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Executive Summary 1 
 2 
Climate models play an important role in climate research, enhancing our ability to understand past climate 3 
change and providing quantitative information about the future. Confidence in using climate models is based 4 
on careful evaluation of model performance, making use of increasingly comprehensive observationally-5 
based data sets and well-designed model intercomparison activities. This chapter provides an assessment of 6 
climate model evaluation, focusing particularly on developments since the IPCC Fourth Assessment Report 7 
(AR4). A range of models are considered, including: 8 
 9 
• coupled Atmosphere-Ocean General Circulation Models (AOGCMs), used in both long-term climate 10 

projection and shorter-term (seasonal to decadal) climate prediction; 11 
 12 
• their extension to ‘Earth System’ Models (ESMs), in which representation of climatically important 13 

biogeochemical cycles are included; 14 
 15 
• higher resolution, limited-area Regional Climate Models (RCMs), used extensively in downscaling global 16 

climate results to particular regions; 17 
 18 
• Earth System Models of Intermediate Complexity (EMICs) used to undertake very long (e.g., millennial) 19 

climate simulations, or to provide large ensembles exploring parameter uncertainty. 20 
 21 
The evaluation of climate models depends directly on the availability of high-quality observational data sets 22 
whose uncertainty is understood and quantified. These observational data have been described in earlier 23 
chapters. A particular advance since the AR4 has been in the area of model ‘metrics’ – that is, numerical 24 
measures of model performance reflecting the difference between a model and a corresponding observational 25 
estimate. These metrics allow more systematic evaluation of models and more concise presentation of 26 
evaluation results. This chapter will make extensive use of such metrics, along with more traditional 27 
presentation of ‘error maps’ and time series. 28 
 29 
Another advance since the AR4 is the extensive use of ‘satellite simulators’ in climate models. This involves 30 
on-line calculations which provide output more directly comparable to remote sensing observations from 31 
satellites. This approach is particularly valuable in evaluating the representation of clouds and cloud 32 
processes in climate models. 33 
 34 
The availability of carefully constructed multi-model experiments, notably the Coupled Model 35 
Intercomparison Projects (CMIP3 and CMIP5) and the Coordinated Regional Downscaling Experiment 36 
(CORDEX), allow for increasingly in-depth analysis of model results. The multi-model ensemble allows for 37 
some assessment of uncertainty in climate model capabilities in cases where suitable observations are not 38 
available, but more importantly it allows one to begin investigating the connection between particular model 39 
errors/biases and particular characteristics or process parameterisations in a model. This necessarily requires 40 
careful and extensive documentation of each model, something that has also improved significantly since the 41 
AR4. 42 
 43 
The results presented here indicate that the ability of climate models to simulate historical climate, its 44 
change, and its variability, has improved in many important respects since the AR4. Particular examples 45 
include: 46 
 47 
• biases in surface temperature and precipitation are typically smaller; 48 
 49 
• the diurnal cycle of surface air temperature and the annual cycle of sea-ice extent is well simulated on 50 

average; 51 
 52 
• some modes of climate variability, such as the North Atlantic Oscillation, are better represented; 53 
 54 
• the new generation of ESMs are able to realistically simulate the annual cycle and spatial gradients of 55 

atmospheric CO2, and the uptake of carbon, particularly by the ocean; 56 
 57 
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• regional climate models are able to add value to coarser-resolution global model results, providing 1 
realistic spatial detail and improved representation of climate extremes. 2 

 3 
Of course, there are also many areas of model performance that remain to be improved. There is large inter-4 
model spread and evident systematic bias in a number of important climate quantities. For example, models 5 
have problems simulating the mean temperature structure of the Tropical Atlantic Ocean, the diurnal cycle of 6 
precipitation, the Madden-Julien Oscillation, and clouds and cloud radiative effects. In some cases, model 7 
results are in general agreement with observations, but the observational uncertainty is sufficiently large as to 8 
render it impossible to make definitive statements about model quality. 9 
 10 
An evaluation of models tends, necessarily, to focus on the identification of model weaknesses. This 11 
provides the ongoing challenge to model developers to probe the underlying processes involved and to 12 
improve their representation. Despite their shortcomings, contemporary climate and Earth system models are 13 
able to simulate many important aspects of past climate change and variability, including feedbacks and 14 
modes of variability that arise spontaneously in the coupled system.The errors and biases in models tend to 15 
be related to smaller-scale features and higher-order statistics such as correlations and teleconnections. 16 
Overall, climate models provide realistic simulations of the large-scale features of climate system and 17 
reproduce observed historical change with some fidelity. The climate sensitivity of current models has not 18 
changed dramatically from that of models assessed in the AR4, despite many improvements to the models’ 19 
representation of physical processes. 20 
 21 

22 
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9.1 Climate Models and their Characteristics 1 
 2 
9.1.1 Scope and Overview of this Chapter 3 
 4 
Climate models constitute the primary tools available for investigating the response of the climate system to 5 
various forcings, for making climate predictions on seasonal to decadal time scales, and for making 6 
projections of future climate over the coming century and beyond. It is crucial therefore to critically evaluate 7 
the performance of these models, both individually and collectively. The focus of this chapter is particularly 8 
on the models whose results will be used in the detection and attribution chapter and the projections chapters 9 
10 through 12, and so this is necessarily an incomplete evaluation. In particular, we will draw heavily on 10 
model results collected as part of the Coupled Model Intercomparison Projects (CMIP3 and CMIP5 (Meehl 11 
et al., 2007a; Taylor, 2011)) as this constitutes a set of well-controlled and increasingly well-documented 12 
climate model experiments. Other intercomparison efforts, such as the Coordinated Regional Downscaling 13 
Experiment (CORDEX), dealing with regional climate models (RCMs), and those dealing with Earth System 14 
Models of intermediate complexity (EMICs) are also used. Results from earlier evaluations will be included 15 
so as to illustrate changes in model performance over time. 16 
 17 
The direct approach to model evaluation is to compare observations with model output and analyze the 18 
resulting difference. This requires knowledge of the errors and uncertainties in the observations, which have 19 
been discussed in Chapters 2 through 5. Where possible, averages over the same time period in both models 20 
and observations will be compared, although for many quantities, only observationally-based estimates of 21 
the climatological mean are available. In cases where observations are lacking, we will resort to 22 
intercomparison of model results to provide some quantification of model ‘uncertainty’. 23 
 24 
After a more thorough discussion of the climate models and methods for evaluation in Sections 9.1 and 9.2, 25 
we describe the basic characterization of climate model experiments in Section 9.3, evaluate recent and 26 
longer-term records as simulated by climate models in Section 9.4, variability and extremes in Section 9.5, 27 
and downscaling and regional scale climate simulation in Section 9.6. We conclude with a discussion of the 28 
sources of model errors in Section 9.7 and the relation between model performance and the credibility of 29 
future climate projections in Section 9.8. 30 
 31 
9.1.2 Overview of Models to be Evaluated  32 
 33 
The models used in climate research range from simple energy balance models to complex Earth System 34 
Models using state of the art high-performance computing. The choice of model depends directly on the 35 
scientific question being addressed (Collins et al., 2006b; Held, 2005). Applications include simulating 36 
palaeoclimate, historical climate, predicting near-term climate variability and change on seasonal to decadal 37 
time scales, making projections of future climate change over the 21st century or more, and downscaling 38 
such projections to provide more detail at the regional and local scale. Computational cost is a factor in all of 39 
these, and so simplified models (with reduced complexity or spatial resolution) can be used when larger 40 
ensembles or longer integrations are required. Examples of the latter include exploration of parameter 41 
sensitivity or simulations of climate change on the millennial or longer time scale. Here, we provide a brief 42 
overview of the climate models evaluated in this chapter. 43 
 44 
9.1.2.1 Atmosphere-Ocean General Circulation Models (AOGCMs) 45 
 46 
AOGCMs were the “standard” climate models assessed in the AR4. Their primary function is to understand 47 
the dynamics of the physical components of the climate system (atmosphere, ocean, land, and sea-ice), and 48 
they are the workhorse for making projections based on future greenhouse gas and aerosol forcing. These 49 
models continue to be extensively used, and in particular are run (often at higher resolution) for seasonal to 50 
decadal climate prediction applications in which biogeochemical feedbacks from the carbon cycle are less 51 
important than they are in century-scale projections.  52 
 53 
9.1.2.2 Earth System Models (ESMs) 54 
 55 
ESMs are the current state-of-the-art climate models in the CMIP5, in terms of the extent to which the 56 
overall Earth system is represented. Compared to the AOGCMs that constituted the bulk of the models 57 
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assessed in the AR4, ESMs include representation of various biogeochemical cycles such as those involved 1 
in the carbon cycle, the sulphur cycle, or stratospheric ozone (Flato, 2011). These models provide the most 2 
comprehensive tools available for simulating past and future response of the climate system to external 3 
forcing, in which biogeochemical feedbacks play a potentially important role. These models require using 4 
the largest and fastest high-performance computing platforms available and typically require more than one 5 
month for a 100-year simulation.  6 
 7 
9.1.2.3 Earth-System Models of Intermediate Complexity (EMICs) 8 
 9 
EMICs attempt to include all relevant components of the earth-system, but often in an idealized manner or at 10 
lower resolution than the models described above. These models are applied to certain scientific questions 11 
such as understanding climate feedbacks on millennial time scales or exploring sensitivities in which long 12 
model integrations or large ensembles are required (Claussen et al., 2002; Petoukhov et al., 2005). This class 13 
of models often includes Earth system components not yet included in all ESMs (e.g., ice sheets). As 14 
computer power increases, this model class has continued to advance in terms of resolution and complexity.  15 
 16 
9.1.2.4 Regional Climate Models (RCMs) 17 
 18 
RCMs employ a limited area grid driven at the boundaries by output from a global climate model or 19 
reanalyses. The representations of climate processes are comparable to those in AOGCMs. The typical 20 
application of an RCM is to ‘downscale’ global model projections for some particular geographical region, 21 
in order to provide information on a higher resolution than what is attainable from many AOGCMs 22 
(Rummukainen, 2010).  23 
 24 
9.1.3 The Path to Model Improvement 25 
 26 
9.1.3.1 The Model Development Process  27 
 28 
All of the comprehensive climate models introduced above are founded on well-known physical laws (e.g., 29 
energy and momentum conservation). Developing climate models involves two principal steps:  30 
 31 
i) Finding the mathematical expressions for the system’s physical laws. This requires theoretical work in 32 

deriving and simplifying the mathematical expressions that best describe the system;  33 
 34 
ii) Implementing these mathematical expressions on a computer. This requires developing numerical 35 

methods that allow the solution of the mathematical expressions usually implemented on some form of 36 
grid such as the latitude-longitude-height grid for atmospheric models.  37 

 38 
The application of complex climate models requires significant supercomputing resources. Limitations in 39 
those resources lead to additional constraints. Even when using the most powerful computers today, 40 
compromises need to be made in three main areas: 41 
 42 
i) Numerical implementations allow for a choice of grid spacing, often referred to as “model resolution” 43 

(see Section 9.1.3.4). Higher model resolution generally leads to more accurate models but also to higher 44 
computational costs. Currently affordable climate model resolutions imply that certain processes are 45 
excluded from the numerical solutions and have to be represented through simple conceptual models 46 
usually referred to as parameterisations (e.g., carbon cycle or cloud processes, see Chapters 6 and 7). 47 
 48 

ii) The climate system contains many processes the relative importance of which varies with the time-scale 49 
of interest. Hence compromises to include or exclude certain processes or components in a model must 50 
be made, with an increase in complexity leading to an increase in computational cost.  51 

 52 
iii) The climate system is highly non-linear. A single model simulation therefore only represents one of the 53 

possible pathways the system might follow. To allow some evaluation of the resulting uncertainties it is 54 
necessary to carry out a number of simulations either with several models or using an ensemble of 55 
simulations with a single model, both increasing the computational cost. 56 

 57 
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Trade-offs amongst the various considerations outlined above depend on the model application and lead to 1 
the several classes of models introduced in Section 9.1.2. 2 
 3 
The development of climate models takes place at several strongly connected levels illustrated in Figure 9.1. 4 
Having derived the numerical description of one of the model components (e.g., the atmosphere) it is 5 
necessary to develop representations of the processes that are excluded by the choice of model resolution. 6 
This process of parameterisation has become very complex (Jakob, 2010) and is often achieved by 7 
developing conceptual models of the process of interest in isolation. The complexity of each process 8 
representation is constrained by observations, computational resources and current knowledge (e.g., Randall 9 
et al., 2007). The next step in model development is the assembly and evaluation of single model 10 
components. For instance, the atmospheric component can be evaluated by prescribing sea surface 11 
temperature (Gates et al., 1999) or the ocean and land components by prescribing the atmospheric input 12 
(Barnier et al., 2006; Griffies et al., 2009). The final step of model development is the integration of all 13 
components into a full climate model and the evaluation of that model as a whole. The need for simple 14 
process representations in all model components introduces several parameters, which are adjusted using a 15 
variety of constraints ranging from observations of the parameter itself to well-known climate system 16 
characteristics such as global top-of-the-atmosphere radiative balance. This process is often referred to as 17 
model tuning (see Box 9.1). 18 
 19 
 20 
[START BOX 9.1 HERE] 21 
 22 
Box 9.1: Model Tuning and Evaluation 23 
 24 
The global climate is an extremely complex system and there is no known set of equations that describes it 25 
completely. Rather climate models are comprised of a fundamental component, the part of the system 26 
described by established theory, and a non-fundamental component, whereby important processes are 27 
described as best one can (see Section 9.1.3), often through the use of empirically-derived but physically 28 
plausible relationships. This mix of fundamental and non-fundamental components in the description of the 29 
climate system leads to many of the key uncertainties in current climate models. 30 
 31 
Due to constraints both in knowledge and computational resources there is a need to introduce a number of 32 
parameters in all model components, particularly related to the description of unresolved or poorly 33 
understood processes (see Section 9.1.3). Many of these parameters are not well-constrained by theory or 34 
data, although their rough determination is based on process-level understanding, observational constraints, 35 
and fine-scale modelling studies (see Chapter 7, Section 7.2 and Section 9.1.3).  36 
 37 
Once various components have been assembled into a comprehensive model, a small subset of model 38 
parameters remain to be adjusted so that the model adheres to certain large-scale observational constraints. 39 
This final parameter adjustment procedure is usually referred to as model tuning. As model tuning aims to 40 
match observed climate system behaviour, it is connected to judgments as to what constitutes a skilful 41 
representation of the Earth’s climate. Some aspects of a simulation that one tunes toward are unquestionably 42 
important. For instance, maintaining the top-of-the-atmosphere energy balance in an unforced simulation is 43 
essential to prevent the climate system from drifting to an unrealistic state. Because modelling centres do not 44 
routinely describe how they tune their models the complete list of observational constraints toward which a 45 
particular model is tuned is generally not known; but experience suggests that tuning involves trade-offs, 46 
which keeps the list small, and is focused on globally integrated measures of skill related to budgets of 47 
energy, mass and momentum.  48 
 49 
It bears emphasizing that model tuning is only the final step in the model development process, and this 50 
process as a whole is guided by an awareness of deficiencies in the simulation of current and past climate 51 
states (see Section 9.1.3). For instance whether or not one incorporates specific processes may be guided by 52 
deficiencies in previous model simulations, by emerging information about the potency of particular effects 53 
(e.g., Hoose et al., 2009), or the importance of some mode of variability (Kim et al., 2011a). Although these 54 
tuning steps complicate the a posteriori evaluation of models, the non-linear nature of the climate system 55 
(and the models that represent) it makes it impossible to tune many of the details of model solutions. 56 
Because this is true, it would be hard to construct models that produced any solution one liked. In particular, 57 
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every model that reasonably reproduces historical climate shows substantial warming as a result of 1 
increasing CO2.  2 
 3 
The use of all available data is both integral and important to the model development process, and this 4 
complicates the construction of critical tests. Nonetheless, by focusing on emergent quantities while 5 
discounting metrics clearly related to model tuning, it is possible to gain insight into model skill. The 6 
concurrent use of a large number of different model quantities, evaluation techniques, and performance 7 
metrics also helps ensure that the evaluation provides a stringent test of model quality. The application of 8 
sophisticated evaluation techniques that aim at identifying and testing key relationships or correlations 9 
between several quantities is another severe test for climate models, as those relationships are usually not 10 
considered in model tuning (see Sections 9.2.2 and 9.7.2). 11 
 12 
In summary, model tuning is an intrinsic part of model development and arises naturally from the fact that 13 
climate simulations depend to a significant degree on the representation of poorly understood processes. 14 
Model tuning directly influences the evaluation of climate models in that it leads to grades of the severity of 15 
tests that models can undergo. The application of model tuning raises the question of whether climate models 16 
are a reliable source of knowledge for those aspects of the system toward which they were not tuned, for 17 
instance cloud feedbacks in a future warmer climate. Models are not tuned to match a particular future 18 
climate; they are tuned to faithfully reproduce the past. What emerges, however, is that models that plausibly 19 
reproduce the past universally produce significant warming under increasing greenhouse gas concentrations, 20 
and this fact underlies the broad consensus behind the results presented in this report. 21 
 22 
[END BOX 9.1 HERE] 23 
 24 
 25 
[INSERT FIGURE 9.1 HERE] 26 
Figure 9.1: A sketch illustrating the interconnection of model components in Atmosphere-Ocean General Circulation 27 
Models (AOGCMs) and Earth system models (ESMs), and the way in which parameterisations are embedded in each 28 
component. 29 
 30 
The increasingly modular nature of process-descriptions and model components has led to an increased use 31 
of shared software infrastructures (Collins et al., 2005; Valcke et al., 2006) and an increased sharing and 32 
exchange of model components. This sharing of components has consequences for evaluating the ensemble 33 
of the CMIP models, as not all of them can be considered completely independent (see Section 9.8). Table 34 
9.1 provides an overview over the models used here, including an indication of where components are 35 
similar between models. 36 
 37 
[INSERT TABLE 9.1 HERE]  38 
Table 9.1: Salient features of the AOGCMs and ESMs participating in CMIP5. Column 1: identification (Model ID) 39 
along with the calendar year (‘vintage’) of the first publication for each model; Column 2: sponsoring institution(s), 40 
main reference(s) and flux correction implementation (not yet described); Subsequent Columns for each of the 8 41 
CMIP5 realms: component name, code independence and main component reference(s). Additionally, there are 42 
standard entries for the Atmosphere realm: horizontal grid resolution, number of vertical levels, grid top (low or high 43 
top); and for the Ocean realm: horizontal grid resolution, number of vertical levels, top level, vertical coordinate type, 44 
ocean free surface type (“Top BC”). This table information was automatically extracted from the CMIP5 online 45 
questionnaire (http://q.cmip5.ceda.ac.uk/) as of 12 November 2011. 46 
 47 
9.1.3.2 Parameterisations 48 
 49 
As noted above, parameterisations are included in all model components to represent processes that cannot 50 
be explicitly resolved. Parameterisations are continuously developed in a process-oriented way (Section 51 
9.2.2.2) and are evaluated both in isolation and in the context of the full model. The purpose of this section is 52 
to highlight recent developments in the parameterisations employed in each model component. 53 

 54 
9.1.3.2.1 Atmosphere 55 
Atmospheric models must parameterise a wide range of processes, including processes associated with 56 
atmospheric convection and clouds, cloud-microphysical and aerosol processes, boundary layer processes, as 57 
well as radiation and the treatment of unresolved gravity waves. 58 
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 1 
The treatment of atmospheric convection remains one of the most critical areas in atmospheric models. 2 
While there have been no major developments in the basic approach to this problem, there have been 3 
important refinements in existing convection parameterisations. A long-standing weakness of convection in 4 
climate models has been the lack of sensitivity of the development of convective clouds to their environment 5 
(Derbyshire et al., 2004). This has been a focus of development since the AR4, and has resulted in improved 6 
simulations of tropical variability (Bechtold et al., 2008; Chikira, 2010; Chikira and Sugiyama, 2010; Neale 7 
et al., 2008); Derbyshire et al., 2011). Another focus has been on improving of the transport of momentum in 8 
convection parameterisations (Richter et al., 2008). In many climate models, cumulus parameterizations now 9 
calculate the typical vertical velocity in cumulus updrafts to more realistically represent cloud microphysics 10 
and cloud droplet activation as well as the updraft dynamics. The work on an alternative approach to 11 
convection in climate models by using so-called super-parameterisations has progressed since the AR4 and 12 
continues to yield promising results, albeit at much increased computational cost (Demott et al., 2007, 2010; 13 
Khairoutdinov et al., 2008; Tao and Moncrieff, 2009; Tao et al., 2009; Zhu et al., 2009).  14 
 15 
Previous assessments have highlighted the important role of cloud processes in modelled climate sensitivity. 16 
There have been some improvements in the underlying algorithms to determine the existence and structure 17 
of cloud fields, typically based on the use of probability density functions of thermodynamic variables 18 
(Watanabe et al., 2009). As cloud representations in climate models increasingly aim to represent the 19 
influence of aerosols on cloud evolution (see Chapter 7), there has also been considerable effort to improve 20 
the representation of cloud microphysical processes. This has led to upgrades in the treatment of atmospheric 21 
radiation modules (Rotstayn et al., 2010), so that the radiative effects of aerosols can be included in a 22 
physically consistent fashion. The treatment of the radiative effects of clouds has also seen significant 23 
development (Barker et al., 2008) 24 
 25 
Improvements in representing the atmospheric boundary layer since the AR4 have focussed on basic 26 
boundary-layer processes, the representation of the stable boundary layer, and boundary layer clouds 27 
(Teixeira et al., 2008). Several global models have successfully adopted new approaches to the 28 
parameterization of shallow cumulus convection and moist boundary layer turbulence that acknowledge their 29 
close mutual coupling. One new development is the Eddy-Diffusivity-Mass-Flux (EDMF) approach 30 
(Neggers, 2009; Neggers et al., 2009; Siebesma et al., 2007). This approach, like the shallow cumulus 31 
scheme of (Park and Bretherton, 2009), determines the cumulus-base mass flux from the statistical 32 
distribution of boundary layer updraft properties, a conceptual advance over the ad-hoc closure assumptions 33 
used in the past. The realistic treatment of the stable boundary layer remains difficult (Beare et al., 2006; 34 
Cuxart et al., 2006; Svensson and Holtslag, 2009).  35 
 36 
The influence of internal gravity waves on the general circulation and mass distribution of the troposphere 37 
and lower stratosphere has been well established by the success of early efforts to parameterise unresolved 38 
orographic gravity-wave drag (GWD) (e.g., Palmer et al., 1986; McFarlane, 1987). These initial 39 
parameterisations concentrated primarily on effects associated with the saturation (Lindzen, 1981) and 40 
critical-level interaction of freely propagating gravity waves. More recently, there have been efforts to 41 
develop more sophisticated parameterisations of orographically forced flows which include sources of low-42 
level drag such as blocking, lee vortices, downslope windstorm flow, and trapped lee waves (e.g., Lott and 43 
Miller, 1997; Gregory et al., 1998; Scinocca and McFarlane, 2000). 44 
 45 
The parameterisation of drag due to non-orographic gravity waves is becoming a common feature of GCMs 46 
that include the middle atmosphere (i.e., stratosphere and mesosphere). The basic wind and temperature 47 
structure of the middle atmosphere arises largely from a balance between radiative driving and (primarily 48 
non-orographic) GWD (Holton, 1983). The term non-orographic refers to the fact that the sources of these 49 
waves (e.g., convection and frontal dynamics) are non-stationary and so induce waves with non-zero 50 
horizontal phase speeds. In the stratosphere, such GWD is essential to the driving of both the quasi-biennial 51 
oscillation in the Tropics (Dunkerton, 1997) and the equator-to-pole residual circulation in the summer 52 
hemisphere (Alexander and Rosenlof, 1996). Over the past decade, the importance of a well-resolved 53 
stratosphere on tropospheric prediction and projection has become increasingly clear.  54 

