# **Tables & Figures**

*Table 10.1.* Comparison of average income, solid waste generation, and % recyclables (Cointreau-Levine, 1994).

| Country                          | Low Income | Middle Income | High Income |
|----------------------------------|------------|---------------|-------------|
| Average Income                   | 350        | 1950          | 17500       |
| (1988 US\$/cap/yr)               |            |               |             |
| Municipal Solid Waste Generation | 0.2        | 0.3           | 0.6         |
| (t/cap/yr)                       |            |               |             |
| % Recyclables                    | 15         | 30            | 60          |

|                                    | kg BOD/day             |                       | Kg BOD  |      | F              | 'ercentage | (%) of 2001 tota | al by industry |                  |          |      |       |
|------------------------------------|------------------------|-----------------------|---------|------|----------------|------------|------------------|----------------|------------------|----------|------|-------|
|                                    |                        | 1                     | /worker |      | Primary metals | Paper      | Chemicals        | Food           | Mining, Ceramics | Textiles | Wood | Other |
|                                    |                        | !                     | /day    |      |                | Pulp       |                  | Beverages      | Glass            |          |      |       |
| Year                               | 1990                   | 2001                  | 1990    | 2001 | 2001           | 2001       | 2001             | 2001           | 2001             | 2001     | 2001 | 2001  |
| OECD North America                 | T 3060963<br>A 1020321 | T 2577720<br>A 859240 | 0.2     | 0.17 | 9.3            | 15.4       | 10.7             | 44.2           | 0.17             | 6.7      | 3.3  | 10    |
| OECD Pacific                       | 2162770<br>540724      | 1746561<br>436640     | 0.15    | 0.18 | 8              | 20.2       | 6                | 46             | 0.17             | 7.3      | 3    | 9     |
| Europe                             | 5153933<br>239606      | 4770100<br>234770     | 0.18    | 0.17 | 9.3            | 22.4       | 9                | 40             | 0.25             | 7.4      | 3    | 9     |
| Countries inTransition             | 3403651<br>127910      | 2424562<br>161637     | 0.15    | 0.21 | 13             | 8          | 6.3              | 50             | 0.22             | 14       | 3.5  | 5     |
| Sub-Saharan Africa                 | 592665<br>511801       | 511801<br>511801      | 0.23    | 0.25 | 3              | 12         | 6.1              | 60             | 0.14             | 13       | 4    | 2.2   |
| Northern Africa                    | 409555<br>120073       | 387394<br>96853       | 0.2     | 0.18 | 9.7            | 4.4        | 6.3              | 49.6           | 0.45             | 24.5     | 1.3  | 3.7   |
| Middle East                        | 255047<br>26683        | 298519<br>29852       | 0.19    | 0.19 | 9              | 11.5       | 10               | 52             | 0.63             | 11       | 2.7  | 4     |
| Caribbean, Central, &<br>S America | 1481857<br>87174       | 1322362<br>82445      | 0.23    | 0.24 | 4.5            | 11         | 8                | 61             | 0.15             | 11       | 2    | 2.5   |
| Developing countries<br>East Asia  | 8298777<br>830647      | 7678749<br>851881     | 0.14    | 0.16 | 11             | 14.2       | 9.8              | 36             | 0.31             | 15       | 4.1  | 9.5   |
| Developing countries<br>South Asia | 1655622<br>351943      | 2045767<br>409045     | 0.18    | 0.16 | 5.3            | 7.3        | 6                | 42.3           | 0.37             | 35.4     | 1.3  | 2.1   |
| Developed countries                | 10377666<br>600217     | 9094381<br>509000     |         |      |                |            |                  |                |                  |          |      |       |
| Developing countries               | 12693523<br>241000     | 12244592<br>248500    |         |      |                |            |                  |                |                  |          |      |       |
| T – Total A – Aver                 | l<br>age<br>I          |                       |         |      |                |            |                  |                |                  |          |      |       |

*Table 10.2.* Regional and total 1990 and 2001 generation of high organic industrial wastewater\*: often treated in municipal wastewater systems (World Bank, 2005). \*All other industrial wastewater discussed in Chapter 7.

