Refining	109	IEA GHG, 2001 for 1995
CO ₂ -Electrodes	45	Sjardin, 2003 for 1995
PFC-Emissions	50	IAI, 2001 for 2000
CO ₂ -Electricity	300	IEA GHG, 2001 for 1995
Magnesium		
CO ₂ .Electrode and Cell-Feed	4	Sjardin, 2003 for 1995
SF ₆ -Casting	16	US-EPA, 2001 for 2000
CO ₂ .Electricty	unknown	
CO ₂ .Other steps of	unknown	
production process		
All other Non-Ferrous-Metals		
CO ₂ -Process	40	Sjardin, 2003
CO ₂ .Electricty	unknown	
CO ₂ .Other steps	unknown	
All non-ferrous-metals	560	
	(lower bound)	

Table 7.4.3. Greenhouse gas emission from production of various non-ferrous metals

Table 7.4.4. Technical Potential for CO ₂ Emission Reduction	n in the Paper and Pulp Industry
---	----------------------------------

Region	Production in 2000	Projected Produc-	Estimated Reduc-
		tion in 2030	tion Potential in
			2030
Pacific OECD	+++	+++	++
North America	++++	+++	+++
Western Europe	+++	+++	+++
Central and Eastern	+	+	+++
Europe			
Former Soviet Union	+	+	+

Centrally Planned	+++	+++	++++
Asia			
Other Asia	++	+++	++++
Latin America	++	+++	++++
Sub-Saharan Africa	+	+	+
Middle East and North	+	+	+
Africa			

 $\begin{array}{l} Production: + = 0-10 \ Mt/yr; ++ = 10-30 \ Mt/yr; ++ = 30-100/yr; +++ = >100 \ Mt/yr \\ Potential: + = 0-1 \ MtC/yr; ++ = 1-3 \ MtC/yr; ++ = 3-10 \ MtC/yr, +++ = > 10 \ MtC/yr \\ \end{array}$

	2	Total Potential	Total Potential	Net Direct Costs					
Region		Abatement	Abatement	(US\$(2000)/	Model		Discount		
or Country	Sector	(MtCO ₂ /yr)	(% below baseline)	tCO ₂ avoided)	Туре	Baseline	Rate Used	Potential Type	Source
2030									
World	Total industry	573	10%	n/a	BU	BAU	n/a	Enhanced market	IEA, 2004
OECD	Total industry	133	7%	n/a	BU	BAU	n/a	Enhanced market	IEA, 2004
Transition	Total industry	76	12%	n/a	BU	BAU	n/a	Enhanced market	IEA, 2004
Developing	Total industry	364	12%	n/a	BU	BAU	n/a	Enhanced market	IEA, 2004
APEC	Steel	945	19%	n/a	TD	BAU	n/a	Enhanced market	Heaney <i>et al.</i> , 2005
2025									
U.S.	Total industry	235	10%	n/a	BU*	BAU	n/a		US EIA, 2005
2020									,
U.S.	Total industry	414	22%	n/a	BU*	BAU	n/a	Enhanced market	IWG, 2000
U.S.	Total industry	167	8%	n/a	BU*	BAU	n/a		US EIA, 2005
China	Total industry	1283	30%	n/a	BU	BAU	n/a		State Council, 2004
South Africa	Total industry	24		-8	BU**	BAU	10%	Enhanced market	Howells <i>et al.</i> , 2005
U.S.	Steel	24	18%		BU*	BAU	~14%	Enhanced market	IWG, 2000
China	Steel	15	3%	n/a	BU	BAU	n/a		Zhou, 2003
China	Aluminum	7	21%	n/a	BU	BAU	n/a		Zhou, 2003
U.S.	Paper	41	41%	n/a	BU*	BAU	n/a	Enhanced market	IWG, 2000
China	Paper	25	21%	n/a	BU	BAU	n/a		Zhou, 2003
U.S.	Cement	15	20%	n/a	BU*	BAU	n/a	Enhanced market	IWG, 2000
India	Cement	21	14%	n/a	BU	Frozen	n/a	Enhanced market	Sathaye <i>et al</i> . 2005
China	Bldg materials	53	14%	n/a	BU	BAU	n/a		Zhou, 2003
U.S.	Non-energy-	345	30%	n/a	BU*	BAU	n/a	Enhanced	IWG, 2000