 55 
9.1.3.2.2 Ocean  56 
Mesoscale and submesoscale eddy parameterisations  57 
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Ocean components in CMIP5 models generally have horizontal resolution that is too coarse to admit 1 
mesoscale eddies. Consequently, such models typically employ some version of the (Redi, 1982) neutral 2 
diffusion and (Gent and McWilliams, 1990) eddy advection parameterisation (see also Gent et al., 1995; 3 
McDougall and McIntosh, 2001). Since the AR4, the main research focus has been on how parameterised 4 
mesoscale eddy fluxes in the ocean interior interact with boundary-layer turbulence; some CMIP5 models 5 
have implemented such features (Gnanadesikan et al., 2007; Ferrari et al., 2008; Ferrari et al., 2010) and 6 
(Danabasoglu et al., 2008). Another focus concerns specification of the eddy diffusivity, with many more 7 
CMIP5 models employing flow dependent diffusivities than CMIP3 models. Both refinements to the eddy 8 
parameterisations are important for the mean state and the response to changing forcing, especially in the 9 
Southern Ocean (Boning et al., 2008; Farneti and Gent, 2011; Farneti et al., 2010; Gent and Danabasoglu, 10 
2011; Hallberg and Gnanadesikan, 2006; Hofmann and Morales Maqueda, 2011).  11 
 12 
In addition to mesoscale eddies, there has been a growing awareness since CMIP3 of the effects that 13 
submesoscale eddies and fronts play in restratifying the mixed layer, with Boccaletti et al. (2007), Fox-14 
Kemper et al. (2008), and Klein and Lapeyre (2009) representative of this effort, and with the 15 
parameterisation of Fox-Kemper et al. (2011) used in some CMIP5 models. 16 
 17 
Parameterisations of dianeutral transformation  18 
There is an active research effort on the representation of dianeutral mixing associated with breaking gravity 19 
waves (MacKinnon et al., 2009), with this work adding rigor to the prototype abyssal tidal mixing 20 
parameterisation of (Simmons et al., 2004) now used in several climate models (e.g., Jayne, 2009). The 21 
transport of dense water down-slope with gravity currents (e.g., Legg et al., 2008; Legg et al., 2009) has also 22 
been the subject of focused efforts, with associated parameterizations making their way into some CMIP5 23 
models (Danabasoglu et al., 2010; Jackson et al., 2008b; Legg et al., 2009). 24 
 25 
Additional work has led to several CMIP5 models having interactive ocean biogeochemistry for their 26 
standard configuration, with impacts on sunlight penetration and upper ocean mixing in both open-ocean and 27 
sea-ice regions (Lengaigne et al., 2009; Lengaigne et al., 2007). 28 
 29 
Ocean biogeochemical (OBGC) models 30 
Oceanic uptake of CO2 is highly variable and is determined by the interplay between the biogeochemical and 31 
physical processes in the ocean. Most CMIP5 OBGC models are based on so-called NPZD-type models that 32 
partition marine ecosystems into nutrients, plankton, zooplankton, and detritus. These models allow 33 
simulation of some of the important feedbacks between climate and oceanic CO2 uptake, but are limited by 34 
the lack of marine ecosystem dynamics. Some efforts have been made to include more plankton groups or 35 
plankton functional types in the models (PFPs; Le Quere et al., 2005) with as-yet uncertain implications for 36 
Earth system response.  37 
 38 
Ocean acidification and the associated decrease in calcification in many marine organisms provides a 39 
negative feedback on atmospheric CO2 (Ridgwell et al., 2007). New-generation OBGC models therefore 40 
include various parameterisations of calcium carbonate (CaCO3) production as a function of the saturation 41 
state of seawater with respect to calcite (Gehlen et al., 2007; Ilyina et al., 2009; Ridgwell et al., 2007) or 42 
pCO2 (Heinze, 2004). On centennial scales, deep-sea carbonate sediments neutralize atmospheric CO2. A 43 
growing number of CMIP5 models include the sediment carbon reservoir, and progress has been made 44 
towards refined sediment representation in the models (Heinze et al., 2009).  45 
 46 
9.1.3.2.3 Land 47 
Land-surface properties such as vegetation, soil type, and the amount of water stored on the land as soil 48 
moisture, snow, and groundwater, all strongly influence climate, particularly through their effects on surface 49 
albedo and evapotranspiration. These climatic effects can be profound; for example, it has been suggested 50 
that changes in the state of the land-surface played an important part in the severity and length of the 2003 51 
European drought (Fischer et al., 2007a).  52 
 53 
The land-surface schemes employed in GCMs calculate the fluxes of heat, water, and momentum between 54 
the land and the atmosphere, and update the surface state variables such as soil moisture, soil temperature 55 
and snow-cover, that influence these fluxes. There has been a steady increase in the complexity of land-56 
surface components on GCMs from the first generation soil “bucket” models employed in the 1970s 57 
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(Manabe, 1969) to fourth-generation schemes that attempt to model vegetation controls on transpiration 1 
through stomatal pores on their leaves (Cox et al., 1999; Sellers et al., 1996). However, even the more 2 
complex land surface schemes used in the AR4 suffered from obvious simplifications, such as the need to 3 
prescribe rather than simulate the vegetation cover, and a tendency to ignore lateral flows of water and sub-4 
gridscale heterogeneity in soil moisture (Pitman, 2003). 5 
 6 
Since the AR4 land-surface model development has focused on overcoming some of these limitations. A 7 
number of climate modelling groups now include some representation of sub-gridscale hydrology (Gedney 8 
and Cox, 2003; Oleson et al., 2008b) and most also include a large-scale river network model to route runoff 9 
to the appropriate ocean outflow points (Oki et al., 1999).  10 
 11 
The evaluation of land-surface schemes is in principle more straightforward than for other components of 12 
climate models, because they can be tested easily in “standalone” or “offline” mode. The meteorological data 13 
required to drive land models is generally available and there is a growing amount of data for validation from 14 
flux towers (Baldocchi et al., 2001) and Earth Observation. International initiatives are now underway to 15 
develop benchmarking tools for land-surface models based on these copious observations (Randerson et al., 16 
2009). 17 
 18 
9.1.3.2.4 Ice 19 
Most large-scale sea-ice processes are well understood and well represented in models (Hunke et al., 2011). 20 
For example, the basic thermodynamic description has been available for 40 years (Maykut and Untersteiner, 21 
1971), and a relatively straightforward representation of sea-ice dynamics is nearly 35 years old (Hibler, 22 
1979). Schemes like this capture the first-order behaviour of sea ice in the climate system. Since the AR4, in 23 
which there was a major advance associated with inclusion of sea-ice dynamics in most AOGCMs, progress 24 
in improving sea-ice components in climate models has apparently slowed. Sea ice model development is 25 
now addressing higher-order effects: (1) more precise descriptions of physical processes such as 26 
microstructure evolution and anisotropy; and (2) extensions of the model for “Earth system” simulations, by 27 
including biological and chemical species. 28 
 29 
Sea ice dynamics 30 
The Arctic and Antarctic sea ice packs are mixtures of open water, thin first-year ice, thicker multiyear ice, 31 
and even thicker pressure ridges. An essential aspect of sea ice thermodynamics is the variation of growth 32 
and melting rates for different ice thicknesses. Thin ice grows and melts more quickly than thicker ice. 33 
Similarly, thinner ice is more likely to undergo mechanical deformation than thicker ice. Most early sea ice 34 
models neglected sub-grid-scale thickness variations, but many models now include some representation of 35 
the thickness distribution, and a description of mechanical redistribution that converts thinner ice to thicker 36 
ice under convergence and shear. 37 
 38 
In most models, ice area fraction, ice volume, and snow volume are advected horizontally. As in other model 39 
components, details of the advection scheme become particularly important when there are large spatial 40 
gradients and when certain physical constraints (such as positive-definiteness) must be respected. New 41 
approaches include more accurate , nearly monotonic schemes for conserved fields (e.g., ice area and 42 
volume), but not for tracers, (e.g., Vancoppenolle et al., 2009b; Lipscomb and Hunke, 2004). 43 
 44 
Sea ice thermodynamics 45 
Sea ice albedo has long been recognized as a critical aspect of the global heat balance. The average surface 46 
albedo on the scale of a climate model grid cell is (as on land) the result of a mixture of surface types: bare 47 
ice, melting ice, snow-covered ice, open water, etc. The parameterisation of surface albedo remains uncertain 48 
and is often tuned to produce a realistic simulation of sea ice extent, compensating for deficiencies in both 49 
atmosphere and ocean forcing, (e.g., Losch et al., 2011). Many sea ice models still use a relatively simple 50 
albedo parameterisation that specifies four albedo values: cold snow; warm, melting snow; cold, bare ice; 51 
and warm, melting ice. Other models use more complex formulations that take into account the ice and snow 52 
thickness, spectral band, and other parameters. Solar radiation may be distributed within the ice column 53 
assuming exponential decay (Beer's Law) or via more complex multiple-scattering radiative-transfer scheme 54 
(Briegleb and Light, 2007). 55 
 56 
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Melt ponds form in depressions on the surface of the ice and can drain through interconnected brine channels 1 
when the ice becomes warm and permeable. This flushing can effectively clean the ice of salt, nutrients, and 2 
other inclusions. There are several schemes for modelling melt ponds and surface melt. The simplest and 3 
most widely used does not involve tracking melt water, but rather decreases the ice surface albedo under 4 
warm, melting conditions, (e.g., Vancoppenolle et al., 2009b). More realistic melt pond schemes are under 5 
development (Flocco et al., 2010; Scott and Feltham, 2010). 6 
 7 
Salinity affects thermodynamic properties of sea ice, and is used in the calculation of fresh water and salt 8 
exchanges at the ice-ocean interface. Some models allow the salinity to vary in time (Schramm et al., 1997), 9 
while others assume a salinity profile that is constant, (e.g., Bitz and Lipscomb, 1999). For LIM3, 10 
Vancoppenolle et al. (2009a) developed a simplified approach to simulate the desalination of Arctic sea ice 11 
as it grows and then transitions from first-year to multi-year ice. Another new thrust in climate modelling is 12 
the inclusion of chemistry and biogeochemistry (Piot and von Glasow, 2008a, 2008b; Zhao et al., 2008), with 13 
dependencies on the ice microstructure and salinity profile. Related work involves the vertical transport and 14 
cycling of quantities such as aerosols (Bailey et al., 2010) and gases (Nomura et al., 2010) that pass 15 
gradually through the ice and can modify oceanic or atmospheric chemistry. 16 
 17 
One of the difficulties in evaluating the sea-ice component of a climate model is that errors arise from not 18 
only the sea-ice component itself, but also from errors in the atmosphere above and the ocean below (e.g., 19 
Bitz et al., 2002) and, because of the strong ice-albedo feedback, these errors are amplified. 20 

 21 
9.1.3.3 New Components and Couplings: Biogeochemical Feedbacks and the Emergence of Earth System 22 

Modelling  23 
 24 
9.1.3.3.1 Carbon Cycle 25 
The omission of internally-consistent feedbacks between the physical, chemical, and biogeochemical 26 
processes in the climate system is an inherent feature of AOGCMs. The conceptual issue is that the physical 27 
climate controls the natural sources and sinks of CO2 and CH4, the two most important long-lived 28 
greenhouse gases (LLGHGs). ESMs incorporate many of the important biogeochemical processes, making it 29 
possible to simulate the evolution of radiatively active species based upon their emissions from natural and 30 
anthropogenic sources together with their interactions with the rest of the Earth system. Alternatively, when 31 
forced with specified concentrations, one can diagnose these sources (with feedbacks included). Given the 32 
large natural sources and sinks of CO2 relative to its anthropogenic emissions, and given the primacy of CO2 33 
among anthropogenic GHGs, one of the most important enhancements is the addition of terrestrial and 34 
oceanic carbon cycles. These cycles have been incorporated into many models (Christian et al., 2010; 35 
Tjiputra et al., 2010) used to study the long-term evolution of the coupled Earth system under anthropogenic 36 
climate change (Schurgers et al., 2008).  37 
 38 
9.1.3.3.2 Aerosols 39 
The treatment of aerosols has advanced since the AR4. Many ESMs now include the basic features of the 40 
sulphur cycle and so represent both the direct effect of sulphate aerosols, along with some of the more 41 
complex indirect effects involving cloud droplet number and size. Further, several ESMs are currently 42 
capable of simulating the mass, number, size distribution, and mixing state of interacting multicomponent 43 
aerosols (Bauer et al., 2008). The incorporation of more physically complete representations of aerosols 44 
often improves the simulated climate under historical and present-day conditions, including the mean pattern 45 
and interannual variability in continental rainfall (Rotstayn et al., 2010). However, the representation of 46 
aerosols and their interaction with clouds and radiative transfer remains an important source of uncertainty in 47 
the simulation of historical climate change and climate sensitivity. 48 
 49 
9.1.3.3.3 Methane cycle and permafrost 50 
In addition to carbon dioxide, an increasing number of ESMs are also incorporating prognostic methane to 51 
quantify the feedbacks from changes in methane sources and sinks under a warming climate. Some models 52 
now simulate the evolution of permafrost carbon stock (Khvorostyanov et al., 2008a; Khvorostyanov et al., 53 
2008b), and in some cases this is integrated with the representation of terrestrial and oceanic methane cycles 54 
(Volodin et al., 2010; Volodin, 2008a). 55 
 56 
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9.1.3.3.4 Dynamic global vegetation models and wildland fires 1 
One of the potentially more significant effects of climate change is the alteration of the distribution, 2 
speciation and life cycle of vegetated ecosystems. In order to include these effects in projections of climate 3 
change, several dynamic global vegetation models (DGVMs) have been developed and deployed in 4 
AOGCMs and ESMs (Ostle et al., 2009) (Cramer et al., 2001; Sitch et al., 2008),. DGVMs can simulate the 5 
interactions among natural and anthropogenic drivers of global warming, the state of terrestrial ecosystems, 6 
and ecological feedbacks on further climate change. The incorporation of DGVMs has required considerable 7 
enhancement and improvement in coupled models to produce stable and realistic distributions of flora 8 
(Oleson et al., 2008b). The improvements include better treatments of surface, subsurface, and soil 9 
hydrological processes, the exchange of water with the atmosphere, and the discharge of water into rivers 10 
and streams. While the first DGVMs have been primarily coupled to the carbon cycle, the current generation 11 
of DGVMs are being extended to predict the ecological sources and sinks of other non-CO2 trace gases 12 
including CH4, N2O, biogenic volatile organic compounds (BVOCs), and nitrogen oxides collectively known 13 
as NOx (Arneth et al., 2010). BVOCs and NOx can alter the lifetime of some GHGs and act as precursors for 14 
secondary organic aerosols (SOAs) and ozone. Disturbance of the natural landscape by fire has significant 15 
climatic effects through its impact on vegetation and air quality and through its emissions of greenhouse 16 
gases, aerosols, and aerosol precursors. Since the frequency of wildland fires increases rapidly with increases 17 
in ambient temperature, the effects of fires are projected to grow over the 21st century. The interactions of 18 
fires with the rest of the climate system are now being introduced into ESMs (Arora and Boer, 2005; 19 
Pechony and Shindell, 2009). 20 
  21 
9.1.3.3.5 Land-use / land-cover change 22 
The impacts of land-use and land-cover change (LULCC) on the environment and climate are explicitly 23 
included as part of the representative concentration pathways (RCPs) used for climate projections to be 24 
assessed in later chapters (Moss et al., 2010). Several important types of LULCC include effects of 25 
agriculture and changing agricultural practices, including the potential for widespread introduction of biofuel 26 
crops; the management of forests for preservation, wood harvest, and production of woody biofuel stock; and 27 
the global trends toward greater urbanization. ESMs include increasingly detailed treatments of crops and 28 
their interaction with the landscape (Arora and Boer, 2010; Smith et al., 2010a; Smith et al., 2010b), forest 29 
management (Bellassen et al., 2010; Bellassen et al., 2011), and the interactions between urban areas and the 30 
surrounding climate systems (Oleson et al., 2008a). 31 
 32 
9.1.3.3.6 Chemistry-climate models  33 
Stratospheric cooling and ozone recovery projected for the 21st century may affect the entire climate system, 34 
including the positions of the subtropical jets, atmospheric temperatures over Antarctica, the strength of the 35 
Brewer-Dobson circulation (Butchart et al., 2010; CCMVal, 2010; Son et al., 2008; Son et al., 2010; WMO, 36 
2011b), and the shift in tropopause height. Chemistry-climate model (CCM) simulations of stratospheric 37 
ozone and related climate effects have been examined for common features through multi-model 38 
intercomparisons such as the first and second rounds of the CCM Validation (CCMVal) activity (CCMVal, 39 
2010; Eyring et al., 2007; Son et al., 2008). CCMs are three-dimensional atmospheric climate models with 40 
fully coupled chemistry, i.e., where chemical reactions drive changes in atmospheric composition which in 41 
turn change the atmospheric radiative balance and hence dynamics. In general, these models have been 42 
operated with prescribed sea surface temperatures and sea ice concentrations rather than as a full AOGCM 43 
due to the computational expense of the reactive chemistry and the extension of the vertical domain through 44 
the stratosphere to the middle and upper atmosphere. Several of the stratospheric chemistry-climate models 45 
evaluated in CCMVal have been incorporated into ESMs and are part of the CMIP5 ensemble. Important 46 
chemistry-climate interactions have also been identified in tropospheric ozone projections for the 21st 47 
century. For example, tropospheric ozone may increase due to positive climate feedbacks such as an 48 
increased influx from the stratosphere, which then increases radiative forcing and thus impacts on climate. 49 
Several of the CMIP5 models currently simulate tropospheric chemistry interactively [tbc] , and those that 50 
include tropospheric and stratospheric chemistry can be used for internally consistent simulations of the 51 
interactions among stratospheric cooling, ozone recovery, and the rest of the climate system (Jöckel et al., 52 
2006; Lamarque et al., 2011).  53 
 54 
9.1.3.3.7 High-top/low-top global models 55 
It is now widely accepted that in addition to the well-known effect that tropospheric circulation and climate 56 
change influence the stratosphere, stratospheric dynamics can in turn influence the surface climate 57 
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(CCMVal, 2010). To reduce uncertainties in the representation of climate variability on seasonal to multi-1 
decadal timescales and to improve the representation of upper-troposphere dynamics, many climate models 2 
have the ability to include a fully resolved stratosphere with a model top above the stratopause. The subset of 3 
CMIP5 models with this so-called high-top configuration allows a multi-model comparison to the standard 4 
set of low-top models (i.e., those with a model top in the middle stratosphere). 5 
 6 
9.1.3.3.8 Land ice sheets 7 
The amount melt water that could be released from the Greenland and Antarctic ice sheets in response to 8 
climate change remains a major source of uncertainty in projections of sea-level rise. As recently as the AR4, 9 
the long-term response of these ice sheets to alterations in the surrounding atmosphere and ocean has been 10 
simulated using offline models. Several ESMs currently have the capability to have ice-sheet component 11 
models coupled to the rest of the climate system (Vizcaino et al., 2008), and idealized experiments suggest 12 
that the coupling causes accelerated melting of the Greenland ice sheet compared to passive coupling used in 13 
prior studies (Vizcaino et al., 2010). 14 
 15 
9.1.3.3.9 New features in ocean-atmosphere coupling  16 
Several new features have arisen in the coupling between the ocean and the atmosphere since AR4. The bulk 17 
formulae used to compute the turbulent fluxes of heat, water, and momentum at the air-sea interface have 18 
been revised. A number of models now consider the surface current when calculating surface wind shear and 19 
hence wind stress (e.g., Jungclaus et al., 2006; Luo et al., 2005). The coupling frequency has been increased 20 
in some cases to include the diurnal cycle, which was shown to improve SST bias in the tropical Pacific 21 
(Bernie et al., 2008; Ham et al., 2010). Several models now represent the coupling between the penetration 22 
of the solar radiation into the ocean and light-absorbing chlorophyll, with some implications on the 23 
representation of the mean climate and climate variability (Wetzel et al., 2006). This coupling is achieved 24 
either by prescribing the chlorophyll distribution from observations, or by computing the chlorophyll 25 
distribution with an ocean biogeochemical model (e.g., Arora et al., 2009). In the latter case there is a 26 
feedback between the solar radiation and the upper ocean characteristics that has an impact on the mean state 27 
and interannual variability in the Pacific (Lengaigne et al., 2007) or that modifies the seasonal melting on sea 28 
ice and the hydrological cycle of the Arctic (Lengaigne et al., 2009).  29 