**Table 10.3.** Estimated global trends for  $CH_4$  and  $N_2O$  emissions from landfills and wastewater from UNFCCC national inventories and projections. (a)  $CH_4$  and  $N_2O$  emission trends from landfills and wastewater from Scheele and Kruger (2005).  $N_2O$  trends from human sewage only. (b) GHG emissions from waste management from Konte, 2005 (<u>http://ghg.unfccc.int</u>). Includes landfill  $CH_4$ , wastewater  $CH_4$  and  $N_2O$ , and  $CO_2$  from incineration of fossil C. Totals for Annex I countries only are shown in brackets. The year 2000 was not included because of a limited number of reporting countries. (c) SRES scenarios AIB and B2 (Nakicenovic et al., 2000). See discussion in text. [Mt  $CO_2e/year$ ]

| Year                                                                | 1990          | 1995      | 2000 | 2005 | 2010 | 2015 | 2020 | 2050<br>(SRES<br>AIB/B2) |
|---------------------------------------------------------------------|---------------|-----------|------|------|------|------|------|--------------------------|
| (a) Landfill CH <sub>4</sub>                                        | 756           | 777       | 777  | 819  | 882  | 945  | 1008 |                          |
| (a) Wastewater CH <sub>4</sub>                                      | 357           | 399       | 420  | 441  | 462  | 483  | 504  |                          |
| (a) Total CH <sub>4</sub>                                           | 1113          | 1176      | 1197 | 1260 | 1344 | 1428 | 1512 |                          |
| ( <b>b</b> ) Total CH <sub>4</sub> [Annex I]                        | 716 [646]     | 831[630]  |      |      |      |      |      |                          |
| (c) Total CH <sub>4</sub><br>(SRES AIB/B2)                          | 1281/130<br>2 |           |      |      |      |      |      | 4011/46<br>62            |
| (a) Wastewater N <sub>2</sub> O                                     | 73            | 78        | 82   | 86   | 90   | 93   | 97   |                          |
| (b) Total<br>N <sub>2</sub> O[Annex I]                              | 41.5 [39]     | 42.5[1.5] |      |      |      |      |      |                          |
| (b) CO <sub>2</sub> from In-<br>cineration of<br>fossil C [Annex I] | 33.01 [33]    | 37.01[37] |      |      |      |      |      |                          |

*Table 10.4. Qualitative comparison of GHG mitigation strategies from waste management. (IPCC, 2001, \*modified using landfill gas recovery efficiency from Spokas et al., 2005)* 

| Mit           | Mitigation options                   |                                   | Mitigation options Effectiveness               |                                       | Effectiveness                                                         | Technical<br>requirement                     | Applicability | Cost |
|---------------|--------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|---------------|------|
|               | waste                                | reduction                         | high                                           | low to high<br>(depending on<br>site) | high                                                                  | low to<br>moderate                           |               |      |
|               |                                      | recycling                         | high<br>(if focused on<br>organic waste)       | low to moder-<br>ate                  | high                                                                  | low to<br>moderate                           |               |      |
| G 1 1 1 1 1 1 | waste compos                         | composting                        | high<br>(if well managed)                      | low                                   | high                                                                  | low                                          |               |      |
| Solid Waste   | diversion                            | incineration                      | high                                           | high                                  | low to moderate<br>(less applicable for<br>developing coun-<br>tries) | high                                         |               |      |
|               | landfillir<br>rec                    | ng with CH <sub>4</sub><br>covery | high<br>(*>85% of CH <sub>4</sub> recoverable) | moderate                              | high<br>(especially in the<br>near-term)                              | low to<br>moderate<br>(depending<br>on site) |               |      |
|               | waste                                | reduction                         | high                                           | low to high<br>(depending on<br>site) | high                                                                  | low                                          |               |      |
|               | waste diversion<br>aerobic treatment |                                   | high                                           | low                                   | high                                                                  | low                                          |               |      |
| Wastewater    |                                      |                                   | bic treatment high                             |                                       | low to moderate                                                       | moderate to<br>high                          |               |      |
|               | CH <sub>4</sub>                      | recovery                          | Moderate to high                               | moderate                              | high (especially in near term)                                        | low to<br>moderate<br>(depending             |               |      |