Table 7.5.1. CO ₂ Emissions Reduction Costs and Potential	for the Industrial Sector
--	---------------------------

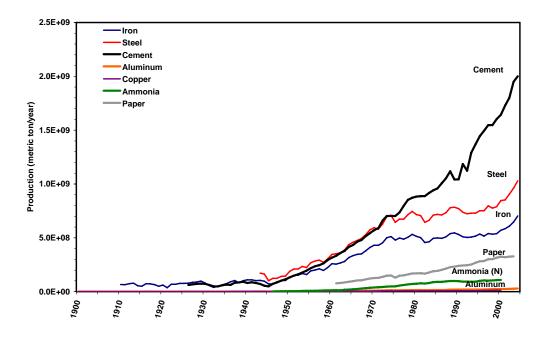
market

int

Notes: * = U.S. EIA's National Energy Modeling System, ** = Markal model

	.1. Continued	Total Datandal	Total Datantial	Not Dimost Costs					
Region or		Total Potential Abatement	Total Potential Abatement	Net Direct Costs (US\$(2000)/	Model		Discount		
	Sector		(% below baseline)			Baseline	Rate Used	Detential Tyme	Source
Country	Sector	(MtCO ₂ /yr)	(% below baseline)	tCO ₂ avoided)	Туре	Basenne	Rate Used	Potential Type	Source
2014	Total in duction	20		24	BU**	DAU	100/	Enhanced	Howells <i>et</i>
South	Total industry	20		-34	BU**	BAU	10%	Enhanced	
Africa								market	al.,2005
2012		<i>c</i> 7						T 1 /	TEDI 2005
India	Total industry	57						Tech/econ	TERI, 2005
India	Steel	14						Tech/econ	TERI, 2005
India	Cement	5						Tech/econ	TERI, 2005
India	Fertilizer	14						Tech/econ	TERI, 2005
2010						_			
Europe	Total industry	395	22%		BU	Frozen	4%	Economic	EC, 2001
U.S.	Total Industry	392	20%		BU*	BAU	~14%	Enhanced	IWG, 2000
								market	
U.S.	Total industry	99	5%	n/a	BU*	BAU	n/a		US EIA, 2005
China	Total industry	480	15%	n/a	BU	BAU	n/a		State Council,
									2004
Mexico	Total industry	38.1		-27.3 to -33.6	BU	Frozen	n/a		Scheinbaum et
				(1994US\$)					al., 2000
U.S.	Steel	22	16%		BU*	BAU	~14%	Enhanced	IWG, 2000
								market	
China	Steel	11	2%		BU	BAU			Zhou, 2003
China	Aluminum	4	13%		BU	BAU			Zhou, 2003
U.S.	Paper	43	40%		BU*	BAU	~14%	Enhanced	IWG, 2000
								market	
China	Paper	17	19%		BU	BAU			Zhou, 2003
U.S.	Cement	9	11%		BU*	BAU	~14%	Enhanced	IWG, 2000
								market	
China	Bldg materials	45	10%		BU	BAU			Zhou, 2003
EU	Ammonia	0.3	1%		BU	BAU			Rafiqul et al.,
									2005
U.S.	Ammonia	1.2	4%		BU	BAU			Rafiqul et al.,
									2005
India	Ammonia	2.5	7%		BU	BAU			Rafiqul <i>et al.</i> ,
					-				2005
U.S.	Non-energy-	199	19%		BU*	BAU	~14%	Enhanced	IWG, 2000
	int							market	
L	1111							market	