 30 
9.1.3.4 Resolution 31 
 32 
9.1.3.4.1 Resolution of AOGCMs 33 
 34 
Improved resolution in climate models (i.e., adopting a finer grid in the modelled atmosphere, ocean and 35 
other components) is expected to improve some aspects of model performance. Generally, improved 36 
resolution leads to better representation of finer scale structures, such as atmospheric and oceanic eddies and 37 
vertical stratification, as well as effects of finer scale topography, land-sea distribution and land cover. 38 
However, because of uncertainties in parameterisations and the way in which they scale with resolution, 39 
expected improvements are not always realized.  40 
 41 
The typical horizontal resolution for current AOGCMs and ESMs is roughly 1 to 2 degrees for the 42 
atmospheric component and around 1 degree for the ocean (Table 9.1). Associated with increases in 43 
computational capacity, there has been some modest increase in model resolution since the AR4, especially 44 
for the near-term simulations (e.g., around 0.5 degree for the atmosphere in some cases). On the other hand, 45 
for the models used for the long-term simulations with interactive biogeochemistry, the resolution has not 46 
increased significantly due to the trade-off against higher complexity in such models.  47 
 48 
In some cases, higher resolution may lead to a stepwise, rather than incremental, improvement in model 49 
performance (e.g., Roberts et al., 2004; Shaffrey et al., 2009). For example, oceanic models undergo a 50 
transition from laminar to turbulent when the computational grid contains more than one or two grid points 51 
per first baroclinic Rossby radius (i.e., finer than 50 km at low latitudes and 10 km at high latitudes) 52 
(McWilliams, 2008; Smith et al., 2000). Such mesoscale eddy-permitting ocean models better capture the 53 
large amount of energy contained in fronts, boundary currents, and time dependent eddy features (e.g., 54 
(McClean et al., 2006b). Models run at such resolution have been used for simulations of climate time-scales 55 
(decadal to centennial) and found to be promising, though much work remains before they are as mature as 56 
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the coarser models currently in general use (Bryan et al., 2007; Bryan et al., 2010; Farneti et al., 2010; 1 
McClean et al., 2011) 2 
  3 
Similarly, atmospheric models with grids that allow the explicit representation of convective cloud systems 4 
(i.e., finer than a few km) avoid employing a convective cloud parameterisation, which has long been a 5 
source of uncertainty in climate modelling. For example, Miura et al. (2007) demonstrated that a Madden-6 
Julian oscillation event, which is generally difficult to be realistically represented in current generation 7 
AOGCMs, is simulated well in a global cloud-system-permitting (3.5 km resolution) AGCM. However, this 8 
kind of simulation is limited to short simulations (typically up to a month) and not coupled to a dynamic 9 
ocean model, given current computational capacity. Moreover, a cloud-system-permitting model still 10 
depends on parameterisations for cloud microphysics and moist turbulence. Recent developments in this area 11 
are assessed in Chapter 7.  12 
 13 
9.1.3.4.2 Downscaling methods 14 
Regional climate models share many parameterisation and resolution issues with global climate models, 15 
though as a rule, regional climate models employ higher resolution than global climate models. Since the 16 
AR4, the typical regional climate model resolution has increased from around 50 km to around 25 km (e.g., 17 
Christensen et al., 2010). There are also regional climate models run at around 10 km resolution or higher 18 
(e.g., van Roosmalen et al., 2010;  Kanada et al., 2008; Sasaki and Kurihara, 2008; Kusaka et al., 2010). 19 
 20 
The quality of the AOGCM boundary conditions provided to the RCM is fundamental for the quality of 21 
downscaling results. Biases in the former inevitably lead to biases in the latter. Downscaling by means of an 22 
RCM is not meant to alter the larger-scale features that are resolved in the driving AOGCM (Sanchez-23 
Gomez et al., 2009). Rather, the aim is a more detailed representation and simulation of climate processes, 24 
e.g., extremes. This is discussed further in conjunction of the ‘value added’ in Section 9.6.1. 25 
 26 
9.2 Techniques for Assessing Model Performance  27 
 28 
9.2.1 Objectives and Limitations  29 
 30 
Systematic evaluation of models through comparisons with observations is a prerequisite to understanding 31 
and improving the representation of physical and biogeochemical processes and feedbacks. In addition, the 32 
identification and interpretation of the spread amongst state-of-the-art model simulations can serve as a 33 
means of quantifying uncertainty in cases where observations are lacking. The objective of climate model 34 
evaluation is to improve understanding of their strengths and weaknesses and to quantify improvements over 35 
time. An evaluation of the models with respect to how well they represent historical and present-day climate 36 
can also be used to guide the assessment of climate projections and their credibility. 37 
 38 
In the AR4, the evaluation of climate models was mainly done somewhat qualitatively by comparing 39 
simulated and observed fields (e.g., time series or spatial maps). Since the AR4, performance metrics, which 40 
are statistical measures of agreement between a simulated and observed quantity (or covariability between 41 
quantities), have been more extensively used. Performance metrics derived from a variety of observationally-42 
based diagnostics provide an objective synthesis and visualization of model performance (Cadule et al., 43 
2010; Gleckler et al., 2008; Pincus et al., 2008; Waugh and Eyring, 2008) and enable quantitative assessment 44 
of model improvements, both for different versions of individual models and for community-wide 45 
collections used in international assessments (e.g., CMIP2 versus CMIP3, Reichler and Kim, 2008). These 46 
metrics can also be used to explore the value of weighting projections based on model performance, although 47 
for this purpose the need for process-oriented evaluation, especially for those processes that are related to 48 
known feedbacks, has been emphasized (Knutti et al., 2010b).  49 
 50 
Despite these developments, quantitative assessment of climate model skill is still limited for a number of 51 
reasons. Unlike weather prediction models, which can be routinely tested, the evaluation of climate models 52 
must be undertaken across a range of much longer time scales. Climate model evaluation therefore requires 53 
the availability of long-term, consistent, error-characterized global and regional Earth observations (satellite 54 
and in situ) as well as accurate globally gridded reanalyses in the atmosphere, the ocean, or, ultimately, the 55 
coupled system. Since the AR4, the Earth Observation community has undertaken a large effort to develop 56 
consistent error-characterized data sets of selected Essential Climate Variables (ECVs). Observational 57 
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uncertainty can be included in model evaluation either by using error estimates provided with the 1 
observational data set, or by using more than one data set. The latter is a more common approach because 2 
many observational datasets are not accompanied by formal error estimates, but where multiple estimates 3 
exist they are often based on the same underlying measurements and therefore are not truly independent. 4 
Finally, the lack of long-term observations, observations for process-oriented model evaluation and 5 
observations in particular regions (e.g., polar areas, the upper troposphere / lower stratosphere (UTLS), and 6 
the deep ocean) remains an impediment. 7 
 8 
9.2.2 New Developments in Model Evaluation Approaches 9 
 10 
9.2.2.1 Evaluating the Overall Model Results 11 
 12 
The most straightforward approach to evaluate models is to compare overall simulated fields (e.g., global 13 
distributions of temperature, precipitation etc.) with corresponding observations. For more quantitative 14 
comparison, statistical measures can be used (e.g., root-mean square error, centred and uncentred pattern 15 
correlations) (Abe et al., 2009; Annan and Hargreaves, 2010; Giorgi and Coppola, 2010; Gleckler et al., 16 
2008; Knutti et al., 2010a; Raisanen et al., 2010; Reichler and Kim, 2008; Whetton et al., 2007). Many 17 
studies have also examined whether the performance of a model in reproducing past climate is related to the 18 
behaviour of the model in projecting future climate (see further discussion in Section 9.8). There are also 19 
some attempts to reduce redundancy of multiple performance metrics through statistical methods such as 20 
cluster analysis (Nishii et al., 2011; Yokoi et al., 2011). 21 
 22 
Statistical techniques have also been applied to evaluate characteristics of a whole ensemble of models, 23 
instead of individual models in an ensemble. If each model is a random and independent sample from a 24 
distribution of possible models centred on the observations, the errors in the ensemble average are expected 25 
to converge to near zero as the ensemble size increases. Knutti et al. (2010a) have tested this hypothesis for 26 
the CMIP3 ensemble and found that the reduction of biases by averaging is slower than that expected, 27 
suggesting that there are some common biases across models. By contrast, Annan and Hargreaves (2010) 28 
showed that the biases in the ensemble mean converge to a value greater than zero as the ensemble size 29 
increases, based on a different statistical paradigm that the truth and ensemble members are drawn from the 30 
same distribution. 31 
 32 
9.2.2.2 Isolating Processes 33 
 34 
As discussed in Section 9.1.3.1 climate models heavily rely on processes parameterizations. It is therefore 35 
necessary to evaluate the representation of key processes both in the context of the full model, but also in 36 
isolation. A number of evaluation techniques to achieve this “process-isolation” have been developed.  37 
 38 
One major stream of studies involves the so-called “regime-oriented” approach to process-evaluation. 39 
Instead of averaging model results in time (e.g., seasonal averages) or space (e.g., global averages), results 40 
are averaged within categories that describe physically important regimes of the system under study. 41 
Applications of this approach since AR4 include the use of circulation regimes (Bellucci et al., 2010; Bony 42 
and Dufresne, 2005; Brown et al., 2010b) or cloud regimes (Chen and Del Genio, 2009; Williams and Webb, 43 
2009; Williams and Brooks, 2008). The importance of the regime-oriented approach lies in its ability to 44 
isolate processes that might be responsible for particular errors, and thereby directing more in-depth process 45 
studies (Jakob, 2010). 46 
 47 
Another approach to process evaluation involves either the removal of a particular model component or 48 
process parameterisation from the host-model and the use of off-line simulations. The results of such 49 
simulations are compared to measurements from detailed field studies or to results from more sophisticated 50 
process models (Randall et al., 2003). Numerous important process-related data sets to support such 51 
evaluations have been collected since the AR4 (Illingworth et al., 2007; May et al., 2008; Redelsperger et al., 52 
2006; Verlinde et al., 2007) and have been applied to the evaluation of climate model processes (Boone et 53 
al., 2009; Boyle and Klein, 2010; Hourdin et al., 2010; Xie et al., 2008). These studies are crucial to test the 54 
realism of the process formulations that underpin climate models, and they are assessed in Section 9.7.  55 
 56 
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9.2.2.3 Instrument Simulators 1 
 2 
Satellites provide nearly global coverage, sampling all meteorological conditions. This makes them powerful 3 
tools for model evaluation. The standard approach of using satellite data is to convert the observed radiation 4 
information to model-equivalents through so-called retrievals (Stephens and Kummerow, 2007). Retrieved 5 
properties have been used in numerous studies to analyse the performance of clouds and precipitation in 6 
GCMs (Allan et al., 2007; Gleckler et al., 2008; Pincus et al., 2008). The main challenge using retrievals in 7 
model evaluation is that modelled and retrieved variables are difficult to define consistently due to 8 
limitations of the satellite sensors and the assumptions used in the retrievals. These limitations include 9 
sampling, poor vertical resolution, and the inability of satellite radiances to fully constrain the atmospheric 10 
state. 11 
 12 
Instrument simulators allow more quantitative evaluation of climate models with satellite products. The 13 
approach calculates observation-equivalents from models using radiative transfer calculations to 'simulate' 14 
what the satellite products would provide if the satellite system were 'observing' the model. Microphysical 15 
assumptions (which differ from model to model) can be included in the simulators, avoiding retrieval 16 
inconsistencies. Since the AR4, the ISCCP simulator (Klein and Jakob, 1999; Webb et al., 2001; Yu et al., 17 
1996) has continued to be used for model evaluation ((Wyant et al., 2009), (Chen and Del Genio, 2009), 18 
(Marchand et al., 2009), (Yokohata et al., 2010), often in conjunction with statistical techniques to separate 19 
model clouds into cloud regimes (e.g., Field et al., 2008; Williams and Webb, 2009; Williams and Brooks, 20 
2008). New simulators for other satellite products have also been developed and are increasingly applied for 21 
model evaluation (Bodas-Salcedo et al., 2011). While often focussed on clouds and precipitation, the 22 
simulator approach has also been used successfully for other variables such as upper tropospheric humidity 23 
by comparing infrared or microwave satellite radiances to those computed from models (Allan et al., 2003; 24 
Brogniez et al., 2005; Iacono et al., 2003; Ringer et al., 2003; Zhang et al., 2008; Bodas-Salcedo et al., 2011; 25 
Brogniez and Pierrehumbert, 2007).  26 
 27 
9.2.2.4 Paleoclimate Studies 28 
 29 
Past climates offer a wide range of climatic states that can be used to test a model’s response to different 30 
forcing (see Chapter 5); however this can be achieved only for periods with sufficient data coverage. Such 31 
data sets have been developed for the Last Glacial Maximum (21,000 years BP) and the mid-Holocene (6000 32 
years BP), as part of the global ocean reconstruction from marine data (CLIMAP, 1981; Waelbroeck et al., 33 
2009) and the Biome 6000 project (Prentice et al., 1998).  34 
 35 

Paleo proxies, such as pollen or δ18O in ice cores, are indirect measurements of climatic conditions (see 36 
Chapter 5). One approach to using such data is to compare a climate variable that best characterizes the 37 
major fluctuations of the proxy indicator. For example, the temperature of the coldest month or cumulative 38 
growing degree days are preferred to winter and summer temperature when comparing model outputs to 39 
estimates based on pollen records (Bartlein et al., 2010b). Recent work on marine proxies suggests that, 40 
depending on the region, the same proxy is not necessarily dominated by the same aspect of climate 41 
(seasonality, annual mean) (Jungclaus et al., 2010). In addition, different proxies record different local 42 
histories which must also to be accounted for in model-data comparisons (Leduc et al., 2010).  43 
 44 
An alternative ‘forward modelling’ approach consists of simulating the proxy indicators themselves. This 45 
can be done by using either an off-line model or the inclusion of specific processes in the new generation of 46 
ESMs. For example, biome models have been used to simulated biome distributions for past climate 47 
conditions (Harrison et al., 1998). Some ESMs now include a dynamical vegetation module in their land 48 
surface scheme, so that the simulated vegetation can be directly compared to past vegetation (Braconnot et 49 
al., 2007d). Some models can be run with a representation of water isotopes which allows direct comparison 50 
of model output with isotopic measurements (LeGrande et al., 2006). In addition, there is growing interest in 51 

simulations of ocean tracers such as δ13C of δ14C that can provide additional comparisons with ocean proxies 52 
(Tagliabue et al., 2009).  53 
 54 
9.2.2.5 Use of Data Assimilation and Initial Value Techniques 55 
 56 
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To be able to forecast the weather a few days ahead, knowledge of the present state of the atmosphere is of 1 
primary importance. In contrast, climate predictions and projections (see Chapter 11) simulate the statistics 2 
of weather seasons to centuries in advance. Despite their differences, both weather predictions and 3 
simulations of future climate are performed with very similar atmospheric model components. Climate 4 
models can be integrated as weather prediction models if they are initialised appropriately (Phillips et al., 5 
2004) providing the advantage of testing some of the sub-grid scale physical processes that are parameterised 6 
in models on their characteristic time scales, without the complication of feedbacks altering the underlying 7 
state of the atmosphere (Boyle et al., 2005; Martin et al., 2010; Pope and Stratton, 2002; Williamson et al., 8 
2005). It has been demonstrated that the application of a unified weather-climate modelling framework can 9 
provide significant advantages to model development (Martin et al., 2010).  10 
 11 
Another approach to model evaluation involves the analysis of errors in the initial tendencies in a forecast 12 
(Klinker and Sardeshmukh, 1992). Data assimilation experiments have shown that this initial tendency 13 
methodology can be used to exclude certain model parameter values associated with high climate 14 
sensitivities (Rodwell and Palmer, 2007). Ensemble data assimilation provides another opportunity for a 15 
more systematic assessment of model error and can be used in the estimation of optimal model parameters 16 
(Koyama and Watanabe, 2010). 17 
 18 
Longer time-scale initial value simulations, such as those for seasons and decades ahead, have also been 19 
shown to have potential as useful tools for climate model evaluation (Palmer et al., 2008). Decadal 20 
prediction in particular holds much promise to apply initial value techniques to the evaluation of ocean 21 
models. As with atmospheric data assimilation, it is evident that ocean data assimilation will provide a useful 22 
opportunity for the assessment of ocean processes at their characteristic timescales (Balmaseda et al., 2008; 23 
Bell et al., 2004). 24 
 25 
9.2.2.6 Evaluation Techniques for RCMs 26 
 27 
RCMs share many of the same evaluation techniques used for AOGCMs; however, there are a few 28 
techniques that are particular to RCM evaluation. 29 
 30 
As AOGCMs often have various regional biases in their large-scale circulation (van Ulden and van 31 
Oldenborgh, 2006), biases in an RCM with boundary conditions taken from an AOGCM results may be due 32 
either to biases in the boundary conditions or to the representation of regional processes in the RCM itself 33 
(Deque et al., 2005; Déqué et al., 2007). The former can be circumvented by use of atmospheric reanalyses 34 
as boundary conditions. These so-called ‘perfect boundary condition’ experiments refer to the use of 35 
reanalyses as boundary conditions instead of AOGCM output (Christensen et al., 1997), and allow one to 36 
focus on particular anomalous weather or climate events in evaluating model performance.  37 
 38 
Another evaluation technique specific to RCMs is the transferability experiment. This involves applying an 39 
RCM to a different region than the one it was initially developed for (Takle et al., 2007). In a typical 40 
transferability experiment RCMs are applied to multiple geographic regions, thus exposing the RCMs to 41 
different regional climates and exposing model biases (Takle et al., 2007).  42 
 43 
A difficulty in the evaluation of RCMs, that is more acute than for global models, is the relative sparseness 44 
of observational networks in many regions (e.g., Nikulin et al. (2011), Driouech et al. (2009)). This has 45 
consequences for evaluating high resolution model results (Hofstra et al., 2010) since, for example, gridding 46 
station data affects the intensity of extremes.  47 
 48 
9.2.2.7 Characterization of Model Uncertainty through Ensemble Approaches  49 
 50 
Uncertainty in climate model simulations is a consequence of uncertainties in initial conditions, boundary 51 
conditions, parameter values, and structural uncertainties in the model design (Hawkins and Sutton, 2009; 52 
Knutti et al., 2010a; Tebaldi and Knutti, 2007a). Ensemble methods have been used extensively since the 53 
AR4 to understand the relative contributions of these sources of uncertainty. The methods employed are 54 
generally of two types: Multi-model Ensembles (MME) and Perturbed Physics Ensembles (PPE). The MME 55 
is created by gathering the existing model simulations from several climate modelling centres, whereas the 56 
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PPE involves only a single model. The merits of each are distinct and both can contribute to the model 1 
evaluation process.  2 
 3 
Although the emphasis in this Chapter is on multi-model evaluation, ensembles constructed within a single-4 
model framework can be useful for characterizing certain aspects of model uncertainty. Current methods to 5 
assess uncertainty from a single model include generating ensembles by perturbing parameters and then 6 
estimating the ability of each member to match specific observations or constraints. These ensemble-based 7 
methods have been used frequently in simpler models such as EMICs, (Forest et al., 2006, 2008; Forest et 8 
al., 2002; Knutti and Tomassini, 2008; Sokolov et al., 2009; Stott and Forest, 2007; Xiao et al., 1998) and are 9 
now being applied to more complex models (Brierley et al., 2010a; Collins et al., 2007; Collins et al., 2006a; 10 
Sanderson et al., 2008a; Stainforth et al., 2005).  11 
 12 
While there is considerable evidence that a multi-model mean generally compares better with observations 13 
for a variety of diagnostics, because model errors tend to cancel (Gleckler et al., 2008; Pierce et al., 2009; 14 
Pincus et al., 2008; Reichler and Kim, 2008), the development of ensemble techniques for climate modelling 15 
is an active area of research that addresses several shortcomings of previous uncertainty assessments. For 16 
example, Knutti et al. (2010a) showed that averaging results from multiple model simulations leads to a loss 17 
of signal for precipitation change because models simulate similar overall patterns but slightly shifted in 18 
space. In addition, the development of climate models has occurred via sharing of specific model 19 
components and so certain lineages exist at most major modelling centres. This suggests that groups of 20 
models share biases, that the assumption of model independence is not correct, and therefore that the 21 
effective number of independent models is likely smaller than the actual number of models in the MME (Jun 22 
et al., 2008; Knutti, 2010; Knutti et al., 2010a; Pennell and Reichler, 2011; Tebaldi and Knutti, 2007a). By 23 
exploring the likelihoods of each model in reproducing historical climate, a likelihood-based ensemble can 24 
be derived to avoid this simplistic use of the MME (Sokolov et al., 2010; Tebaldi and Knutti, 2007a).  25 