Table 10.5. Cost analysis for GHG gases from waste management strategies compared to landfill-ing (Bates and Haworth, 2001). AD= anaerobic digestion; MBP=mechanical-biological pretreat-ment. The 2001 rate of landfill gas recovery for the EU as a whole was estimated to be 20% while70% was assumed to be the maximum % CH4 recovery over the lifetime of an individual site.

| Option                            |            |          | Composting | Composting | AD  | AD  | MBP | Incineration | Incineration | Paper recycling |
|-----------------------------------|------------|----------|------------|------------|-----|-----|-----|--------------|--------------|-----------------|
| Applicability (1=UK; 2=Netherland | is)        |          | 1          | 2          | 1   | 2   | 1+2 | 1            | 2            | 1+2             |
| cost per t waste treated          | ·          |          |            |            |     |     |     |              |              |                 |
| capital cost                      | •1990/t w  | waste/yr | 154        | 182        | 172 | 208 | 154 | 228          | 517          | 455             |
| operating cost                    | •1990/t w  | raste    | 32         | 37         | 26  | 54  | 32  | 22           | 25           | 154             |
| diposal of residues               | ∎1990/t w  | vaste    | 8          | 8          | 3   | 0   | 20  | 0            | 0            | 0               |
| income from energy                | ∎1990/t w  | vaste    | 0          | 0          | -5  | -3  | 0   | -15          | -15          | 0               |
| other income                      | ∎1990/t w  | vaste    | -10        | -10        | -17 | 0   | 0   | 0            | 0            | -207            |
| avoided cost of landfilling       | ∎1990/t w  | vaste    | 30         | 30         | 30  | 30  | 30  | 30           | 30           | 30              |
| annualised cost per t waste trea  | ated       |          |            |            |     |     |     |              |              |                 |
| at 2% discount rate               | ∎1990/t w  | vaste    | 13         | 27         | -10 | 37  | 35  | -9           | 12           | -59             |
| at 4% discount rate               | ∎1990/t w  | vaste    | 15         | 29         | -8  | 39  | 37  | -6           | 18           | -53             |
| at 6% discount rate               | ∎1990/t w  | vaste    | 17         | 32         | -6  | 42  | 39  | -3           | 25           | -46             |
| total reduction in GHG emissions  |            |          |            |            |     |     |     |              |              |                 |
| Assuming 20% recovery of LFG      | t CO2 eq/t | t waste  | 1.2        | 1. 2       | 1.3 | 1.3 | 1.2 | 1.1          | 1.1          | 1. 2            |
| Assuming 70% recovery of LFG      | t CO2 eq/t | t waste  | 0.5        | 0.5        | 0.5 | 0.5 | 0.5 | 0.4          | 0.4          | 0.5             |
| Cost-effectiveness(CH4 and CO2)   |            |          |            |            |     |     |     |              |              |                 |
| Assuming 20% recovery of LFG      |            |          |            |            |     |     |     |              |              |                 |
| at 2% discount rate               | •1990/t C  | CO2 eq   | 10         | 16         | -8  | 29  | 28  | -9           | 11           | -47             |
| at 4% discount rate               | ∎1990/t C  | CO2 eq   | 12         | 17         | -6  | 31  | 30  | -6           | 17           | -43             |
| at 6% discount rate               | •1990/t C  | 202 eq   | 13         | 19         | -4  | 33  | 31  | -3           | 24           | -37             |
| Assuming 70% recovery of LFG      |            |          |            |            |     |     |     |              |              |                 |
| at 2% discount rate               | •1990/t C  | CO2 eq   | 28         | 41         | -19 | 73  | 75  | -23          | 31           | -126            |
| at 4% discount rate               | •1990/t C  | 002 eq   | 32         | 46         | -15 | 78  | 79  | -16          | 47           | -114            |
| at 6% discount rate               | •1990/t C  | 02 eq    | 36         | 51         | -11 | 83  | 83  | -8           | 65           | -100            |