Table 7.5.1. Continued


Notes: * = U.S. EIA's National Energy Modeling System, ** = Markal model

Category of Ancillary Benefit	Examples			
Health	Reduced medical/hospital visits, reduced lost work			
	days, reduced acute and chronic respiratory symptoms,			
F · · ·	reduced asthma attacks, increased life expectancy			
Emissions	Reduction of dust, CO, CO_2 , NO_x , SO_x ; reduced environmental compliance costs			
Waste	Reduced use of primary materials; reduction of waste			
	water, hazardous waste, waste materials; reduced waste			
	disposal costs; use of waste fuels, heat, and gas			
Production	Increased product output or yield; improved product			
	quality or purity; improved equipment performance and			
	capacity utilization; reduced process cycle times; in-			
	creased production reliability; increased customer satis-			
	faction			
Operation and maintenance	Reduced wear on equipment; increased facility reliabil-			
-	ity; reduced need for engineering controls; lower cool-			
	ing requirements; lower labor requirements			
Working environment	Improved lighting, temperature control and air quality;			
C C	reduced noise levels; reduced need for personal protec-			
	tive equipment; increased worker safety			
Other	Decreased liability; improved public image; delayed or			
	reduced capital expenditures; creation of additional			
	space; improved worker morale.			
Source: Aunan et al., 2004: Pye and McKane, 2000: Worrell et al., 2003				

Table 7.10.1. Greenhouse Gas Mitigation or Energy-Efficiency Programs of Selected Countries

Source: Aunan et al., 2004; Pye and McKane, 2000; Worrell et al., 2003

Figure 7.1.1. Annual production of major GHG-intensive industrial products (in tonnes/year). Statistics on the aluminum, cement iron, and steel are provided by the USGS2004, Ammonia by the IFA, 2005 and FAO, 2005.

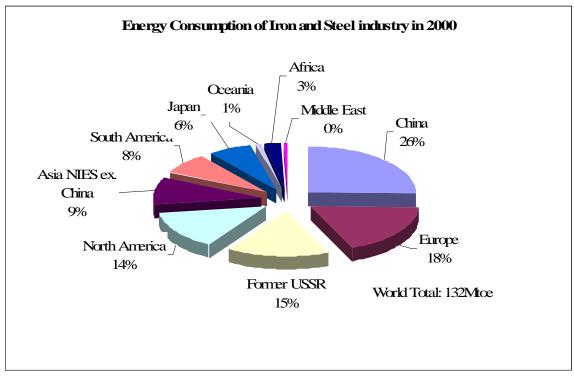
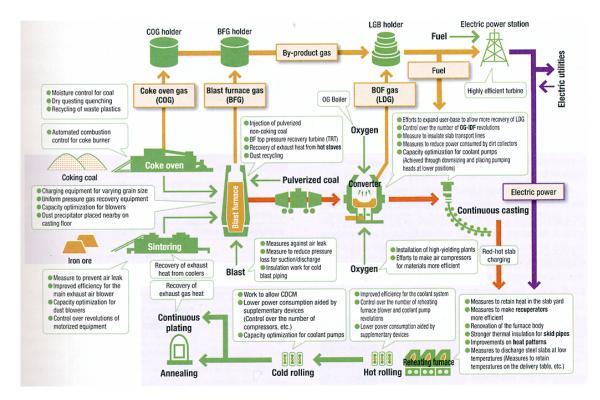



Figure 7.4.1. Energy Consumption by the Steel Industries of the World (IEA, 2002)

Figure 7.4.2. Options for efficiency improvement in the iron and steel industry. (Nippon Steel Corporation, 2004)

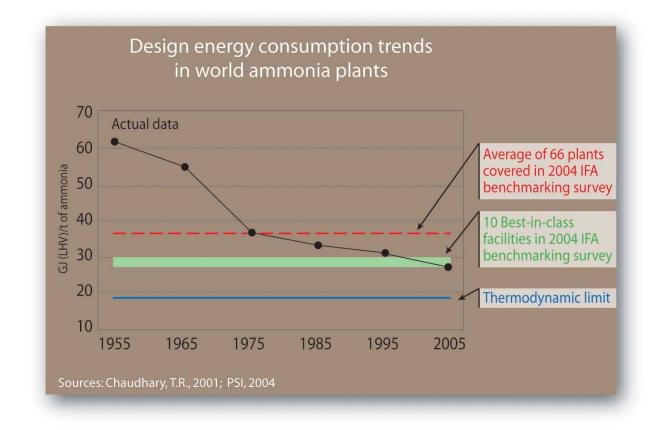


Figure 7.4.3. Energy efficiency improvement in ammonia plants