 26 
9.2.3 Overall Summary of Approach that will be Taken in this Chapter  27 
 28 
The model evaluation in the following focuses primarily on the comparison of models with observations or 29 
observationally-based products. Exploitation of the most comprehensive set of observations necessitates an 30 
emphasis on recent decades, although older 20th century records and paleo data also play an important role. 31 
In some circumstances valuable insight into a model’s behaviour can be achieved without observations (via 32 
analysis of intermodal differences), but we will use this approach sparingly.  33 
 34 
A rational progression of such a broad scope evaluation begins with an examination of the large-scale 35 
features of the mean state in each of the model components (Section 9.4). This is followed by an evaluation 36 
of the ability of models to capture the dominant features of natural variability on observable time scales, 37 
including extreme behaviour of particular relevance to society (Section 9.5). This path of increasing focus 38 
takes us to more regional evaluation of model performance, including approaches to augment regional 39 
information with downscaling techniques (Section 9.6), and finally, more detailed process-oriented 40 
evaluation (Section 9.7). 41 
 42 
Throughout our evaluation, we rely on routine diagnostic methods to compare model simulations with 43 
observations, such as spatial maps and space or time decompositions (e.g., zonal means or anomaly time 44 
series). As the evaluation focuses on increasing detail, a sampling of more sophisticated diagnostic 45 
approaches will also be exploited. To complement these diagnostics, we also rely on performance metrics to 46 
quantify the level of agreement between models and observations. Performance metrics provide an approach 47 
to succinctly summarize model performance and more concretely demonstrate what models simulate well, 48 
and where difficulties remain, quantify changes in model performance since the AR4, and illustrate the 49 
relative performance of different models.  50 
 51 
While the development of increasingly realistic models remains a high priority in climate research, the need 52 
to better characterize the uncertainty in current models is rapidly becoming a comparable challenge. Efforts 53 
to formally describe model uncertainties are discussed in Section 9.7.3. There are a multitude of factors to 54 
consider, many of which are beyond the scope of this chapter (e.g., un-quantified uncertainties in external 55 
forcing or observations). The assessment in this chapter focuses on a multi-model perspective (e.g., CMIP3, 56 
CMIP5) and the inter-model spread between the individual models. The differences between the individual 57 
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models provide a lower bound estimate of model uncertainty. The error structure of model behaviour is 1 
however extremely complex (e.g., Santer et al., 2009), and it must be emphasized that the relative 2 
performance of the individual models can vary widely from one diagnostic/metric to another. The prospects 3 
for synthesizing this information to gauge the reliability of projections are addressed in Section 9.8. 4 
 5 
9.3 Experimental Strategies in Support of Climate Model Evaluation  6 
 7 
9.3.1 The Role of Model Intercomparisons 8 
 9 
Gauging the extent to which climate models realistically simulate the Earth’s climate and capture 10 
fundamental processes requires extensive comparisons with observations on a range of space and time 11 
scales. Organized model intercomparison projects (MIPs) serve a variety of purposes for the climate research 12 
community and typically include standard or “benchmark” experiments that represent critical tests of a 13 
model’s ability to simulate the observed climate. When modelling centres perform a common experiment, it 14 
offers the possibility to compare their results not just with observations, but with other models as well. This 15 
“intercomparison” enables researchers to explore the various strengths and weakness of different models in a 16 
controlled setting. When modelling groups repeat the benchmark experiments over time, it is possible to 17 
determine how models improve as more realistic processes are incorporated.  18 
 19 
All models suffer from errors, and model evaluation is a necessary step towards their identification. 20 
Benchmark MIP experiments offer a way to distinguish between the errors particular to an individual model 21 
from those which might be more universal. The resulting multi-model perspective provides the context for 22 
much of what follows.  23 
 24 
9.3.2 Experimental Strategy for CMIP5 25 
 26 
9.3.2.1 Structure of the Historical Experiments 27 
 28 
In contrast to the CMIP3 ensemble of centennial-length simulations using AOGCMs assessed in AR4 29 
(Meehl et al., 2007a), the CMIP5 collection also includes initialized decadal-length projections and long-30 
term experiments using ESMs (Taylor, 2011) (Figure 9.2). The observable properties of the basic mean 31 
states from these experiments are evaluated against the historical data record in the next Section. This 32 
assessment addresses two principal requirements that climate models must satisfy in order to provide useful 33 
projections of climate change. First, since the effective climate sensitivity depends on the state of the climate 34 
system, it is necessary for climate models to reproduce the observed state as accurately as possible to 35 
minimize the effects of state-related errors on projections of future climate (Senior and Mitchell, 2000). 36 
Second, many relationships among climatic forcing, feedback, and response manifested in projections of 37 
future climate change can be tested using the observational record (Soden and Held, 2006). However, 38 
agreement with the observational record is a necessary but not sufficient condition to narrow the range of 39 
uncertainty in projections due to remaining uncertainties in historical forcing, recent trends in oceanic heat 40 
storage, and the coupled processes of the climate system.  41 
 42 
Simulations of the atmosphere, ocean, sea-ice, and land surface are common to all three classes of 43 
experiments, and the basic states from these simulations are evaluated against the recent and historical record 44 
in Sections 9.4.1 through 9.4.4, respectively. The integration of chemical and biogeochemical cycles with the 45 
physical climate system is a general property of the ESMs included in the CMIP5 multi-model ensemble. 46 
The formulations and observational evaluations of the carbon and sulfur cycles in the ESMs are presented in 47 
Sections 9.4.5 and 9.4.6, respectively.  48 
 49 
[INSERT FIGURE 9.2 HERE] 50 
Figure 9.2: Left: Schematic summary of CMIP5 short-term experiments with tier 1 experiments (yellow background) 51 
organized around a central core (pink background). From Taylor et al. (2011), their Figure 2. Right: Schematic 52 
summary of CMIP5 long-term experiments with tier 1 and tier 2 experiments organized around a central core. Green 53 
font indicates simulations to be performed only by models with carbon cycle representations, and “E-driven” means 54 
“emission-driven”. Experiments in the upper hemisphere either are suitable for comparison with observations or 55 
provide projections, whereas those in the lower hemisphere are either idealized or diagnostic in nature, and aim to 56 
provide better understanding of the climate system and model behaviour. From Taylor et al. (2011), their Figure 3. 57 
 58 
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9.3.2.2 Forcing of the Historical Experiments 1 
 2 
Under the protocols adopted for CMIP5 and previous assessments, the transient climate experiments are 3 
conducted in three phases. The first phase covers the start of the modern industrial period through to the 4 
present-day corresponding to years 1850 to 2005 (van Vuuren et al.). The second phase covers the future, 5 
2006 to 2100, and is described by a collection of Representative Concentration Pathways (Moss et al., 2010). 6 
The third phase is described by a corresponding collection of Extension Concentration Pathways (ECPs). 7 
The forcings for the first phase are relevant to the historical simulations evaluated in this Section and are 8 
described briefly here (with more details in Annex II). 9 
 10 
In the CMIP3 experiments summarized in the AR4, the forcings used in each model contributed to the multi-11 
model ensemble of 20th century experiments (known collectively as 20C3M) were left to the discretion of 12 
the individual modelling groups. By contrast, a comprehensive set of historical anthropogenic emissions and 13 
land-use and land-cover change (LULCC) data have been assembled for the AR5 experiments in order to 14 
produce a relatively homogeneous ensemble of historical simulations with common time-series of forcing 15 
agents.  16 
 17 
For AOGCMs without chemical and biogeochemical cycles, the forcing agents are prescribed as a set of 18 
concentrations. The concentrations for GHGs and related compounds include CO2, CH4, N2O, all fluorinated 19 
gases controlled under the Kyoto Protocol (HFCs, PFCs, and SF6), and ozone depleting substances 20 
controlled under the Montreal Protocol (CFCs, HCFCs, Halons, CCl4, CH3Br, CH3Cl). The concentrations 21 
for aerosol species include sulphate (SO4), ammonium nitrate (NH4NO3), hydrophobic and hydrophilic black 22 
carbon, hydrophobic and hydrophilic organic carbon, secondary organic aerosols (SOA), and four size 23 
categories of dust and sea salt. For ESMs that include chemical and biogeochemical cycles, the forcing 24 
agents are prescribed as a set of emissions. The emissions include time-dependent spatially-resolved fluxes 25 
of CH4, NOX, CO, NH3, black and organic carbon, and volatile organic carbon (VOCs). For models that treat 26 
the chemical processes associated with biomass burning, emissions of additional species such as C2H4O 27 
(acetaldehyde), C2H5OH (ethanol), C2H6S (dimethyl sulphide), and C3H6O (acetone) are also prescribed. 28 
Historical LULCC is described in terms of the time-evolving partitioning of land-surface area among 29 
cropland, pasture, primary land and secondary (recovering) land, including the effects of wood harvest and 30 
shifting cultivation, as well as land-use changes and transitions from/to urban land (Hurtt et al., 2009). These 31 
emissions data are aggregated from empirical reconstructions of grassland and forest fires (Mieville et al., 32 
2010; Schultz et al., 2008); international shipping (Eyring et al., 2010); aviation (Lee et al., 2009); and 33 
sulphur (Smith et al., 2011b), black and organic carbon (Bond et al., 2007), and NOX, CO, CH4 and 34 
NMVOCs (Lamarque et al., 2010) contributed by all other sectors. 35 
 36 
9.3.2.3 Relationship of Observational Initialization and Decadal Predictive Uncertainty  37 
 38 
The CMIP5 archive includes a new class of decadal-prediction experiments (Meehl et al., 2009b) (Figure 39 
9.2). The goal is to understand the relative roles of forced changes and internal variability in historical and 40 
near-term climate variables, and to assess the predictability that might be realized on decadal time scales. 41 
These experiments are comprised of two sets of hindcast and prediction ensembles with initial conditions 42 
spanning 1960 through 2005. The set of 10-year ensembles are initialized starting at 1960 in 5-year 43 
increments through the year 2005 while the 30-year ensembles are initialized at 1960, 1980, and 2005. 44 
Results from these experiments will be described in detail in Chapter 11; here we focus on evaluation of the 45 
models used in such predictions. 46 
 47 
9.4 Simulation of Recent and Longer-Term Records in Global Models  48 
 49 
9.4.1 Atmosphere 50 
 51 
Many aspects of the atmosphere have been more extensively evaluated than other component models of the 52 
Earth system. One reason is the availability of observationally-based data with which to confront models. 53 
Near global data sets exist for energy fluxes at the top of the atmosphere, cloud cover, temperature, winds, 54 
moisture, total column ozone, and other important properties simulated by atmospheric models. Furthermore, 55 
promising new data sets are inspiring the diagnosis of models in innovative ways, for example using satellite 56 
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simulators for the evaluation of clouds (Section 9.2.2.3). In this section we evaluate the large-scale 1 
atmospheric behaviour with available atmospheric observational data.  2 
 3 
9.4.1.1 Spatial Patterns of the Mean State  4 
 5 
As discussed in Section 9.1, all component models of the Earth system are built upon fundamental principles 6 
such as the conservation of energy, momentum, and mass. For the atmospheric component, realistic 7 
simulation of the energy and water cycles is particularly important, and of obvious relevance to society. 8 
Surface temperature is perhaps the most routinely examined quantity in atmospheric models, and not simply 9 
because the surface is inhabited. The surface is influenced by many factors that must be adequately 10 
represented in order for a model to realistically capture the observed temperature distribution. The 11 
dominating external influence is incoming sunlight, but many aspects of the simulated climate play an 12 
important role in modulating regional temperature such as the presence of clouds and the complex 13 
interactions between the atmosphere and the underlying land, ocean, snow, ice, and biosphere.  14 
 15 
The annual mean distribution of surface air temperature (at 2 meters) is shown in Figure 9.3 for the multi-16 
model average of CMIP5 models presently available. The multi-model ensemble exhibits distinctive 17 
gradients of observed temperatures (not shown) that broadly decrease with latitude. The maximum annual 18 
mean temperatures of the western tropical Pacific and tropical Indian Ocean are also well represented by the 19 
models. A comparison of the multi-model average (middle panel) with observations (Jones et al., 1999) 20 
shows that in most areas the models agree with the observations to within 2°C, but there are several locations 21 
were the biases are much larger, particularly at elevations over the Himalayas and parts of both Greenland 22 
and Antarctica. The lower panel of Figure 9.3 shows the absolute bias of the individual CMIP5 models, 23 
providing similar information as the multi-model result but with the removal of the possibility of 24 
compensating errors across models. 25 
 26 
[INSERT FIGURE 9.3 HERE] 27 
Figure 9.3: Annual mean surface (2 meter) air temperature (K) for the period (1985–2005). Top panel: Multi-model 28 
ensemble (MME) constructed with 11 available AOGCMs used in the CMIP5 historical experiment. Middle panel 29 
shows the MME bias compared to observations (Jones, 1999). Bottom panel shows the average of the individual model 30 
absolute biases. 31 
 32 
A first look of the seasonal performance of models can be obtained by examining the difference between 33 
extreme seasons (DJF and JJA). The top panel of Figure 9.3 shows the absolute difference between the DJF 34 
and JJA surface air temperature. This clearly demonstrates the much larger seasonal cycle over land, and 35 
particularly at higher latitudes. The middle panel shows the multi-model differences with observations (Jones 36 
et al., 1999). Over the oceans the models appear to slightly underestimate this measure of seasonal 37 
amplitude, particularly along the western boundary currents. Over land, the models tend to overestimate the 38 
temperature range with magnitudes noticeably larger than over the oceans. Observational uncertainty is 39 
important to consider in the higher latitude ocean regions. 40 
 41 
[INSERT FIGURE 9.4 HERE] 42 
Figure 9.4: Annual surface (2 meter) air temperature (K) range (DJF-JJA) for the period (1985–2005). Top panel 43 
shows updated observations from Jones (1999). Bottom panel shows bias in the multi-model ensemble (MME) 44 
constructed with 11 available AOGCMs used in the CMIP5 historical experiment.  45 
 46 
Simulation of precipitation is a much tougher test for models as it depends heavily on processes that are not 47 
explicitly resolved, and must be parameterised (see Section 9.1). Figure 9.5 compares observationally based 48 
estimates of precipitation with the CMIP5 multi-model ensemble. Broad scale features in the observations 49 
(not shown) are evident in the MME, such as a maximum precipitation denoting the ITCZ just north of the 50 
equator in the central and eastern tropical Pacific, dry areas over the eastern subtropical ocean basins, and the 51 
minimum rainfall in Northern Africa (Dai, 2006). The bottom panel suggests that problem areas appear to 52 
persist in CMIP5, including the well-known biases in the structure of the tropical convergence zones in the 53 
western Pacific (see Section 9.4.2.3), which have been extensively analyzed in the CMIP3 simulations (e.g., 54 
Lin, 2007).  55 
 56 
[INSERT FIGURE 9.5 HERE] 57 
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Figure 9.5: Annual mean precipitation for the period (1985–2005). Top panel: Multi-model ensemble (MME) 1 
constructed with 11 available AOGCMs used in the CMIP5 historical experiment. Middle panel shows the MME bias 2 
with updated observations (Adler et al., 2003). Bottom panel shows the average of the individual model absolute biases. 3 
 4 
9.4.1.1.2 Atmospheric moisture, clouds, and radiation 5 
The global annual-mean precipitable water is the measure of the total moisture content of the Earth’s 6 
atmosphere. For AOGCMs in the CMIP3 ensemble, the values of precipitable water agreed with one another 7 
and with multiple estimates from the NCEP/NCAR and ERA meteorological reanalyses to within 8 
approximately 10% (Waliser et al., 2007). Modeling the vertical partitioning of water vapor is subject to 9 
greater uncertainty since the humidity profile is governed by a variety of hydrological processes, sub-grid 10 
vertical transport, and coupling between the boundary layer and free troposphere. In general, the models 11 
exhibit a significant dry bias of up to 25% in the boundary layer and a significant moist bias in the free 12 
troposphere of up to 100% (John and Soden, 2007). Upper tropospheric water vapor varies by a factor of 13 
three across the CMIP3 multi-model ensemble (Su et al., 2006). However, the models reproduce the 14 
gradients in free-tropospheric humidity between ascending and descending dynamical regimes and between 15 
convective-cloud-covered and cloud-free regions of the tropics to within 10% (Brogniez and Pierrehumbert, 16 
2007). In addition, the relationship between tropospheric moisture and externally forced warming in the 20th 17 
century is consistent across the ensemble and is uncorrelated with the biases in the individual models (John 18 
and Soden, 2007). 19 
 20 
The spatial patterns and annual cycle of the radiative flues at the top of the atmosphere represent some of the 21 
most important observable properties of the Earth system, and current models reproduce these patterns with 22 
considerable fidelity relative to the NASA CERES data sets (Pincus et al., 2008). This level of agreement is 23 
as expected since the spatial patterns and annual cycle of the radiative fluxes are governed primarily by the 24 
meridional gradient and seasonal cycle in solar insolation, both of which are reasonably reproduced by all 25 
the models in the CMIP3 ensemble. The models exhibit much less skill in reproducing either the spatial 26 
correlations or spatial variance in shortwave and longwave cloud radiative effects, although the skill of the 27 
individual climate models is comparable to that exhibited by the ECMWF reanalysis (Pincus et al., 2008).  28 
 29 
Comparisons against surface fluxes show that, on average, the CMIP3 models overestimate the downward 30 
all-sky shortwave flux at the surface by 6 W m–2 and underestimate the corresponding downward longwave 31 
flux by –5.6 W m–2 (Wild, 2008). The resulting average error in the total downwelling radiant flux is 0.4 W 32 
m–2. The correlation between the biases in the all-sky and clear-sky downwelling fluxes suggests that 33 
systematic errors in clear-sky radiative transfer calculations may be primary cause for these biases. This is 34 
consistent with an analysis of the global annual-mean estimates of clear-sky atmospheric absorption from the 35 
CMIP3 ensemble. Wild (2006) demonstrates that several CMIP3 models underestimate clear-sky shortwave 36 
absorption and hence overestimate surface insolation by up to 12 W m–2. The underestimation of absorption 37 
can be attributed to the omission or underestimation of absorbing aerosols, in particular carbonaceous 38 
species, and to omission of weak-line absorption by water vapour, the predominant absorbing gas for 39 
shortwave radiation in the current climate (Wild et al., 2006). The net shortwave energy absorbed by the 40 
surface is set by the downwelling flux and the surface albedo. The mean surface albedo of 0.351 from the 41 
CMIP3 ensemble and the observationally derived albedo of 0.334 from the International Satellite Cloud 42 
Climatology Project (ISCCP) differ by much less than the standard deviation in surface albedo among the 43 
models (Wang et al., 2006). 44 
 45 
Despite progress in the representation of cloud processes in GCMs (see Section 9.1.3.2.1 and Chapter 7), the 46 
simulation of clouds and their effect on radiative budgets remains a major challenge. Pincus et al. (2008) 47 
assessed the simulation of clouds and their radiative effects in the CMIP3 model ensemble and showed that 48 
significant errors remain. Figure 9.6 shows maps of deviations from observations in annual mean shortwave 49 
(top left), longwave (middle left) and net (bottom left) cloud radiative effect (CRE) for the CMIP3 multi-50 
model mean. The Figure also shows zonal averages of the same quantities from observations (thick solid 51 
lines) and individual models (grey lines). The definition of CRE and observed mean fields for these 52 
quantities can be found in Chapter 7. 53 
 54 
[INSERT FIGURE 9.6 HERE] 55 
Figure 9.6: Annual mean errors in shortwave (top left), longwave (middle left) and net (bottom left) cloud radiative 56 
effect of the CMIP3 multi-model mean. Also shown are zonal averages of the absolute values of the same quantities 57 
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from observations (CERES ES-4 and ERBE S-4G, thick black lines) and individual models (thin grey lines). For a 1 
definition of cloud radiative effect and maps of its absolute values, see Chapter 7.  2 
 3 
Models show large regional biases in CRE in the shortwave component, and these are particularly 4 
pronounced in the subtropics with an underestimation of the shortwave CRE in the stratocumulus regions 5 
and an overestimation in the trade cumulus regions. A large underestimation of the shortwave CRE is also 6 
evident over the sub-polar oceans of both hemispheres and the Nothern Hemisphere land areas. It is evident 7 
in the zonal mean graphs that the errors in shortwave CRE over the sub-polar and subtropical regions are 8 
common to all models, while errors in longwave CRE are smaller overall and vary in sign from model to 9 
model.  10 
 11 
Subtropical clouds have been shown to be of great importance to a model’s climate sensitivity (Bony and 12 
Dufresne, 2005; Dufresne and Bony, 2008; Williams and Webb, 2009). More in-depth analysis of several 13 
global and regional models (Karlsson et al., 2008; Teixeira et al., 2011) show that the intricacies of the 14 
interaction of boundary layer and cloud processes with the larger scale circulation systems that ultimately 15 
drive the observed subtropical cloud distribution remain poorly simulated. Several studies have also 16 
highlighted the potential importance and poor simulation of sub-polar clouds in the Arctic and Southern 17 
Oceans (Haynes et al., 2011; Karlsson and Svensson, 2010; Trenberth and Fasullo, 2010; Tsushima et al., 18 
2006). Karlsson and Svensson (2010) showed that the CMIP3 models have great difficulties in simulating 19 
Arctic cloud properties. A particular challenge for models is the simulation of the correct phase of the cloud 20 
condensate and very few observations are available to evaluate models particularly with respect to their 21 
representation of cloud ice (Waliser et al., 2009). Process-oriented approaches to the evaluation of model 22 
clouds (Teixeira et al., 2011; Williams and Webb, 2009; Williams and Tselioudis, 2007; Williams and 23 
Brooks, 2008) are beginning to provide deeper insight into model errors and strategies for model 24 
improvement and are likely to lead to improved cloud representations in the medium-term.  25 
 26 
In summary, there remain significant errors in the model simulation of clouds. It is very likely that these 27 
errors contribute significantly to the uncertainties in estimates of cloud feedbacks (see Section 9.7.4 and 28 
Chapter 7) and consequently in the climate change projections reported in Chapter 12. 29 
 30 
9.4.1.1.3 Ozone 31 
Ozone has been subject to a major perturbation in the stratosphere since the late 1970s due to anthropogenic 32 
emissions of ozone-depleting substances (ODSs), now successfully controlled under the Montreal Protocol 33 
and its Amendments and Adjustments. Trends in stratospheric ozone have important implications on surface 34 
climate (see further discussion in Section 9.4.1.3 and in Chapter 10) and so it is important to capture these in 35 
climate simulations. Figure 9.7 shows an evaluation of the mean total column ozone (1980–1999) from the 36 
CCMVal-2 models and the AC&C / SPARC ozone database to the NIWA database, and the multi-model 37 
mean agrees well with observations (panels c, d). As noted in Cionni et al. (2011), total column ozone over 38 
Antarctica in the AC&C / SPARC database is higher than in the NIWA database (panels e, f), because in this 39 
region the dataset is based only on the ozonesondes from the Syowa station located at 69°S. This station is 40 
not in the centre of the vortex but is close to the vortex edge and therefore the ozone measured there is 41 
occasionally indicative of midlatitude rather than polar air (Solomon et al., 2005).  42 
 43 
[INSERT FIGURE 9.7 HERE] 44 
Figure 9.7: September to November total column ozone climatology (1980–1999) from the CCMVal-2 multi-model 45 
mean (a) and the bias of it from the NIWA database (b). (c,d) same as (a,b), but for the AC&C / SPARC ozone database 46 
that was used as forcing in a subset of the CMIP5 model simulations. Ozone depletion increased after 1960 as 47 
equivalent stratospheric chlorine (ESC) values steadily increased throughout the stratosphere. Modified from Cionni et 48 
al. (2011). 49 
 50 
Tropospheric ozone in the historical period has increased due to increases in ozone precursor emissions from 51 
anthropogenic activities. Since the AR4, a new emission dataset has been developed (Lamarque et al., 2010), 52 
which has led to some differences in tropospheric ozone burden compared to previous studies, mainly due to 53 
biomass burning emissions (Cionni et al., 2011; Lamarque et al., 2011; Lamarque et al., 2010), see Chapter 54 
8. In general, tropospheric ozone is well simulated by CCMs with interactive tropospheric chemistry. For 55 
example, the historical tropospheric segment of the AC&C / SPARC ozone database used as forcing in a 56 
subset of CMIP5 models without interactive chemistry consists of a two model mean of the Community 57 
Atmosphere Model (Lamarque et al., 2010) and the NASA-GISS PUCCINI model (Shindell et al., 2006). 58 
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The geographical distribution and the annual cycle of this two-model mean compares well with a satellite 1 
climatology (2005–2009), although tropospheric column ozone is slightly lower than observed especially in 2 
the Southern Hemisphere. The vertical profiles of tropospheric ozone are also broadly consistent with 3 
ozonesondes and in-situ measurements, with some deviations in regions of biomass burning (Cionni et al., 4 
2011).  5 
 6 
9.4.1.1.4 Aerosols 7 
In the RCPs adopted for CMIP5 (Moss et al., 2010), the geographic distribution and temporal evolution of 8 
emissions of sulphate precursors, in particular SO2, are prescribed both for the simulations of the 20th 9 
century (Lamarque et al., 2010) and for the projections of future climate (e.g., Wise et al., 2009). Therefore 10 
differences among the multi-model ensemble derived from those models that calculate aerosols interactively 11 
should be due to differences in the modelled chemical production, transport, and removal of the sulphate 12 
species together with differences in the treatments of aerosol microphysical properties. Analogous 13 
experiments have been conducted using an ensemble chemical transport models with identical emissions of 14 
sulphate precursors as part of the AeroCom project (Textor et al., 2007) and compared against a 15 
corresponding ensemble with heterogeneous emissions. Intercomparison of the two ensembles shows that the 16 
intermodal differences in the heterogeneous ensemble are due primarily to the differences in model processes 17 
and transport rather than differences in emissions (Textor et al., 2007). Similar findings have been obtained 18 
from simulations of present-day conditions using a single chemical transport model and emissions data set 19 
run with three different operational meteorological analyses. In these simulations, the process 20 
parameterisations are identical although the meteorological fields driving the processes are not. Sulphate 21 
concentrations in the middle and upper troposphere and near the surface in the Northern Hemisphere close to 22 
anthropogenic source regions differ by a factor of three among the three simulations (Liu et al., 2007). 23 
 24 
9.4.1.2 Quantifying Model Performance with Metrics 25 
 26 
Performance metrics can be constructed to quantify what models simulate well and contrarily to demonstrate 27 
model performance deficiencies. As a simple example, Figure 9.8 illustrates how the pattern correlation 28 
between the observed and simulated climatological annual mean depends very much on the quantity 29 
examined. All CMIP3 models capture the mean surface temperature distribution quite well, with correlations 30 
of 0.95 and higher. Correlations for 200 hPa zonal winds and OLR are somewhat lower, although still mostly 31 
above 0.90. For precipitation however, the typical correlation between models and observations is below 0.8, 32 
and with considerable scatter. This example illustrates how fields associated with the large-scale atmospheric 33 
circulation (e.g., temperature and winds) agree more closely with observations than fields directly related to 34 
parameterisations (e.g., precipitation and clouds and their radiative effects).  35 
 36 
[INSERT FIGURE 9.8 HERE] 37 
Figure 9.8: Global annual mean climatology (1980–1999) pattern correlations between CMIP3 simulations and 38 
corresponding observations (see Table [9.x] for the default references for each field). Results for sea surface 39 
temperature and SW cloud radiative effects exclude data pole-ward of 50 degrees in both hemispheres. Individual 40 
model results are identified as dash marks. The green bars represent the average result for each variable.  41 
 42 
Several studies have used performance metrics to examine the relative strengths and weaknesses of different 43 
CMIP3 models by comparing the mean state of multiple fields with available observations (e.g., Gleckler et 44 
al., 2008; Reichler and Kim, 2008; Pincus et al., 2008; Yokoi et al., 2011). Figure 9.9 (taken from Gleckler et 45 
al., 2008), depicts the space-time RMSE for the 1980–1999 climatological annual cycle of the historically 46 
forced CMIP3 simulations. For each of the fields examined, this “portrait plot” depicts model performance 47 
relative to the median of all model errors, with blue (red) shading indicating a model’s performance being 48 
better (worse) than the median result. In each case, two observational estimates are used to demonstrate the 49 
impact of the selection of reference data on the results. The results in this figure mixed. Some models 50 
consistently compare better with observations than others, some exhibit mixed performance, and some stand 51 
out as relatively poor performers. For most fields, the choice of the observational dataset does not 52 
substantially change the results, indicating that inter-model differences are substantially larger than the 53 
differences between the two reference datasets (which often rely on the same source of measurements). 54 
Nevertheless, it is important to recognize that these results can be sensitive to a variety of factors such as 55 
observational uncertainty, sampling errors (e.g., limited record length of observations), the spatial scale of 56 
comparison, the domain considered, and the choice of metric.  57 
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 1 
Another notable feature of Figure 9.9 is that in most cases the multi-model mean (and median) agree more 2 
favourably with the observations than any individual model. This apparent superiority of the multi-model 3 
mean has been previously recognized to hold for surface temperature and precipitation ( Lambert and Boer, 4 
2001) , but it is now evident that is applies for a broad range of climatological fields. Recent work has led to 5 
several possible explanations why the multi-model mean compares so well with observations. Pincus et al. 6 
(2008) argue that averaging across models smoothes results on shorter spatial scales where the models are 7 
known to be less reliable, but they conclude that a cancelation of compensating systematic errors is likely to 8 
be more important. An alternate hypothesis is that the behaviour of CMIP3 ensemble can be explained in the 9 
context of a statistical indistinguishable ensemble (Annan and Hargreaves, 2011; Annan and Hargreaves, 10 
2010).  11 
 12 
[INSERT FIGURE 9.9 HERE] 13 
Figure 9.9: Relative error measures for 20th century CMIP3 models, based on the global annual cycle climatology 14 
(1980–1999) in the historical (20c3m) experiments. Treating each variable independently, the space-time RMSE is 15 
normalized by the median result across all models. A value of 0.3 indicates an error 30% larger than the median error, 16 
whereas –0.3 is 30% smaller than the median error. A diagonal splits each grid square showing the relative error with 17 
respect to both the primary (upper left triangle) and the alternate (lower right triangle) reference data sets. Taken from 18 
Gleckler et al. (2008). The two left hand columns depict the relative error for both the multi-model mean and median 19 
(which is distinct from the normalization by the median of individual models).  20 
 21 
Correlations between the results for different fields in Figure 9.9 are known to exist, reflecting physical and 22 
relationships in the model formulations. (Gleckler et al., 2008; Yokoi et al., 2011) have applied cluster 23 
analysis methods in an attempt to reduce this redundancy. Starting from 43 multivariate RMSE and bias 24 
metrics, (Yokoi et al., 2011) identify 7 independent clusters. Approaches such as this may to lead to 25 
improved summaries of model performance.  26 
 27 
Using a single measure of a models’ ability to simulate the climatological annual cycle, (Reichler and Kim, 28 
2008) quantified how errors were reduced in CMIP3 when compared to earlier generations of models. Use of 29 
a single skill score to gauge model performance can also be useful during the model development process in 30 
conjunction with the expert judgement of model developers. Construction of such an overall index is 31 
arbitrary however, and it is unclear to what extent it should be used to make any quantitative judgements 32 
about the relative performance of different models.  33 
 34 
Performance metrics such as those discussed above are a typical first-step toward quantifying model 35 
agreement with observations and succinctly summarizing selected aspects of model performance. 36 
Confidence in metrics-based model evaluation is greatest when the metrics are relatively simple, statistically 37 
robust, and the results are not strongly dependent upon various analysis choices (Knutti et al., 2010b). 38 
Metrics are well suited for identifying outliers in various aspects of model performance, which once 39 
identified can be confirmed and further investigated with more in-depth analysis.  40 
 41 
9.4.1.3 Long-Term Global-Scale Changes 42 
 43 
As a precursor to our evaluation of the simulated variability in climate models (see Section 9.5), we first 44 
examine how well these models capture long-term changes evident in the observational record. The 45 
comparison of observed and simulated change is complicated by the fact that the simulation results depend 46 
on both model formulation and the time-varying external forcings imposed on the models (Allen et al., 2000; 47 
Santer et al., 2007). De-convolving the importance of model and forcing differences (e.g., indirect aerosol 48 
effects) in the historical simulations is an important topic that is addressed in Chapter 10.  49 
 50 
Figure 9.10 compares the observational record of 20th century changes in global surface temperature to that 51 
simulated by each CMIP5 model. The frequency and magnitude of the interannual variability in most of 52 
these simulations is generally similar to that of the observations although there are several exceptions. The 53 
gradual warming evident in the observational record, particularly in the more recent decades, is also evident 54 
in the simulations although again there are some important differences among models. The interannual 55 
variations in the observations are noticeably larger than the multi-model ensemble because the averaging of 56 
individual model results acts to filter much of the variability simulated by the models. On the other hand, the 57 
episodic volcanic forcing that is applied to many of the models is evident in the multi-model agreement with 58 
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the observed cooling particularly after the 1991 eruption of Pinatubo. Because the interpretation of 1 
differences in model behaviour can be confounded by natural variability and forcing, some studies have 2 
attempted to identify and remove dominant factors such as ENSO and the impacts of volcanic eruptions 3 
(Fyfe et al., 2010). Efforts such as these can reduce trend uncertainties and thereby improve our ability to 4 
evaluate simulated changes with observations. 5 
 6 