#### *Table 10.6.* Costs for mitigating CH<sub>4</sub> emissions from waste

a Cost-effectiveness of mitigating  $CH_4$  emissions from waste in the Netherlands, including low- to high-technology strategies and assuming a 20 year project life (de Jager and Blok, 1996).

| measure                                                                 | capital cost                   | operating<br>cost              | profit                         | CH <sub>4</sub> emission<br>reduction | net cost             | net cost                  |
|-------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------------|----------------------|---------------------------|
|                                                                         | \$/ t/yr<br>(CH <sub>4</sub> ) | \$/ t/yr<br>(CH <sub>4</sub> ) | \$/ t/yr<br>(CH <sub>4</sub> ) | kt/yr<br>(CH <sub>4</sub> )           | \$/t CH <sub>4</sub> | \$/t<br>CO <sub>2</sub> e |
| landfill CH <sub>4</sub> recovery with onsite electrical generation     | 500                            | 28                             | 120                            | 72                                    | -48                  | -2.3                      |
| recovery and utilisation: upgrading of waste gas to natural gas quality | 700                            | 105                            | 200                            | 31                                    | -35                  | -1.7                      |
| recovery: flaring                                                       | 85                             | 0.3                            | 0                              | 51                                    | 8                    | 0.4                       |
| aerobic composting                                                      |                                | 950                            | 650                            | 5                                     | 300                  | 14.3                      |
| anaerobic digestion                                                     |                                | 1,400                          | 750                            | 1                                     | 650                  | 31.0                      |
| incineration                                                            |                                | 10,000                         | 2150                           | 6                                     | 7850                 | 373.8                     |

### b. Range of investment costs for onsite electrical generation from landfill gas (Willumsen, 2003).

| System component                                  | Cost (2003 US\$/kW installed power) |
|---------------------------------------------------|-------------------------------------|
| landfill gas collection                           | 200-400                             |
| (vertical wells or horizontal collectors; header) |                                     |
| landfill gas recovery and conditioning            | 200-300                             |
| (blower/compressor, dehydration, flare)           |                                     |
| landfill gas utilization (engine)                 | 850-1200                            |
| planning and design                               | 250-350                             |
| Total                                             | 1500-2250                           |

| Policies and Measures                                                                                                                                                     | Activity Affected                                                           | GHG<br>Affected                               | Type of Instruments                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Waste prevention, reuse, and re                                                                                                                                           | covery                                                                      |                                               |                                               |
| Extended Producer Responsibil-<br>ity (EPR)                                                                                                                               | Manufacturing of products<br>Recovery of used products<br>Disposal of waste | CO <sub>2</sub><br>CH <sub>4</sub><br>E-gases | Regulation<br>Voluntary                       |
| Unit pricing / Variable rate pric-<br>ing / Pay-as-you-throw (PAYT)                                                                                                       | Recovery of used products<br>Disposal of waste                              | CO <sub>2</sub><br>CH <sub>4</sub>            | Economic incentive                            |
| Landfill tax                                                                                                                                                              | Recovery of used products<br>Disposal of waste                              | CO <sub>2</sub><br>CH <sub>4</sub>            | Economic incentive                            |
| Separate collection and recovery of specific waste fractions                                                                                                              | Recovery of used products<br>Disposal of waste                              | CO <sub>2</sub><br>CH <sub>4</sub><br>F-gases | Regulation                                    |
| Subsidies for activities such as<br>reuse, recycling, and composting                                                                                                      | Recovery of used products<br>Disposal of waste                              | CO <sub>2</sub><br>CH <sub>4</sub>            | Subsidy                                       |
| Promotion of the use of recycled<br>products                                                                                                                              | Manufacturing of products                                                   | $CO_2$<br>$CH_4$                              | Regulation<br>Voluntary                       |
| Reduction of landfill CH <sub>4</sub> emission                                                                                                                            | ons and energy recovery from                                                | n landfill g                                  | as<br>Description                             |
| waste in landfills                                                                                                                                                        | Waste                                                                       | $CH_4$                                        | Regulation                                    |
| Standards for landfill perform-<br>ance to reduce landfill CH <sub>4</sub> emis-<br>sions by capture and combustion<br>of landfill gas with or without<br>energy recovery | Management of landfill sites                                                | CH <sub>4</sub>                               | Regulation                                    |
| Incineration (waste-to-energy)                                                                                                                                            |                                                                             | •                                             |                                               |
| Subsidies for construction of in-<br>cinerator, combined with stan-<br>dards for energy efficiency                                                                        | Performance standards for incinerators                                      | CO <sub>2</sub>                               | Regulation                                    |
| Tax exemption for electricity<br>generated by waste incinerator<br>and for waste disposal with en-<br>ergy recovery                                                       | Energy recovery from in-<br>cineration<br>of waste                          | CO <sub>2</sub>                               | Economic incentive                            |
| Reduction of post-consumer F-g                                                                                                                                            | gas emissions                                                               | 1                                             |                                               |
| Substitutes for F-gases<br>used commercially                                                                                                                              | Production of fluorinated gases                                             | F-gases                                       | Regulation<br>Economic incentive<br>Voluntary |
| Collection of fluorinated gases from end-of-life products                                                                                                                 | Management of end of life products                                          | F-gases                                       | Regulation<br>Voluntary                       |
| Emission reductions from waste                                                                                                                                            | water treatment                                                             | •                                             |                                               |
| Collection of CH <sub>4</sub> from waste water treatment system                                                                                                           | Management of waste water treatment system                                  | CH <sub>4</sub>                               | Regulation<br>Voluntary                       |
| JI and CDM in waste manageme                                                                                                                                              | ent sector                                                                  | 1                                             | · · ·                                         |
| JI and CDM                                                                                                                                                                |                                                                             | $CO_2$<br>CH <sub>4</sub>                     | Kyoto mechanism                               |