In summary, models broadly capture the observed historical changes in 7 

global surface temperature, and in particular the warming of recent 8 

decades. Both model formulation and the applied external forcings (see 9 

Chapter 10) influence this level of agreement.  10 
 11 
[INSERT FIGURE 9.10 HERE] 12 
Figure 9.10: Observed and simulated annual mean global average anomaly time series of surface air temperature. Lines 13 
(thin) show results from single simulations currently available for CMIP5. Thick black and red lines represent the 14 
observations and the multi-model mean respectively. Vertical grey bars represent times of major volcanic eruptions. 15 
Observational data are the HadCRUTT3v merged surface temperature, 2 meter of land and surface over the ocean. The 16 
current plot shows 2 meter temperature over the land and ocean for model simulations (to be updated with merged 17 
surface temperature). All anomalies are with respect to a 1961–1990 climatology. 18 
 19 
Simulated changes in near surface specific humidity over land have been examined and found to be broadly 20 
consistent with observational estimates for the period 1973–1999 (Willett et al., 2010). In the Northern 21 
Hemisphere, the extratropical trend in most models is slightly smaller than the observed positive trend, 22 
whereas in the tropics the picture is less clear because of substantial inter-model differences, which can at 23 
least in part be attributed to large interannual variability. In the extratropics of the Southern Hemisphere 24 
there is no significant trend in the observations whereas most of the models have Southern Hemisphere 25 
trends similar to their northern counterparts. Given the sparse data network in the Southern Hemisphere this 26 
discrepancy may result from a combination of model errors and observational sampling uncertainty. 27 
 28 
Several studies have focused on the ability of models to simulate observed trends in the free troposphere, in 29 
particular those in tropical latitudes. While some studies identify detectable discrepancies, with the models 30 
seemingly overestimating upper-tropospheric temperature trends in the tropics (Douglass et al., 2008; 31 
McKitrick et al., 2010; Christy et al., 2010; Bengtsson and Hodges, 2011; Fu et al., 2011), others found no 32 
statistically significant difference between the models and the observations once all uncertainties are 33 
accounted for (Santer et al., 2008; Thorne et al., 2011). It is evident that large uncertainties continue to make 34 
it difficult to evaluate the models’ ability in simulating upper tropospheric tropical trends. First, there remain 35 
significant observational uncertainties (Chapter 2, Thorne et al., 2011; Mears et al., 2011). Second, the 36 
choice of metric and statistical method have been shown to crucially affect the conclusions, as demonstrated 37 
by (Santer et al., 2008) who found severe flaws in the statistics used by (Douglass et al., 2008). It has also 38 
been shown that the identification of trends in short records is severely affected by end-point issues 39 
(McKitrick et al., 2010; Santer et al., 2011; Thorne et al., 2011). For instance McKitrick et al. (2010) found a 40 
strong dependence of their conclusions on record length, and Thorne et al. (2011) found much better 41 
agreement between models and radiosonde observations when using the full radiosonde record instead of the 42 
shorter record that overlaps with satellite observations. In addition there are uncertainties in how the models 43 
are forced, in particular in the recent studies that used scenario simulations to represent the last decade from 44 
model simulations (Fu et al., 2011; McKitrick et al., 2010).  45 
 46 
The coupling of the lower and upper troposphere in the tropics is achieved through convective and cloud 47 
processes, which are amongst the least certain in models. However, the amplification of surface temperature 48 
trends in the tropical upper troposphere has been shown to agree well between models and observations on 49 
seasonal and interannual time scales (Santer et al., 2005) and for the full radiosonde record (Thorne et al., 50 
2011), lending some confidence in model behavior. While there are discrepancies between modeled and 51 
observed temperature trends in the upper tropical troposphere, observational uncertainty and contradictory 52 
analyses prevent a conclusive assessment of model quality. 53 
 54 
Change in the global mean temperature of the lower stratosphere during the satellite era is characterized by 55 
substantial cooling occurring in two step-like transitions following two major volcanic eruptions (Section, 56 
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2.2.4, Figure 2.16). The chemistry climate models in CCMVal-2 are capable of simulating the observed 1 
evolution of stratospheric temperature since 1960 when forced with observed sea surface temperatures, 2 
observed emissions of long-lived greenhouse gases, ozone depleting substances and anthropogenic aerosol 3 
loadings, along with natural forcings like solar irradiance variations and volcanic aerosol (WMO, 2011a) . 4 
The set of CMIP3 climate models generally underestimate the observed lower stratosphere cooling trend 5 
even when both anthropogenic and natural forcings are included (Cordero and Forster, 2006). Further, about 6 
half of the CMIP3 models that include volcanic aerosol forcings significantly overestimate the warming in 7 
the upper stratosphere following tropical volcanic eruptions. While several studies have illustrated the 8 
importance of including both anthropogenic and natural forcings to reproduce the step-like cooling of the 9 
lower stratospheric temperature (Dall'Amico et al., 2010; Eyring et al., 2006; Ramaswamy et al., 2006), 10 
other studies suggest that an inadequate simulation of the Brewer Dobson Circulation and its changes (Lin et 11 
al., 2010), and lack of simulating the Quasi-Biennial Circulation in the tropical stratosphere (Dall'Amico et 12 
al., 2010) degrade the agreement between observed and simulated lower stratosphere trends especially on 13 
regional scales.  14 
 15 
One important form of model evaluation involves the examination of co-variability between various 16 
quantities, and the resulting indication of correct simulation of various physical relationships. Several recent 17 
studies have examined the consistency of changes between lower tropospheric temperature and available 18 
precipitable water (Mears et al., 2007a), and surface temperature and relative humidity (Willett et al., 2010). 19 
Figure 9.11 (Mears et al., 2007b) shows the relationship between 12-year (1988–1999) linear trends in 20 
tropical precipitable water and lower tropospheric temperature for individual historical simulations and 21 
observations. The large distribution of trends in both quantities is expected from the short record length, with 22 
the impact of natural variability evident in the range of results from different realizations of the same model. 23 
It is difficult to judge which models more closely agree with the observations because the observational 24 
trends are also sensitive natural variability. However, as described by Mears et al. (2007b) it is clear that the 25 
scaling ratio between changes in these two quantities as simulated by the models is consistent with that of the 26 
observations. Interestingly, this study also found a similar scaling ratio for interannual time scales in both 27 
models and observations, suggesting that this relationship hold across a range of time scales.  28 
 29 
[INSERT FIGURE 9.11 HERE] 30 
Figure 9.11: Scatter plot of the variability of W as a function of the trend in W as a function of the TLT trend for the 31 
tropical oceans. Trends are calculated over the periods given in Table 1. In Figure 3a, UAH V5.2 and UAH V5.1 yield 32 
nearly identical results, so the UAH V5.2 data point is hidden. The lines shown bisect the two different linear fits 33 
obtained with first W, then TLT assumed to be the dependent variable. Isobe et al. (1990) show that this is a good 34 
method for finding an estimate of an underlying relationship in the presence of unknown measurement errors and or 35 
scatter that is not strictly related to measurement error, as is the case here. The climate model and reanalysis results are 36 
for the 1981–1999 period, while the satellite results are for the 1988–2006 period, so the trend results from the satellite 37 
data and the models and reanalysis cannot be directly compared. Also, for UAH V5.1, the calculations are performed 38 
over the 1988–2005 period when both SSM/I and UAH 5.1 data are available. 39 
 40 
Since the AR4, there is increasing observational and modelling evidence that trends in Antarctic 41 
stratospheric ozone loss have contributed to changes in southern high-latitude climate (WMO, 2011b). 42 
Together with increasing GHG concentrations, the ozone hole has led to a poleward shift and strengthening 43 
of the Southern Hemisphere westerly tropospheric jet during summer, which has contributed to robust 44 
summertime trends in surface winds, observed warming over the Antarctic Peninsula, and cooling over the 45 
high plateau (Arblaster and Meehl, 2006; CCMVal, 2010; Perlwitz et al., 2008; Son et al., 2008; Son et al., 46 
2010). These trends are well captured in chemistry-climate models (CCMs) with interactive stratospheric 47 
chemistry that have been extensively evaluated using a process-oriented approach (SPARC-CCMVal, 2010). 48 
They are also captured in CMIP3 models that prescribe time-varying ozone (Son et al., 2010); however, in a 49 
subset of these models prescribed ozone as a climatological zonal mean rather than a time-varying field. 50 
Several studies showed that models with prescribed climatological mean ozone were not able to simulate 51 
trends in surface climate correctly as a result of the missing ozone depletion (Fogt et al., 2009; Karpechko et 52 
al., 2008; Son et al., 2008; Son et al., 2010). For CMIP5, a continuous tropospheric and stratospheric 53 
vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global 54 
climate models that do not include interactive chemistry (Cionni et al., 2011). The CMIP5 simulations forced 55 
with this dataset capture the observed trend from 1960–2000 in total column ozone, see Figure 9.12. The 56 
resulting stratospherically induced changes on high latitude surface climate over the past decades including 57 
trends in the location of the 850 hPa jet and the Southern Annular Mode (SAM) are further discussed in 58 
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Chapter 10, Section 10.3. There is robust evidence, based on several studies, indicating that models with 1 
interactive or specified, time-varying stratospheric ozone are able to reproduce observed Antarctic surface 2 
climate trends, whereas models with fixed ozone are less realistic. 3 
 4 
[INSERT FIGURE 9.12 HERE] 5 
Figure 9.12: Time series of total column ozone over Antarctica (averaged from 60–90°S) from 1960 to 2000 for the 6 
CCMVal-2 multi-model mean (red line) and standard deviation (blue shaded area) in comparison to the AC&C / 7 
SPARC ozone database (green line) and observations from the NIWA database (black dots). Ozone depletion increased 8 
after 1960 as equivalent stratospheric chlorine (ESC) values steadily increased throughout the stratosphere. Modified 9 
from Cionni et al. (2011). 10 
 11 
9.4.1.5 What do We Learn from Model-Data Comparisons for the Last Glacial Maximum, the Mid-12 

Holocene, and the Last Millennium?  13 
 14 
The Last Glacial Maximum (LGM) and mid-Holocene are benchmark periods to test the ability of climate 15 
models to represent a climate different from the modern one. We consider here results obtained from 16 
AOGCMs or EMICs, comparing new model results with results of previous phases of the Paleoclimate 17 
Modelling Intercomparison Project (PMIP, (Joussaume and Taylor, 1995). The LGM allows testing of the 18 
modelled climate response to the presence of a large ice-sheet in the northern hemisphere and to lower 19 
concentration of radiatively active trace gases, whereas the mid-Holocene tests the response to changes in 20 
seasonality of insolation in the northern Hemisphere (see Chapter 5). There is also interest in testing the 21 
ability of climate models to reproduce observed trends over more recent periods. In particular, the transition 22 
from the Medieval warm period (MWP) and the little ice-age (LIA) discussed in Chapter 5 offers a good test 23 
for climate models in a context where the climate is controlled more by natural forcing, such as volcanic and 24 
solar variability, and less by human activity (Jungclaus et al., 2010; Pongratz et al., 2009).  25 
 26 
Figure 9.13 shows the most recent update of the continental dataset described by Bartlein et al. (2010a) and 27 
ocean datasets from MARGO (Waelbroeck et al., 2009) for annual mean LGM surface temperature and mid-28 
Holocene precipitation, together with the ensemble mean of PMIP2 simulations for the corresponding 29 
variables. The Bartlein et al. (2010a) data set also includes information for different bioclimatic variables, 30 
such as the temperature of the coldest month, growing degree days or a moisture index. Both datatsets 31 
provide reconstruction uncertainties, considering sampling, dating, measurement errors, as well as 32 
uncertainties in the calibration that translate the proxy record to a climate variable. These two periods offer 33 
good signal to noise ratio, which allows for both qualitative and quantitative model-data comparisons. 34 
Hargreaves et al. (2011) compared PMIP simulations with MARGO SST reconstruction to show that, when 35 
the reconstructions uncertainties are considered, the PMIP2 ensemble is statistically reliable. They confirmed 36 
the conclusions from Kageyama et al. (2006) for the North Atlantic and of Otto-Bliesner et al. (2009) for the 37 
tropics. The LGM simulations reproduce the large scale patterns, but overestimate the tropical cooling and 38 
underestimate the change in SST gradient in mid-Latitude. The ensemble mean model bias is about 1 K with 39 
most values between –1 K and 2 K. In the North Atlantic the RMSE is about 1.7–1.9 K, except for one 40 
model (1.35 K). More regional assessments, show that models tend to underestimate the magnitude of the 41 
changes, including polar amplification (Masson-Delmotte et al., 2006; Zhang et al., 2010a); or the north-42 
south temperature gradient over Europe both at the LGM (Ramstein et al., 2007) and at the mid-Holocene 43 
(Brewer et al., 2007; Davis and Brewer, 2009). Since the AR4 several studies have analysed in more depth 44 
the change in the mid-latitude westerlies in both hemispheres. In the southern hemisphere, the simulated 45 
change in atmospheric circulation is consistent with precipitation records in Patagonia and New Zealand, 46 
even though the differences between model results are large (Rojas and Moreno, 2011; Rojas et al., 2009). 47 
Comparisons of the PMIP1 atmosphere-only simulations and the PMIP2 coupled ocean atmosphere 48 
simulations confirm that the response of the ocean is needed to reproduce the observed changes (Braconnot 49 
et al., 2007d; Hargreaves et al., 2011).  50 
 51 
These analyses all show that the CMIP3 and PMIP2 models can reproduce large scale features of climates 52 
that are different from the modern one, suggesting that they are likely to properly project future climate 53 
change. However the magnitude of the signal is underestimated in several regions, which comes either from 54 
lower than observed sensitivity or from missing feedbacks (Section 9.7).  55 
 56 
[INSERT FIGURE 9.13 HERE] 57 
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Figure 9.13: Surface air temperature difference between the Last Glacial Maximum (21 ka) and today (top), and 1 
precipitation difference between the mid-Holocene (6 ka) and today (bottom), as shown by palaeo-environmental data 2 
(left) and the PMIP2 ensemble model simulations (right). The top uses reconstructed and simulated mean temperature 3 
of the coldest month (K) for the LGM, the bottom uses reconstructed and simulated mean annual precipitation 4 
(mm/day) for the MH. The land reconstructions are from Bartlein et al. (2010b) and the ocean reconstruction are from 5 
Waelbroeck et al. (2009). On the right figures the red line highlights the root-mean square of the inter-model 6 
differences. 7 
 8 
9.4.2 Ocean 9 
 10 
Accurate simulation of the ocean in climate models is essential for the correct estimation of transient ocean 11 
heat uptake and hence the transient climate response, ocean CO2 uptake, sea level rise, and coupled modes of 12 
variability such as ENSO. In this Section we focus on the evaluation of model performance in simulating the 13 
mean state of ocean properties, surface fluxes and their impact on the simulation of ocean heat content and 14 
sea level, and tropical features of importance for climate variability. Simulations of both the recent (20th 15 
century mean and evolution) and more distant past are evaluated against available data.  16 
 17 
9.4.2.1 Simulation of Mean Temperature and Salinity Structure 18 
 19 
The zonal distribution of potential temperature and salinity (Figure 9.14) offers a first evaluation of the 20 
performance of climate models in simulating the different regions of the ocean (upper ocean, thermocline, 21 
deep ocean). Over most latitudes, at depths ranging from 200 m to 3,000 m, the CMIP3 multi-model mean 22 
zonally averaged ocean temperature is too warm. The maximum warm bias (about 2°C) is located in the 23 
region of the North Atlantic Deep Water (NADW) formation. Above 200 m, however, the CMIP3 multi-24 
model mean is too cold, with maximum cold bias (more than 1°C) near the surface at mid-latitudes of the 25 
NH. Most models generally have an error pattern similar to the multi-model mean, indicating that the 26 
thermocline in the CMIP3 multi-model mean is too diffuse.  27 
 28 
[INSERT FIGURE 9.14 HERE] 29 
Figure 9.14: [PLACEHOLDER FOR SECOND ORDER DRAFT: Figure from AR4; to be redone from CMIP5 when 30 
results available.] Time-mean observed potential temperature (°C), zonally averaged over all ocean basins (labelled 31 
contours) and multi-model mean error in this field, simulated minus observed (colour-filled contours). The observations 32 
are from the 2004 World Ocean Atlas compiled by Levitus et al. (2005) for the period 1957 to 1990, and the model 33 
results are for the same period in the 20th-century simulations in the CMIP3 ensemble. 34 
 35 
The simulation of sea surface temperature (SST) was evaluated in Section 9.4.1.1. The sea surface salinity 36 
(SSS) is more challenging to observe, even though the last decade has seen important and substantial 37 
improvements in the development of global salinity observations, such as those from the ARGO network 38 
(Nowlin et al., 2001; Roemmich and Gould, 2003; Roemmich and Argo Steering, 2009), see Chapter 3. 39 
Whereas SST is strongly constrained by air-sea interactions, the sources of SSS variations (surface forcing 40 
via evaporation minus precipitation, sea-ice formation/melt and river runoff) are only loosely related to the 41 
SSS itself, allowing errors to develop unchecked in coupled models. Further, there is evidence that a bias in 42 
ocean fresh water transport seen in various climate models may make the Atlantic Meridional Overturning 43 
Circulation (AMOC) overly stable in current models (Weber et al., 2007). An analysis based on twelve 44 
AOGCMs that simulated the 20th century in CMIP3, and did not use flux adjustments, showed that the near-45 
global (60°N–60°S) mean SSS bias across the models lies between –0.8 and +0.3 psu (Waliser et al., 2011). 46 
Regional SSS biases are as high as ±2.5 psu. The most systematic biases include a saline bias in the tropical 47 
Pacific (Delcroix et al., 2010) and Bay of Bengal and a fresh bias along much of the southern subtropical 48 
oceans, and to a lesser degree in the western tropical Indian Ocean and North Atlantic. Comparisons of 49 
modeled versus observed estimates of evaporation minus precipitation suggest that model biases in surface 50 
freshwater flux play a role in some of these regions (e.g., double ITCZ in the East Pacific, (Lin, 2007)). 51 
Ocean advective processes can also play a role (Delcroix et al., 2010) but there is no clear and systematic 52 
origin of model biases. 53 
 54 
Detailed assessments of the performance of coupled climate models in simulating hydrographic structure and 55 
variability are still relatively sparse. Two important regions, the Labrador and Irminger Seas and the 56 
Southern Ocean, have been investigated to some extent (de Jong et al., 2009) and (Sloyan and Kamenkovich, 57 
2007). Eight CMIP3 models produced simulations of the intermediate and deep layers in the Labrador and 58 
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Irminger Seas that were generally too warm and saline, with biases up to 0.7 psu and 2.9°C. The biases arose 1 
because the convective regime was restricted to the upper 500 m; thus, intermediate water that in reality is 2 
formed by convection is, in the models, partly replaced by warmer water from the south. In the Southern 3 
Ocean, Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW), two water masses 4 
indicating very efficient ocean ventilation, were found to be well simulated in some models but not in others 5 
(Sloyan and Kamenkovich, 2007). McClean and Carman (2011) found biases in the properties of the North 6 
Atlantic mode waters and their formation rates in the CMIP3 models. For Subpolar Mode Water (SPMW), 7 
property biases principally involved salinity errors. For Subtropical Mode Water (STMW), property biases 8 
involved both salinity and temperature errors, while positioning of heat and water fluxes relative to the Gulf 9 
Stream and northwest Sargasso Sea influenced STMW formation rate. Deficiencies in STMW formation rate 10 
and volume produced a turnover time of 1–2 years, approximately half of that observed (Figure 9.15); these 11 
variations in mode water bulk properties imply variation in ocean heat storage and advection. 12 
 13 
[INSERT FIGURE 9.15 HERE] 14 
Figure 9.15: Sub-Tropical Mode Water (STMW) turnover time for various models compared with Kwon and Riser 15 
(2004); time is calculated by annual maximum volume divided by annual production. Values are means; error bars give 16 
ranges of one standard deviation. Square data symbols indicate those models with a distinct (if small) secondary water 17 
mass transformation rate peak corresponding to STMW formation. Triangular data symbols indicate those models with 18 
broad, diffuse, or indiscernible STMW formation peak (from McClean and Carman (2011). 19 
 20 
9.4.2.2 Simulation of Sea Level and Ocean Heat Content 21 
 22 
Steric and dynamical components of sea surface height (SSH) are simulated by the current generation of 23 
climate models and can be evaluated with high quality near-global satellite altimetry measurements. Yin et 24 
al. (2010) used routine metrics to evaluate the time mean spatial distribution of SSH in the CMIP3 25 
simulations. A Taylor-diagram (Figure 9.16) of the mean annual cycle of SSH field in 17 CMIP3 models 26 
shows that the correlations with observations (Ducet et al., 2000) are relatively low compared to well-27 
observed atmospheric quantities, with the CMIP3 ensemble mean outperforming any individual model. Most 28 
CMIP3 models cluster around a correlation between 0.55 and 0.8, with similar variability as seen in 29 
observations. A few models perform less well; these models also have a larger mean RMSE for the time-30 
mean dynamic topography (Yin et al., 2010). Results from five CMIP5 models are currently available, and 31 
some of the new-generation models (e.g., MRI-CGCM) show clear improvement over CMIP3 versions. 32 
Improved simulation of SSH in eddy resolving ocean models has been demonstrated when compared to 33 
coarser resolution versions (McClean et al., 2006a). Chapter 13 provides a more extensive assessment of sea 34 
level changes in the CMIP3 and CMIP5 simulations including comparisons with century-scale historical 35 
estimates.  36 
 37 
[INSERT FIGURE 9.16 HERE] 38 
Figure 9.16: Taylor diagram of the dynamic sea-level height seasonal cycle climatology (1987–2000). The radial 39 
coordinate shows the standard deviation of the spatial pattern, normalised by the observed standard deviation. The 40 
azimuthal variable shows the correlation of the modelled spatial pattern with the observed spatial pattern. The root-41 
mean square error is indicated by the dashed grey circles about the observational point. Analysis is for the global ocean, 42 
50°S–50°N. The reference dataset is AVISO, a merged satellite product (Ducet et al., 2000), which is described in 43 
Chapter 3. Figure currently shows results for the CMIP3 models and the CMIP5 data currently available. 44 
 45 
The evaluation of simulated ocean heat content (OHC) is more straightforward than sea level because OHC 46 
depends only on ocean temperature, whereas absolute changes in sea level also depend on physics that is 47 
only now being incorporated into global models (e.g., mass loss from large ice sheets). It is worth noting 48 
however, that global scale changes in OHC and steric sea level scale near linearly. About half of the 49 
historical simulations in CMIP3 (shown in Figure 9.17) included the effects of volcanic eruptions, and these 50 
simulations have been shown to yield changes in late 20th century OHC that correspond much more closely 51 
with observations than those that do not include volcanic forcing (Domingues et al., 2008; Gleckler et al., 52 
2006). The differences between the three observational estimates are indicative of their uncertainty. It has 53 
also been demonstrated that the variability structure of simulated OHC agrees much better with observations 54 
when the model data is sampled consistently with available measurements, i.e., when and where actual 55 
measurements exist (AchutaRao et al., 2007).  56 
 57 
[INSERT FIGURE 9.17 HERE] 58 
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Figure 9.17: Time series of observed and simulated (CMIP3) global ocean heat content (0–700 m) anomalies during 1 
the second half of the 20th Century. The three observational estimates (thick lines) are discussed in Chapter 3. 2 
Individual (one per model) simulations are shown, with solid lines for models that included volcanic forcings and 3 
dashed lines for those that did not. When updated with CMIP5 results, this figure may evolve into multiple panels, e.g., 4 
to depict averaging across multiple realizations to better capture trends and include results from historically forced 5 
ESMs. 6 
 7 
9.4.2.3 Simulation of Circulation Features Important for Climate Response 8 
 9 
9.4.2.3.1 Simulation of recent ocean circulation 10 
Atlantic Meridional Overturning Circulation 11 
The Atlantic Meridional Overturning Circulation (AMOC) plays a key role in present-days climate. It 12 
consists of northward transport of shallow warm water overlying a southward transport of deep cold water 13 
and is responsible for a considerable part of the northward oceanic heat transport. Direct observations of the 14 
AMOC would require basin-wide full-depth coverage of the meridional velocities. As these do not exist, 15 
AMOC estimates have had to be inferred from hydrographic measurements. Such estimates have been 16 
sporadically available over the last decades (e.g., Bryden et al., 2005; Lumpkin et al., 2008), indicating at 17 
26°N a time-mean value of about 18 Sv with an observational uncertainty of ±6 Sv. Previously, climate 18 
models showed considerable spread in the time-mean strength of the AMOC, with about half of the models 19 
matching the observed estimate (Schmittner et al., 2005a; Schneider et al., 2007). However, AMOC 20 
estimates based on synoptic measurements represent sparse sampling (once every few years or decades), and 21 
are not capable of representing AMOC variability or long-term trends. Continuous AMOC monitoring was 22 
started at 26°N a few years ago (Cunningham et al., 2007); the four-year mean has been determined as 18.7 23 
Sv with an error of ±2.1 Sv (Kanzow et al., 2010), which has permitted a much more stringent evaluation of 24 
climate models’ ability to simulate the long-term AMOC. The ability of models to simulate this important 25 
circulation feature is tied to the credibility of simulated AMOC weakening during the 21st century because, 26 
at least in one EMIC, the weakening is significantly correlated with mean AMOC strength (Levermann et al., 27 
2007). While the observed time series is still too short to analyze for long-term trends, the observational 28 
record now permits some comparison of observed and simulated AMOC variability (see Section 9.5.3.2).  29 
 30 
Western boundary currents 31 
The relatively low horizontal resolution of current AOGCMs leads to western boundary currents that are too 32 
weak and diffuse, and hence to biases in heat transport, SST, SSS and subtropical mode water formation 33 
(Kwon et al., 2010). Even models at the finer end of horizontal resolution (e.g., MRI.COM at roughly 1.1° 34 
by 0.5°) display this problem (Tsujino et al., 2011). Some improvements in eddy activity in the western 35 
boundary currents are noted by Farneti et al. (2010) in the GFDL CM2.4 coupled model that has an eddy 36 
permitting resolution (about 28 km near the equator increasing to about 10 km near the poles). In addition, 37 
models tend to underestimate the magnitudes of the covariance between the SST and the heat fluxes 38 
compared to re-analyses (Yu et al., 2011). Errors in the simulated time-mean state of the ocean lead to errors 39 
in the models capturing decadal variability of modes that are primarily ocean-driven (Jamison and Kravtsov, 40 
2010). In the Southern Hemisphere, Sen Gupta et al. (2009) found considerable variations in the ability of 41 
the CMIP3 AOGCMs to represent both the meridional changes in the transports of the Agulhas, Brazil and 42 
East Australian Currents as well as in the latitude of maximum transport.  43 
 44 
Southern Ocean circulation 45 
The Southern Ocean is an important driver for the meridional overturning circulation and is closely linked to 46 
the zonally continuous Antarctic Circumpolar Current (ACC). The ACC has a typical transport through the 47 
Drake Passage of about 135 Sv (e.g., Cunningham et al., 2003). The ability of CMIP3 models to adequately 48 
represent Southern Ocean circulation and water masses seems to be affected by several factors (Russell et al., 49 
2006). The most important appear to be the strength of the westerlies at the latitude of the Drake Passage, the 50 
heat flux gradient over this region, and the salinity gradient across the ACC down through the water column. 51 
Russell et al. (2006) emphasize this last factor, modulated by the upwelling of North Atlantic Deep Water 52 
(NADW) south of the ACC, as most strongly influencing the variations between models in ACC properties. 53 
Sen Gupta et al. (2009) noted several problems in these models with representing the circulation of the 54 
Southern Ocean; in particular, relatively small deficiencies in the position of the ACC lead to more obvious 55 
biases in the SST in the models. Although the models generally capture a strong circumpolar circulation and 56 
a Weddell Gyre that is located corrected and reasonably close to the observed transport, the Ross Gyre tends 57 
to be very weak in the models and located too far south in the model ensemble mean. At lower latitudes, the 58 
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Brazil/Malvinas/Falklands Confluence region is typically modelled too far to the north and offshore leading 1 
to regional temperature and salinity biases. 2 
 3 
Rossby radius 4 
The simulation of the first baroclinic Rossby radius in CMIP3 models was evaluated by (Sueyoshi and 5 
Yasuda, 2009). For fifteen models out of twenty, the average radius for the mid-latitude bands and the phase 6 
speed of long baroclinic Rossby waves is underestimated. A tendency is found for these quantities to be 7 
better reproduced in higher-resolution models than in lower-resolution models 8 
 9 
9.4.2.3.2 Simulation of glacial ocean circulation 10 
Reconstructions of the last glacial ocean circulation from sediment cores indicate that the regions of deep 11 
water formation in the North Atlantic were shifted southward, that the boundary between North Atlantic 12 
Deep Water (NADW) and Antarctic Bottom Water (AABW) was substantially shallower than today, and 13 
that NADW formation was less intense (Curry and Oppo, 2005; Duplessy et al., 1988; McManus et al., 14 
2004). This signal, although estimated from a limited number of sites, is robust. Evaluation of PMIP2 15 
simulations, including both AOGCMs and EMICs, shows a wide range of model responses of the AMOC to 16 
LGM forcing (Weber et al., 2007), with some models reducing the strength of the AMOC and its extension 17 
at depth and other showing no change or an increase. The meridional density defined as the zonal and depth 18 
mean density at 20°S minus that at 25°N averaged over the lower 1000m provide a good criteria to compare 19 
model results (Weber et al., 2007). Otto-Bliesner et al. (2007) compared the results of 4 PMIP2 simulations 20 
with the deep ocean data from Adkins et al. (2002) (Figure 9.18). These models reproduce relatively well the 21 
modern deep ocean temperature-salinity (T-S) structure in the Atlantic basin. Greater differences between 22 
models occur for the LGM simulations, stressing large inter-model differences in LGM ocean heat and salt 23 
transports changes. All models show increased salinity, but only two of them produce a rather homogeneous 24 
temperature structure from north to south as observed. The sea-ice cover appears as a key factor in two of the 25 
models to explain the different behaviour. Theses results suggest that these processes are not well reproduced 26 
in climate models, stressing that the PMIP2 generation of climate models likely underestimated changes in 27 
deep-ocean water masses.  28 
 29 
[INSERT FIGURE 9.18 HERE] 30 
Figure 9.18: Temperature and salinity for modern (open symbols) and LGM (filled symbols) as estimated from data 31 
(with error bars) at ODP sites (Adkins et al., 2002) and predicted by the PMIP2 models. Site 981 triangles) is located in 32 
the North Atlantic (Feni Drift, 55_N, 15_W, 2184 m). Site 1093 (upside down triangles) is located in the South Atlantic 33 
(Shona Rise, 50_S, 6_E, 3626 m). OnlyCCSMincluded a 1 psu adjustment of ocean salinity at initialization to account 34 
for fresh water frozen into LGMice sheets; HadCM, MIROC, and ECBilt LGM predicted salinities have been adjusted 35 
to allow comparison. Show quantitatively how deep-ocean properties can be evaluated for both modern and 36 
palaeoclimate. From Otto-Bliesner et al. (2007). 37 
 38 
9.4.2.4 Simulation of Surface Fluxes and Meridional Transports 39 
 40 
9.4.2.4.1 Surface wind stress and meridional heat transport 41 
 42 
The main ocean surface currents are wind-driven, and the zonal component of wind stress is particularly 43 
important. The annually averaged zonal mean zonal wind stress is reasonably well simulated by the CMIP3 44 
models (Figure 9.19). At most latitudes, the reanalysis estimates lie within the range of model results. At 45 
middle to low latitudes, the CMIP3 model spread is relatively small and all the model results lie fairly close 46 
to the reanalysis, although near the equator this can occur through compensated zonal errors (Figure 9.20). 47 
At middle to high latitudes, the model-simulated wind stress maximum tends to lie equatorward of the 48 
reanalysis. This error is particularly large in the SH, a region where there is more uncertainty in the 49 
reanalysis. These wind stress errors in the CMIP3 control integrations may adversely affect aspects of the 50 
simulation such as oceanic heat and carbon uptake (Swart and Fyfe, 2011). 51 
 52 
In steady state, the surface heat flux balances the convergence of ocean heat transport, which is therefore a 53 
convenient quantity for evaluation. North of 45°N, most CMIP3 model simulations transport too much heat 54 
northward when compared to the observational estimates used here (Figure 9.21), but there is uncertainty in 55 
the observations. At 45°N, for example, the model simulations lie much closer to the estimate of 0.6 x 1015 56 
W obtained by Ganachaud and Wunsch (2003). From 45°N to the equator, most model estimates lie near or 57 
between the observational estimates shown. In the tropics and subtropical zone of the SH, most CMIP3 58 
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models underestimate the southward heat transport away from the equator. At middle and high latitudes of 1 
the SH, the observational estimates are more uncertain, and the model-simulated heat transports tend to 2 
surround the observational estimates. 3 
 4 
[INSERT FIGURE 9.19 HERE] 5 
Figure 9.19: Zonal mean zonal wind stress over the oceans in CMIP3 20th century simulations. [PLACEHOLDER 6 
FOR SECOND ORDER DRAFT: Final figure will include CMIP5 results and more observational estimates.] 7 
 8 
 [INSERT FIGURE 9.20 HERE] 9 
Figure 9.20: (a) SST and (b) zonal wind stress along equator in the Indian, Pacific, and Atlantic Oceans for the CMIP3 10 
and CMIP5 20th-century simulations. Observations are from HadISST1.1 for SST (Rayner et al., 2003) and ERSTAO 11 
for wind stress (Menkes et al., 1998). 12 