Table 10.7. Policies and measures for the waste management sector.

## Figures



 $(^{*}CO_{2} from biomass not included in national GHG inventories)$ 

**Figure 10.1.** Carbon flows through major waste management systems including C storage and gaseous C emissions. Note that  $CH_4$  from landfills and  $CO_2$  from incineration of fossil C are the emissions included in national GHG inventories.



 Landfill Methane Mass Balance

 Methane (CH<sub>4</sub>) produced (mass/time) =

  $\Sigma$ (CH<sub>4</sub> recovered + CH<sub>4</sub> emitted + CH<sub>4</sub> oxidized + CH<sub>4</sub> migrated +  $\Delta$  CH<sub>4</sub> storage)

 [Bogner and Spokas, 1993]

- a. Landfill methane mass balance: pathways for methane generated in landfilled waste, including methane emitted.
- b. Pathways for  $N_2O$  and  $CH_4\,emissions$  through wastewater systems.



Figure 10.2. Pathways for GHG emissions from landfills and wastewater systems.



*Figure 10.3a.* Annual rates of post-consumer waste generation 1971-2002 (*Tg*) using energy consumption surrogate.

Figure 10.3b. Minimum annual rates of carbon storage in landfills from 1971-2002 (Tg C).





Figure 10.4. Regional landfill CH<sub>4</sub> emission trends. [Mt CO<sub>2</sub>e]

- (1) IPCC national inventory estimates and projections for 5-year intervals from 1990-2020 (Scheele and Kruger, 2005, in review). Labeled "Inv".
- (2) Annual emission trends from 1971-2002 using methodology from Bogner and Matthews, 2003.

a. Regional distribution of CH<sub>4</sub> emissions from wastewater and human sewage in 1990 and 2020.



b. Regional distribution of N<sub>2</sub>O emissions from human sewage in 1990 and 2020.



*Figure 10.5.* Regional distribution of  $CH_4$  and  $N_2O$  emissions from wastewater and human sewage in 1990 and 2020 (UNFCCC/IPCC, 2004).

The numbered regions are: 1) OECD N America; 2) OECD Pacific; 3) Europe; 4) Countries in transition; 5) Sub-Sahara Africa; 6) N Africa; 7) Middle East; 8) Caribbean and S America; 9) E Asia; 10) S Asia. See Table 10.3 for totals.



#### \*MBP: Mechanical Biological Pretreatment.

*Figure 10.6. Technology gradient for waste management: Low- to high-technology options applicable to major urban areas*