 13 
[INSERT FIGURE 9.21 HERE] 14 
Figure 9.21: [PLACEHOLDER FOR SECOND ORDER DRAFT: From AR4, to be redone using CMIP5 and more 15 
observational estimates.] Annual mean, zonally averaged oceanic heat transport implied by net heat flux imbalances at 16 
the sea surface, under an assumption of negligible changes in oceanic heat content. The observationally based estimate, 17 
taken from (Trenberth & Caron, 2001) for the period February 1985 to April 1989, derives from reanalysis products 18 
from the National Centers for Environmental Prediction (NCEP)/NCAR (Kalnay et al., 1996) and European Centre for 19 
Medium Range Weather Forecasts 40-year reanalysis (ERA40); (Uppala et al., 2005). The model climatologies are 20 
derived from the years 1980 to 1999 in the 20th-century simulations in the CMIP3. 21 
 22 
9.4.2.5 Simulation of Tropical Mean State 23 
 24 
9.4.2.5.1 Tropical Pacific Ocean 25 
From CMIP1 through CMIP3, models have shown persistent biases in important properties of the mean state 26 
of the tropical Pacific, as reviewed recently by AchutaRao and Sperber (2002); Guilyardi et al. (2009b); and 27 
Randall et al. (2007). Among these properties are the mean thermocline depth and slope along the equator, 28 
the structure of the equatorial current system, and the equatorial cold tongue (Brown et al., 2010a; Reichler 29 
and Kim, 2008). Many of the processes leading to these biases have, in principle, been identified, such as too 30 
strong trade winds; a too diffusive thermocline; insufficient penetration of solar radiation; and too weak 31 
tropical instability waves (Lin, 2007; Meehl et al., 2001; Wittenberg et al., 2006). However, because of the 32 
strong interactions between these processes, it is challenging precisely to attribute the source of the resulting 33 
errors, although new approaches using the initial adjustment of seasonal hindcasts suggest that the equatorial 34 
wind stress may be at the origin of several errors (Vannière et al., 2011). 35 
 36 
A particular problem in simulating the seasonal cycle in the tropical Pacific arises from the “double 37 
Intertropical Convergence Zone (ITCZ)”, defined as the appearance of a spurious ITCZ in the Southern 38 
Hemisphere and associated with excessive tropical precipitation (Lin, 2007). Further problems are too strong 39 
a seasonal cycle in simulated SST and winds in the eastern Pacific and the appearance of a spurious semi-40 
annual cycle. The latter has been attributed to too weak a meridional asymmetry in the background state, 41 
possibly in conjunction with incorrect water vapour feedbacks (Guilyardi, 2006; Li and Philander, 1996; 42 
Timmermann et al., 2007; Wu et al., 2008). 43 
 44 
A further persistent problem in AOGCMs is the too low cover of marine stratocumulus cloud in the eastern 45 
tropical Pacific, caused presumably by too weak coastal upwelling off South America and leading to a warm 46 
SST bias (Lin, 2007). Although the problem persists, there have been improvements in CMIP3 models 47 
(AchutaRao and Sperber, 2006; Reichler and Kim, 2008). 48 
 49 
The equatorial undercurrent (EUC) is a major component of the tropical Pacific Ocean circulation. Even 50 
though EUC velocity in most CMIP3 models is sluggish relative to observations, it does not appear to impair 51 
other major components of the tropical circulation including upwelling and poleward transport (Karnauskas 52 
et al., 2011). These latter transports play a critical role in a theory for how the tropical Pacific may change 53 
under increased radiative forcing, i.e., the ocean dynamical thermostat mechanism (Clement et al., 1996; 54 
Seager and Murtugudde, 1997). These findings suggest that, in the mean, global climate models may not 55 
under-represent the role of equatorial ocean circulation, nor perhaps bias the balance between competing 56 
mechanisms for how the tropical Pacific might change in the future. 57 
 58 
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9.4.2.5.2 Tropical Atlantic Ocean 1 
The current generation of climate models is plagued by severe biases in the tropical Atlantic Ocean, so 2 
severe that some of the most fundamental features – the east-west SST gradient and the eastward shoaling 3 
thermocline along the equator – cannot be reproduced by most of coupled climate models (e.g., Chang et al., 4 
2008; Chang et al., 2007; Richter and Xie, 2008). In many models, the warm SST bias along the Benguela 5 
coast is in excess of 5°C and the Atlantic warm pool in the western basin is grossly underestimated. As in the 6 
Pacific, CMIP3 models suffer the double ITCZ syndrome in the Atlantic, with a southern ITCZ that is not 7 
observed in nature. Hypotheses for the complex Atlantic bias problem tend to draw on the fact that the 8 
Atlantic Ocean has a far smaller basin, and thus encourages a tighter and more complex land-atmosphere-9 
ocean interaction. A recent study using a high-resolution coupled model suggests that the warm eastern 10 
equatorial Atlantic SST bias is more sensitive to the local rather than basin-wide trade wind bias and to a wet 11 
Congo basin instead of a dry Amazon – a finding that differs from previous GCM studies (Patricola et al., 12 
2011). Recent ocean model studies show that warm subsurface temperature bias in the eastern equatorial 13 
Atlantic is a common feature to virtually all ocean models forced with “best estimated” surface momentum 14 
and heat fluxes, owing to problems in parameterization of vertical mixing (Hazeleger and Haarsma, 2005).  15 
 16 
9.4.2.5.3 Tropical Indian Ocean 17 
CMIP3 models simulate equatorial Indian Ocean climate reasonably well, though most models produce weak 18 
westerly winds and a flat thermocline on the equator. The models show a large spread in the modelled depth 19 
of the 20°C isotherm in the eastern equatorial Indian Ocean (Saji et al., 2006). The reasons are unclear but 20 
may be related to differences in the various model parameterisations of vertical mixing (Schott et al., 2009). 21 
 22 
CMIP3 models generally simulate the Seychelles Chagos thermocline ridge in the Southwest Indian Ocean, a 23 
feature important for the Indian monsoon and tropical cyclone activity in this basin (Xie et al., 2002). The 24 
models, however, have significant problems in accurately representing its seasonal cycle because of the 25 
difficulty in capturing the asymmetric nature of the monsoonal winds over the basin, resulting in too weak a 26 
semi-annual harmonic in the local Ekman pumping over the ridge region compared to observations (Yokoi et 27 
al., 2009b). 28 
 29 
Indian Ocean SST displays a basin-wide warming following El Niño (Klein et al., 1999). This Indian Ocean 30 
basin (IOB) mode peaks in boreal spring and persists through the following summer. Only about half of 31 
CMIP3 models capture this IOB mode, and the same models tend to simulate ENSO-forced ocean Rossby 32 
waves in the tropical South Indian Ocean (Saji et al., 2006), in support of a recent observational result that 33 
the IOB is not simply a thermodynamic response to ENSO but involves ocean dynamics and active ocean-34 
atmosphere within the Indian Ocean basin (Du et al., 2009). In-depth analysis of one model (GFDL CM2.1) 35 
confirmed that slow propagation of ocean Rossby waves south of the equator anchors ocean-atmospheric 36 
patterns that persist IOB through the following summer (Zheng et al., 2011).  37 
 38 
9.4.2.6 Summary 39 
 40 
It is likely (robust evidence and medium agreement) that the ocean component of CMIP3 models simulate 41 
the essential processes at play during transient ocean heat uptake, ocean CO2 uptake, sea level rise, and 42 
coupled modes of variability. There is robust evidence and high agreement that SST is well simulated, 43 
limited evidence and medium agreement that SSS is not correctly simulated, robust evidence and high 44 
agreement that the AMOC is simulated with mixed skill, limited evidence and medium agreement that 45 
western boundary currents are simulated with mixed skill, medium evidence and medium agreement that the 46 
meridional heat transport is simulated with mixed skill, robust evidence and high agreement that the tropical 47 
Pacific mean state is simulated with mixed skill, medium evidence and high agreement that the tropical 48 
Atlantic mean state is not correctly simulated, and low evidence and medium agreement that the tropical 49 
Indian Ocean is well simulated.  50 
 51 
9.4.3 Sea Ice  52 
 53 
Evaluation of AOGCM sea-ice component performance requires accurate information on ice concentration, 54 
thickness, velocity, salinity, snow cover and other factors. The most reliably measured characteristic of sea 55 
ice for model evaluation remains sea ice extent. Satellite passive microwave (PMW) sensors are the main 56 
data source for estimating sea ice extent and concentration. The accuracy of PMW retrieval algorithms has 57 
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been examined in a number of studies, (e.g., Meier and Stroeve, 2008); differences in total sea ice extent 1 
from different algorithms are as large as 1 million square kilometres. Most differences between PMW 2 
products tend to offset and thus trends and anomalies are generally in better agreement than the absolute 3 
extent (Kattsov et al., 2011).  4 
 5 
Despite the significant differences between models, the CMIP3 and CMIP5 multi-model means of sea ice 6 
extent in both hemispheres agree reasonably well with observations. The simulated mean extent (calculated 7 
from all grid cells with an ice concentration above 15%) departs from observed values by up to roughly 1 8 
million km2 in the cold seasons both in the Northern and Southern hemispheres, over-simulating and under-9 
simulating it, respectively (Figure 9.22). This difference is of the same order of magnitude as differences 10 
between various observational sea ice extent estimates. In many models, however, the regional distribution 11 
of sea ice is poorly simulated, even if the hemispheric extent is approximately correct. Notably, the CMIP5 12 
multi-model ensemble demonstrates an improvement in simulation of the annual minimum extent in the 13 
Northern hemisphere, compared to CMIP3 model mean. 14 
 15 
[INSERT FIGURE 9.22 HERE] 16 
Figure 9.22: Mean sea ice extent (the ocean area within 15% sea ice concentration) seasonal cycle in the Northern 17 
(upper panel) and Southern (lower panel) hemispheres as simulated by the CMIP5 (blue line) and CMIP3 (black line) 18 
ensembles. The observed sea-ice extent cycles (1980–1999) are based on the Hadley Centre Sea Ice and Sea Surface 19 
Temperature – HadISST (Rayner et al., 2003) (red line) and the National Snow and Ice Data Center – NSIDC (Fetterer 20 
et al., 2002) (brown line) data sets. The shaded areas show the inter-model standard deviation for each ensemble. 21 
 22 
There has been no dramatic increase in sophistication of sea ice treatment in CMIP5 AOGCMs compared to 23 
CMIP3. As a result, the improvement in simulating sea ice in the former, as a group, is not striking (compare 24 
Figure 9.23 with AR4 (Randall et al., 2007) Figure 8.10). Both annual maxima and minima in both 25 
hemispheres show a decrease compared to CMIP3, with few exceptions, particularly in the Northern North 26 
Atlantic in winter.  27 
 28 
[INSERT FIGURE 9.23 HERE] 29 
Figure 9.23: Sea ice distribution in the Northern Hemisphere (upper panels) and the Southern Hemisphere (lower 30 
panels) for March (left) and September (right). A) AR5 baseline climate (1986–2005) simulated by 14 of CMIP5 31 
AOGCMs. For each 1° × 1° longitude-latitude grid cell, the figure indicates the number of models that simulate at least 32 
15% of the area covered by sea ice. B) AR4 baseline climate (1980–1999) differences between 14 CMIP5 and 14 33 
CMIP3 (AR4 (Randall et al., 2007) Figure 8.10) AOGCMs. For each 2.5° × 2.5° longitude-latitude grid cell, the figure 34 
indicates the difference in the number of CMIP5 and CMIP3 models that simulate at least 15% of the area covered by 35 
sea ice. The observed 15% concentration boundaries (red line) are based on the Hadley Centre Sea Ice and Sea Surface 36 
Temperature – HadISST data set (Rayner et al., 2003).  37 
 38 
 39 
Compared to CMIP3, CMIP5 models better simulate the observed trend of September Arctic ice extent 40 
(Figure 9.24). This is likely related to the decreased bias in summer sea ice extent noted above (see e.g., 41 
Kattsov et al., 2011). 42 
 43 
[INSERT FIGURE 9.24 HERE] 44 
Figure 9.24: Arctic September sea-ice extent from observations (NSIDC, red line) (Fetterer et al., 2002), the 12 CMIP5 45 
model multi-model ensemble mean (dark greenish line), the 12 CMIP3 model multi-model ensemble mean (black line), 46 
and one standard deviation ranges of the model estimates (bluish and grey shadings, correspondingly). Note that these 47 
are September means, not yearly minima.  48 
 49 
Sea ice is a product of atmosphere-ocean interaction. There are a number of ways in which sea ice is 50 
influenced by and interacts with the atmosphere and ocean, and the nature and magnitude of associated 51 
feedbacks are still poorly quantified. As noted in the AR4, among the primary causes of biases in simulated 52 
sea ice extent, especially its geographical distribution, are problems with simulating high-latitude winds, 53 
ocean heat advection, vertical and horizontal mixing in the ocean. For example Koldunov et al. (2010) have 54 
shown, for a particular model, that significant ice thickness errors originate from biases in the atmospheric 55 
component. Such biases, common to many models, may be related to representation of processes specific to 56 
high-latitude regions (e.g., polar clouds) or processes not yet commonly included in models (e.g., deposition 57 
of carbonaceous aerosols on snow and ice).  58 
 59 
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The CMIP5 models appear to have limited abilities to generate sufficient unforced atmospheric variability 1 
(e.g., Koldunov et al., 2010) in the Arctic, but large-scale warming events similar to that observed from the 2 
1920s through the 1940s are simulated better in CMIP5 compared to CMIP3. Some recent models are able to 3 
simulate rapid changes in the Arctic sea ice due mainly to natural variability (Holland et al., 2008).  4 
 5 
9.4.4 Land Surface, Fluxes, and Hydrology  6 
 7 
9.4.4.1 Snow Cover and Permafrost 8 
 9 
The CMIP5 ensemble simulates snow-covered area reasonably well (Figure 9.25), however without any 10 
evident improvement compared to CMIP3. Individually, some models have been shown to improve 11 
simulation of terrestrial snow cover due to improvements in parameterization schemes (e.g., Lawrence et al., 12 
2011) . Most models capture the observed decadal-scale variability over the 20th century. Large 13 
discrepancies remain in albedo for forested areas under snowy conditions, due to difficulties in determining 14 
the extent of masking of snow by vegetation.  15 
 16 
[INSERT FIGURE 9.25 HERE] 17 
Figure 9.25: Terrestrial snow-cover distribution in the Northern Hemisphere simulated by 9 CMIP5 AOGCMs for 18 
February. For each 1° × 1° longitude-latitude grid cell, the figure indicates the number of models that simulate at least 5 19 
kg m–2 of snow water equivalent. The observed 20% concentration boundaries (red line) are based on the (Robinson and 20 
Frei, 2000) and cover the period 1986–2005. The annual mean 0°C isotherm at 3.3 m depth averaged across the 9 21 
AOGCMs (yellow line) is a proxy for the permafrost boundary. Observed permafrost zonation in the Northern 22 
hemisphere (magenta dashed line) is based on (Nelson et al., 2002). 23 
 24 
9.4.4.2 Soil Moisture and Land-Atmosphere Coupling 25 
 26 
Soil moisture provides the land-surface with a memory of past anomalies in precipitation and surface 27 
radiation, and also influences future anomalies in these climate variables through its control over 28 
evaporation. The soil moisture-precipitation feedback is such that a dry anomaly reduces subsequent 29 
precipitation which tends to maintain the anomaly. Prior to the AR4 it became clear that the strength of the 30 
coupling between soil moisture and precipitation varied widely between climate models even though the 31 
pattern of land-atmosphere “hotspots” was broadly similar (Koster et al., 2004). Soil moisture has a 32 
particularly strong control on climate in semi-arid areas (Koster et al., 2004; Seneviratne et al., 2010). In 33 
some regions, such as the Sahel, land-atmosphere coupling may even be strong enough to support two 34 
alternative climate-vegetation states; one wet and vegetated, the other dry and desert-like.  35 
 36 
Since the AR4 there have been a number of studies looking at the role of land-atmosphere coupling in the 37 
persistence of summer droughts (Fischer et al., 2007b), and high-temperature extremes (Hirschi et al., 38 
2011b). Comparison of climate model simulations to observations suggests that the models correctly 39 
represent the soil-moisture impacts on temperature extremes in south-eastern Europe, but overestimate them 40 
in central Europe (Hirschi et al., 2011b). Climate change is expected to increase the extent of semi-arid areas 41 
on the globe, so representation of feedbacks involving soil moisture directly affect future-climate projections 42 
(Seneviratne et al., 2010). 43 
 44 
9.4.4.3 Dynamic Global Vegetation and Nitrogen Cycling 45 
 46 
At the time of the AR4 very few climate models included dynamic vegetation, with vegetation cover being 47 
prescribed and fixed in all but a handful of coupled climate-carbon cycle models (Friedlingstein et al., 2006). 48 
Dynamic Global Vegetation Models (DGVMs) certainly existed at the time of the AR4 (Cramer et al., 2001) 49 
but these were not typically incorporated in climate models. Since the IPCC AR4 there has been continual 50 
development of offline DGVMs, and many climate models incorporate dynamic vegetation in at least a 51 
subset of the runs submitted to CMIP5. 52 
 53 
In the absence of nitrogen limitations on CO2 fertilization, offline DGVMs agree qualitatively that CO2 54 
increase alone will tend to enhance carbon uptake on the land while the associated climate change will tend 55 
to reduce it. There is also good agreement on the degree of CO2 fertilization in this limit of no nutrient 56 
limitation (Sitch et al., 2008). However, under more extreme emissions scenarios the responses of the 57 
DGVMs diverge markedly. Large uncertainties are associated with the responses of tropical and boreal 58 
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ecosystems to elevated temperatures and changing soil moisture status. Particular areas of uncertainty are the 1 
high-temperature response of photosynthesis (Galbraith et al., 2010), and the extent of CO2 fertilization 2 
(Rammig et al., 2010) in Amazonian rainforest. 3 
 4 
Most of the DGVMs used in the CMIP5 models continue to neglect nutrient-limitations on plant growth, 5 
even though these may significantly moderate the response of photosynthesis to CO2 (Wang and Houlton, 6 
2009). Recent extensions of two DGVMs to include nitrogen limitations to CO2-fertilization improve the fit 7 
of these models to “Free-Air CO2 Enrichment Experiments”, and suggest that models without these 8 
limitations will most likely overestimate the land carbon sink in the nitrogen-limited mid and high latitudes 9 
(Thornton et al., 2007; Zaehle et al., 2010a). By contrast, tropical ecosystems are thought to be phosphorus 10 
rather than nitrogen limited.  11 
 12 
9.4.4.4 Land-Use Change  13 
 14 
Another major innovation in the land component of the climate models since the AR4 is the inclusion of 15 
land-use change. Changes in land-use associated with the spread of agriculture, urbanization and 16 
deforestation affects climate by altering the biophysical properties of the land-surface, such as its albedo, 17 
aerodynamic roughness and water-holding capacity (Bondeau et al., 2007; Bonan, 2008; Levis, 2010). Land-18 
use change also contributes about 20% to global anthropogenic CO2 emissions, and affects emissions of trace 19 
gases, and volatile organic compounds such as isoprene.  20 
 21 
There has been significant progress in modeling the role of land cover change since the AR4 (Pielke et al., 22 
2007), with the first systematic study demonstrating that large-scale land cover change directly and 23 
significantly affects regional climate (Pitman et al., 2009). However, climate models currently simulate 24 
rather different response of the climate even to the same imposed land-cover change (Pitman et al., 2009). 25 
 26 
9.4.5 Carbon Cycle 27 
 28 
9.4.5.1 Terrestrial Carbon Cycle Component Models 29 
 30 
Current dynamic global vegetation models can reproduce the observed land-atmosphere fluxes of CO2 to 31 
within 30% and can replicate the greater carbon uptake observed in the 1990s compared to the 1980s (Sitch 32 
et al., 2008). However, several coupled biogeochemistry/land-surface models underestimate the seasonal 33 
amplitude of CO2 in the northern hemisphere by factors of 2 to 3 (Randerson et al., 2009). This conclusion is 34 
model dependent, however, as the fully-coupled Earth system models evaluated by Cadule et al (2010) 35 
exhibit much greater skill in simulating the amplitude of the seasonal cycle. The phasing of the annual cycle 36 
in CO2 over northern latitudes is generally accurate, and the timing of observed spring drawdown of CO2 is 37 
reproduced to within 1 month in the tropics with increasing phasing errors between 60ºN and 90ºN. Much 38 
larger phase errors emerge in some ESMs for remote regions near the South Pole (Cadule et al., 2010). 39 
 40 
Accurate simulation of the Amazon is important for representing its buffering of atmospheric CO2 and for 41 
projecting the effects of climate change on the amount of carbon stored in the Amazonian forests (Lewis et 42 
al., 2011). While two biogeochemical sub-models used in a particular ESM reproduced the gross primary 43 
productivity (GPP) of the Amazonian forests to within 14% of observational estimates (Lewis et al., 2011), 44 
the models overestimated the above-ground live biomass by 130 to 190% and underestimated soil carbon by 45 
33 to 40% (Randerson et al., 2009). The overestimation of live biomass in the Amazon is attributable to 46 
parametric errors including excessive allocation of net primary productivity (NPP) to wood and 47 
underestimation of the flow of GPP to autotrophic respiration.  48 
 49 
Wildland and human-induced fires contribute approximately 2.3 PgC yr–1 to the atmosphere based upon 50 
estimates for 1997–2004 (Randerson et al., 2009). Inadequate parameterisations of fires can lead to 51 
underestimation of this flux by a factor of 3 and to errors in its spatial and temporal variability caused by 52 
deforestation-linked fires and the effects of drought. Recent advances in parameterisations yield reasonably 53 
good agreement between simulated emissions and satellite-based retrievals on interannual timescales 54 
(Kloster et al., 2010).  55 
 56 
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9.4.5.2 Oceanic Carbon Cycle Component Models 1 
 2 
Recent advances in the observational evaluation of ocean ecosystem-biogeochemical (OBGC) models 3 
include new diagnostic frameworks designed for quantitative multi-model intercomparisons (Doney et al., 4 
2009) and protocols to evaluate the impact of ocean circulation on the marine carbon cycle, including export 5 
production, dissolved organic matter, and dissolved oxygen (Najjar et al., 2007). Similar error structures 6 
appear in the regional patterns and seasonal cycles of multiple independent variables dependant on the 7 
underlying physical ocean model. The findings support earlier studies that show that the empirical fidelity in 8 
the biological properties of ecosystem-biogeochemical models is contingent on corresponding levels of 9 
accuracy in properties of the simulated physical ocean system (Doney et al., 2009; Najjar et al., 2007), in 10 
particular the SSTs, mixed-layer depths (MLDs), upwelling rates, and vertical structure near the surface.  11 
 12 
Evaluation of OBGC models has been performed with a focus on regional oceanic uptake of CO2 (Roy et al., 13 
2011), and a similar framework will be applied in the near future for evaluating CMIP5 models. Based on 14 
results already available, declining rates of net ocean CO2 uptake observed in the temperate North Atlantic 15 
are broadly reproduced by historical OBGC model simulations (Thomas et al., 2008). These trends represent 16 
a superposition of interannual variability associated with the NAO and with secular trends in surface 17 
warming. The positive trend in observed sea-air CO2 partial pressure differences between 1997 and 2004, 18 
which is indicative of reduced oceanic uptake or greater outflow of CO2, is also simulated. However, models 19 
that have been evaluated against estimates of surface chlorophyll concentrations cannot reproduce the regime 20 
shifts observed in the Northern Atlantic since 1948 (Henson et al., 2009) or the broad-scale shifts from lower 21 
to higher biomass-normalized primary productivity between the 1980s and 1990s (Friedrichs et al., 2009). 22 
The greater skill in reproducing surface CO2 fields compared to ecological variables including chlorophyll 23 
concentrations is consistent with the relative skills in these fields observed by Doney et al (2009). The errors 24 
in reproducing decadal regime shifts are due to challenges in modelling the phytoplankton community 25 
structure, the impact of the Gulf Stream on biological variability downstream, and transitions between 26 
ecological states (Henson et al., 2009). 27 
 28 
9.4.5.3 The Carbon Cycle in Earth System Models 29 
 30 
The transition from climate models to ESMs was motivated in part by the results from the first generation 31 
coupled climate-carbon cycle models, which suggested that feedbacks between the climate and the carbon 32 
cycle were uncertain but potentially very important in the context of 21st century climate change (Cox et al., 33 
2000; Friedlingstein et al., 2001). The first generation models used in the Coupled Climate Carbon Cycle 34 
Model Intercomparison Project (C4MIP) included both extended AOGCMS and EMICs. The C4MIP 35 
experimental design involved running each model under a common emission scenario (SRES A1B) and 36 
calculating the evolution of the global atmospheric CO2 concentration interactively within the model. The 37 
impacts of climate-carbon cycle feedbacks were diagnosed by carrying-out parallel “uncoupled” simulations 38 
in which increases in atmospheric CO2 did not influence climate. Analysis of the C4MIP runs highlighted: (a) 39 
a greater than 200ppmv range in the CO2 concentration by 2100 due to uncertainties in climate-carbon cycle 40 
feedbacks, and (b) that the largest uncertainties were associated with the response of land ecosystems to 41 
climate and CO2 (Friedlingstein et al., 2006). 42 
 43 
For CMIP5 a different experimental design was proposed in which the core simulations use prescribed 44 
Representative Concentration Pathways (RCPs) of atmospheric CO2 and other greenhouse gases (Moss et al., 45 
(2010)). Under such a prescribed CO2 scenario, ESMs still calculate land and ocean carbon fluxes 46 
interactively, but these fluxes do not affect the evolution of atmospheric CO2. Instead the modelled land and 47 
ocean fluxes, along with the prescribed increase in atmospheric CO2, can be used to diagnose the 48 
“allowable” emissions of CO2 consistent with the simulation (Miyama and Kawamiya, 2009; Arora et al., 49 
2011). The allowable emissions for each model can then be evaluated against the best estimates of the actual 50 
historical CO2 emissions. Parallel model experiments in which the carbon cycle does not respond to the 51 
simulated climate change (which are equivalent to the “uncoupled” simulations in C4MIP) provide a means 52 
to diagnose climate-carbon cycle feedbacks in terms of their impact on the allowable emissions of CO2 53 
(Hibbard et al., 2007). 54 
 55 
Figures 9.26 and 9.27 show results from the historical RCP simulations of the ESMs available in the CMIP5 56 
archive. In each case these ESMs have provided both ocean and land CO2 fluxes. In a major advance over 57 
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the C4MIP experiments, which neglected land-use change, each of these models also simulate the affects of 1 
land-use change on both the carbon cycle and the biophysical properties of the land-surface (Bathiany et al., 2 
2010). Figure 9.26 compares the simulations of global land carbon uptake (top left panel) and global ocean 3 
carbon uptake (top right panel) relative to 1960. Also shown are the estimates provided by the Global Carbon 4 
Project (GCP) which are derived from offline ocean carbon cycle models, measurements of atmospheric 5 
CO2, and best estimates of the CO2 fluxes from fossil fuels and land-use change (Le Quere et al., 2009).  6 
 7 
[INSERT FIGURE 9.26 HERE] 8 
Figure 9.26: Simulation of land carbon uptake (top left) and ocean carbon uptake (top right) in the CMIP5 Earth 9 
System Models (ESMs), for the period 1960–2005, relative to 1960. All of these models include the impact of land-use 10 
changes on land carbon storage. For comparison, the observation-based estimates provided by the Global Carbon 11 
Project (“GCP”, Le Quere et al., 2009) are also shown as the dotted line. The bottom right panel shows the sum of the 12 
land and ocean uptake from 1900 to 2005, again relative to 1960. 13 
 14 
[INSERT FIGURE 9.27 HERE] 15 
Figure 9.27: Simulation of net land CO2 flux (top left) and ocean CO2 flux (top right) in the CMIP5 Earth system 16 
models (ESMs), for the period 1995–2005. In each panel the mean flux over the period is plotted on the x-axis, while 17 
the standard deviation of the annual fluxes is plotted on the y-axis. For comparison, the observation-based estimates 18 
provided by the Global Carbon Project (“GCP”, Le Quere et al., 2009) are also shown as the dotted line.  19 
 20 
The top left panel of Figure 9.26 shows the net change in land carbon storage, which arises from the 21 
response of the landscape to climate change and CO2 increase, and also the net change in land carbon arising 22 
from land-use change. From 1960 to around 1989 the GCP data suggest the overall affect was little change in 23 
global land carbon storage, but this was followed by a 15 GtC accumulation of land carbon between 1989 24 
and 2005. The ESMs simulate a wide-range of changes in land carbon storage from 1960 to 2005, of 25 
between 9 and 42 GtC. There is greater agreement concerning the uptake of CO2 by the ocean between 1960 26 
and 2004, with all models and the GCP data showing a monotonic increase in ocean carbon storage (top right 27 
panel of Figure 9.26). GCP data suggest an increase in ocean carbon storage of 97 GtC from 1960 to 2004, 28 
with the ESMs generally simulating a smaller uptake (60 to 84 GtC). 29 
 30 
The GCP estimates of land and ocean uptake are themselves reliant on models, albeit ocean models forced 31 
by best estimates of the observed meteorology. However, the sum of land and ocean uptake is constrained by 32 
the known increase in atmospheric CO2 and the estimated fossil fuel CO2 emissions, without requiring the 33 
use of offline models of the ocean or land uptake. The lower panel of Figure 9.26 compares the sum of the 34 
land plus ocean uptake for each ESM for the period 1900 to 2005, to such an “inferred” land plus ocean 35 
uptake derived as the difference between the integrated fossil fuel emissions and the increase in atmospheric 36 
carbon. For comparison with the other panels of Figure 9.27 the change in carbon storage is given relative to 37 
1960. In model experiments in which CO2 is allowed to run free, the models that underestimate the land plus 38 
ocean uptake will tend to over-estimate the historical CO2 rise, while the opposite will be the case for models 39 
that over-estimate the land plus ocean uptake. 40 
 41 
Figure 9.27 compares the mean and standard deviation of the annual mean global land and ocean fluxes, for 42 
the more recent period 1995 to 2005. The mean ocean CO2 sink is reasonably tightly clustered across the 43 
ESMs, ranging between 1.7 and 2.3 GtC yr–1, which compares with the GCP estimate of 2.2 GtC yr–1. Once 44 
again there is much less agreement on the mean land sink, with ESM simulations producing a range from 0 45 
to 1.6 GtC yr–1, in comparison to the GCP estimate of 0.7 GtC yr–1. All ESMs and the GCP data agree that 46 
the year-to-year variability in the global land CO2 flux is much larger than the variability in the global ocean 47 
CO2 flux, by a factor of 5 to 15. In general the ESMs tend to overestimate the variability in the land flux 48 
compared to the GCP estimate, which may be indicative of an over-sensitivity of tropical land carbon to 49 
climate change in these models (see Section 9.8.3). 50 
 51 
In summary, the ESMs evaluated in this report do reasonably well in reproducing the estimated uptake of 52 
CO2 by the global ocean since 1960, but do less well in the simulation of the global land uptake. The 53 
additional complication of including the impacts of historical land-use change seems to be one of the main 54 
reasons for the range in the ESM simulations of global land carbon storage since 1960. 55 
 56 
9.4.6 Sulfur Cycle 57 
 58 
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9.4.6.1 Recent Trends in Regional and Global Sulphate Burdens and Effects on Insolation 1 
 2 
The historical emissions data used to drive the CMIP5 simulations of the 20th century reflect two recent 3 
trends in regional and global anthropogenic SO2 emissions. During the last three decades, anthropogenic 4 
emissions of SO2 from North American and Europe have declined due to the imposition of emission 5 
controls, while the emissions from Asia have increased. The combination of the European, North American, 6 
and Asians trends has yielded a global reduction in SO2 emissions by 24% between 1987 and 2000. 7 
 8 
The effects of these changes in emissions on the total atmospheric sulphate burden can be simulated using 9 
detailed chemical transport models (CTMs) forced with meteorological reanalyses. The results from these 10 
CTMs can then be used to evaluate the historical simulations of sulphate burdens from ESMs (Figure 9.28). 11 
The CTM calculations show that each 1% decrease in European emissions of SO2 yields a 0.65% reduction 12 
in modeled sulphate burden while each 1% increase in Asian emissions yields a 0.88% increase in sulphate 13 
burdens. The reason is that emissions have generally moved southward to regions where the in-cloud 14 
oxidation process is less oxidant limited. In-cloud oxidation converts SO2 to SO4 and comprises 71% of the 15 
global sulphate production rate under present conditions.  16 
 17 
The effects of sulphate and other aerosol species on surface insolation through direct and indirect forcing 18 
appear to be one of the principal causes of the “global dimming” between the 1950s and 1980s and 19 
subsequent “global brightening” in the last two decades (see Figure 9.29). This inference is supported by the 20 
correlative trends in aerosol optical depth and by trends in surface insolation under cloud-free conditions. 21 
Thirteen out of fourteen CMIP3 models examined by (Ruckstuhl and Norris, 2009) produce a transition from 22 
“dimming” to “brightening” that is consistent with the timing of the transition from increasing to decreasing 23 
global anthropogenic aerosol emissions.  24 
 25 
[INSERT FIGURE 9.28 HERE] 26 
Figure 9.28: The relative error in visible aerosol optical thickness (AOT) from the median of a subset of CMIP5 27 
models’ historical simulations, relative to satellite retrievals of AOT. The figure was constructed following Kinne et al. 28 
(2006). The satellite AOT is from the MODIS instrument on the NASA Terra satellite from 2001 through 2005. The 29 
data version is MODIS 4; the model output is from CSIRO Mk3-6-0, GISS ER-2, HadGEM2-ES, IPSL CM5A-LR, and 30 
NorESM1-M. 31 
 32 
[INSERT FIGURE 9.29 HERE] 33 
Figure 9.29: Time series of the global oceanic-mean AOT from individual CMIP5 models’ historical simulations 34 
against the time series of global oceanic-mean AOT from the Global Aerosol Climatology Project (GACP). The figure 35 
is constructed following Mishchenko et al. (2007). The "brightening" trend shown with the straight green line is 36 
discussed in Chapter 7. The model output is from CSIRO Mk3-6-0, GISS ER-2, HadGEM2-ES, IPSL CM5A-LR, and 37 
NorESM1-M. 38 
 39 
9.4.6.2 Principal Sources of Uncertainty in Projections of Sulphate Burdens 40 
 41 
In contrast to the CMIP3 multi-model simulation ensemble, the CMIP5 ensemble is based upon a single 42 
internally consistent set of SO4 concentrations and SO2 emissions. The use of a single set of emissions 43 
removes an important, but not dominant, source of uncertainty in the AR5 simulations of the sulphur cycle. 44 
In experiments based upon a single chemistry-climate model with perturbations to both emissions and 45 
sulphur-cycle processes, uncertainties in emissions accounted for 53.3% the ensemble variance (Ackerley et 46 
al., 2009). The next largest source of uncertainty was associated with the wet scavenging of sulphate, which 47 
accounted for 29.5% of the intra-ensemble variance and represents the source/sink term with the largest 48 
relative range in the aerosol models evaluated by AeroCom (Faloona, 2009). Similarly, AeroCom 49 
simulations run with heterogeneous or harmonized emissions data sets yielded approximately the same 50 
intermodel standard deviation in sulphate burden of 25 Tg for both sets of experiments. These results show 51 
that a dominant fraction of the spread among the sulphate burdens produced by chemistry-climate models are 52 
due to differences in the treatment of chemical production, transport, and removal from the atmosphere (Liu 53 
et al., 2007; Textor et al., 2007).  54 
 55 
Natural sources of sulphate from oxidation of natural dimethylsulphide (DMS) emissions from the ocean 56 
surface are not specified under the RCP protocol and therefore represent an additional source of uncertainty 57 
in the sulphur cycle simulated by the CMIP5 ensemble. In simulations of present-day conditions, DMS 58 
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emissions span a 5 to 95% confidence interval of 10.7 to 28.1 TgS yr–1 (Faloona, 2009). After chemical 1 
processing, DMS contributes between 18 to 42% of the global atmospheric sulphate burden and up to 80% of 2 
the sulphate burden over most the southern hemisphere (Carslaw et al., 2010). The effects from differences 3 
in DMS emissions and its subsequent oxidation to sulphate on sulphate burdens in the CMIP5 ensemble 4 
remain to be quantified. 5 
 6 
9.5 Simulation of Variability and Extremes  7 
 8 
9.5.1 Importance of Simulating Climate Variability 9 
 10 
The ability of a model to simulate the mean climate, and the slow, externally-forced change in that mean 11 
state, is important and was evaluated in the previous Section. However, the ability to simulate climate 12 
variability, both unforced natural variability and forced variability (e.g., diurnal and seasonal cycles) is also 13 
important. This has implications for the signal-to-noise estimates inherent in climate change detection and 14 
attribution studies where low-frequency climate variability must be estimated, at least in part, from long 15 
control integrations of climate models. It also has implications for the ability of models to make quantitative 16 
projections of changes in climate variability and the statistics of extreme events under a warming climate. In 17 
many cases, the impacts of climate change will be experienced more profoundly in terms of the frequency, 18 
intensity or duration of extreme events (e.g., heat waves, droughts, extreme rainfall events). The ability to 19 
simulate climate variability is also central to the topic of climate prediction, since it is the ability to simulate 20 
the specific evolution of the varying climate system, beyond that due to external forcing, that provides useful 21 
predictive skill. 22 
 23 
Evaluating model simulations of climate variability also provides a means to explore the representation of 24 
certain processes, such as the coupled processes underlying the El Niño Southern Oscillation (ENSO) and 25 
other important modes of variability. A model’s representation of the diurnal or seasonal cycle – both of 26 
which represent responses to external (rotational or orbital) forcing – may also provide some insight into a 27 
model’s ‘sensitivity’ and by extension, the ability to respond correctly to greenhouse gas, aerosol, volcanic 28 
and solar forcing. 29 
 30 
In this Section we will also investigate the extent to which biases in the simulation of the mean climate and 31 
its long-term evolution (Section 9.4) are related to biases in variability, and we will explore to some extent 32 
model features, such as resolution, that may affect the simulation of variability, particularly aspects such as 33 
atmospheric blocking and convective precipitation events. 34 
 35 
9.5.2 Diurnal-to-Seasonal Variability  36 
 37 
9.5.2.1 Diurnal Cycles of Physical Climate Variables 38 
 39 
The diurnally varying solar radiation received at a given location drives, through complex interactions with 40 
the atmosphere, land surface, and upper ocean, easily observable diurnal variations not only in surface and 41 
near-surface temperature, but also precipitation, low level stability and winds, and many other geophysical 42 
parameters. As the diurnal cycle of many climate variables depends on complex interactions of many 43 
different physical processes, the diurnal cycle provides insight into several aspects of model physics.  44 
 45 
Coupled models capture the overall amplitude and phase of the diurnal cycle of surface air temperature (T) 46 
well over land, but tend to produce a weak diurnal cycle over the ocean because of a lack of diurnal 47 
variations in sea surface temperature (SST) (Figure 9.30). In recent simulations using an AOGCM that 48 
explicitly represents SST diurnal variations, some long-standing model biases, such as cold biases in the 49 
tropical Pacific, have been reduced (Bernie et al., 2008). However, most models still have difficulties in 50 
simulating the diurnal variations in SST due to coarse vertical resolution and the time lag in air-sea coupling 51 
in these models (Dai and Trenberth, 2004; Danabasoglu et al., 2006).  52 
 53 
[INSERT FIGURE 9.30 HERE] 54 
Figure 9.30: Composite diurnal cycle of surface air temperature from observations (black line) and CMIP3 models 55 
(coloured lines) averaged over land (left) and ocean (right) areas for three different zones. Adapted from Dai and 56 
Trenberth (2004). 57 
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 1 
The simulation of the diurnal cycle of precipitation over land is another significant challenge. Figure 9.31 2 
shows that AOGCMs have difficulty simulating the diurnal cycle of warm-season precipitation over land, in 3 
particular when convective processes are involved, as is frequently the case for the tropics and extratropical 4 
land areas in summer. Many of the CMIP3 models tend to start moist convection prematurely and thus often 5 
rain too frequently at reduced intensity, resulting in a rainfall peak too early in the day (Dai, 2006) and the 6 
so-called "drizzling bias" (Dai, 2006; Stephens et al., 2010) that can have large adverse impacts on surface 7 
evaporation and runoff (Qian et al., 2006). Many models also produce too much convective rain but too little 8 
stratiform precipitation compared with satellite data (Dai, 2006).  9 
 10 
[INSERT FIGURE 9.31 HERE] 11 
Figure 9.31: Composite diurnal cycle precipitation from observations (black) and a subset of CMIP3 models (coloured 12 
lines) averaged over land (left) and ocean (right) areas for three different zones. Adapted from Dai (2006). 13 
 14 
Several studies have attempted to identify the reasons for the poor model behaviour by carrying out 15 
sensitivity studies (Betts and Jakob, 2002; Zhang and Klein, 2010). Increased atmospheric resolution 16 
(Ploshay and Lau, 2010) as well as the use of the super-parameterisation approach (Khairoutdinov et al., 17 
2005) or very high-resolution simulations of short duration (Sato et al., 2009) have shown significant 18 
promise for improvements in the simulation of the diurnal cycle of precipitation, although the physical 19 
reasons for these improvements remain poorly understood. An improved coupling between shallow and deep 20 
convection, as well as the inclusion of a description of density currents, has been shown to greatly improve 21 
the diurnal cycle of convection over tropical land in one model (Peterson et al., 2009). While the main focus 22 
in improving the diurnal cycle in models has been on deficiencies in cumulus convection, it is likely that 23 
model deficiencies in surface-atmosphere interactions and the planetary boundary layer also contribute to its 24 
poor representation. 25 
 26 
While much of the focus of diurnal cycle studies has been on temperature and precipitation, other diurnal 27 
variations in have also been evaluated, such as those of surface pressure (Covey et al., 2011; Dai and 28 
Trenberth, 2004) humidity and cloudiness, low–level and tropospheric winds (e.g., Dai and Trenberth, 2004). 29 
The diurnal cycle of surface energy and water fluxes has also been extensively evaluated using a variety of 30 
observations and process modelling approaches. In general, most CMIP3 models are able to reproduce the 31 
observed surface pressure tides despite the low model tops in many of the models (Covey et al., 2011), and 32 
the associated diurnal variations in tropospheric wind are also broadly reproduced, though with relatively 33 
weak amplitudes over oceans based on limited analyses (Dai and Trenberth, 2004)  34 
 35 
9.5.2.2 Intraseasonal Variability 36 
 37 
Several features at the intraseasonal time scale influence or are influenced by the mean state or climate 38 
variability, and are strongly connected to the regional climate characteristics discussed in Chapter 14. In the 39 
following we concentrate on blocking events and the Madden Julian oscillation that appear to play an 40 
important role in mid latitudes and the tropics respectively.  41 
 42 
9.5.2.2.1 Blocking and circulation regimes 43 
During blocking weather regimes the prevailing midlatitude westerly winds and storm systems are 44 
interrupted by a local reversal of the zonal flow. Recent work has underlined the importance of blocking for 45 
the occurrence of extreme weather events (Buehler et al., 2011), yet climate models in the past have 46 
universally underestimated the occurrence of blocking. However, recent work has shown that very high 47 
resolution atmospheric AOGCMs can now simulate the observed level of blocking in both hemispheres, 48 
although in this case blocking in the North Pacific is in fact overestimated (Matsueda et al., 2009; Matsueda 49 
et al., 2010).  50 
 51 
Since the AR4 there has been a renewed focus on the diagnostic methods used to characterize blocking. 52 
There are still important differences between methods (Barriopedro et al., 2010a), and the diagnosed 53 
blocking frequency can be very sensitive to details such as in the choice of latitude (Barnes et al., 2011). In 54 
particular, blocking indices based on the identification of reversed meridional gradients in quantities such as 55 
geopotential height can be sensitive to mean state biases in the models, so that the diagnosed biases in 56 
blocking reflect biases in the mean state rather than the level of variability in the models (Scaife et al., 2010). 57 
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In some models the mean state bias can explain most of the underestimation of blocking, but in other models 1 
a significant underestimation still remains (Scaife et al., 2010), reflecting problems with the model’s 2 
simulation of variability (Barriopedro et al., 2010b). Other blocking indices use anomaly fields, rather than 3 
reversed absolute fields, to define blocking, and by these measures model skill can appear better (e.g., 4 
Sillmann and Croci-Maspoli, 2009). Recent work has confirmed the impression of a link between blocking 5 
events and stratospheric flow anomalies (Martius et al., 2009). This link mostly, but not exclusively, 6 
comprises blocking events perturbing the stratospheric flow through upward-propagating Rossby wave 7 
activity, and the observed links are shown to be quite well represented in a climate model with enhanced 8 
stratospheric resolution (Woollings et al., 2010d).  9 
 10 
There is evidence that climate models can simulate the broad features of observed circulation regimes (Teng 11 
et al., 2007). There is observational evidence of regime behaviour in the variability of the North Atlantic 12 
eddy-driven jet stream (Woollings et al., 2010a), and the CMIP3 models show a range of skill in simulating 13 
this structure (Barnes and Hartmann, 2010). The CMIP3 models often underestimate the amplitude of low-14 
frequency planetary wave variability (Lucarini et al., 2007), which is likely to contribute to biases in regime 15 
behaviour.  16 
 17 
9.5.2.2.2 Madden Julian Oscillation 18 
During the boreal winter the eastward propagating feature known as the Madden-Julian Oscillation (MJO) 19 
predominantly affects the deep tropics, while during the boreal summer there is also northward propagation 20 
over much of southern Asia (Annamalai and Sperber, 2005). Cassou (2008; Pan and Li, 2008) present 21 
evidence that the MJO controls part of the distribution and sequences of the four daily weather regimes 22 
defined over the North Atlantic–European region in winter, suggesting a link between the quality of the 23 
representation of the MJO in climate models and model ability to properly reproduce weather regimes. 24 
Previous assessments reported that most AOGCMs have difficulty in representing intraseasonal MJO 25 
variability with most models underestimating the strength and the coherence of convection and wind 26 
variability at MJO temporal and spatial scales (Lin and Li, 2008; Lin et al., 2006). Coupling with the ocean 27 
and convection schemes were highligted as important factors contributing to model deficiencies (Bernie et 28 
al., 2008). Simulation of the Madden-Julian Oscillation is still a challenge for climate models (Kim et al., 29 
2009; Lin et al., 2006; Xavier et al., 2010), however, Sperber and Annamalai (2008) have shown that the 30 
CMIP3 models were able to simulate eastward propagating intraseasonal convection over the Indian Ocean. 31 
This represents an improvement over earlier models (Waliser et al., 2003), though it must be noted that only 32 
two of seventeen models were able simulate the observed northward propagation during boreal summer. As 33 
seen in Figure 9.32, using lead-lag temporal correlations of the two leading principal component time series, 34 
the maximum positive correlation and the time lag at which it occurs indicate that all of the CMIP3 models 35 
have less coherent eastward propagation than observed. There is a diverse representation of the time scale of 36 
the simulated MJO, and some models are incorrectly dominated by westward propagation.  37 
 38 
[INSERT FIGURE 9.32 HERE] 39 
Figure 9.32: Outgoing Longwave Radiation (OLR), 20–100 day filtered, from observations and each of the CMIP3 40 
models’ simulations of 20th-century climate is projected on the two leading Empiricol Orthogonal Functions (EOF’s) of 41 
OLR that constitute the Madden-Julian Oscillation (MJO). Shown is the maximum positive correlation between the 42 
resulting MJO Principal Components (PC’s) and the time lag at which it occurred for all winters (November-March). 43 
The maximum positive correlation is an indication of the coherence with which the MJO convection propagates from 44 
the Indian Ocean to the Maritime Continent/western Pacific and the time lag is approximately 1/4 of the period of the 45 
MJO. Most models have weaker coherence in the MJO propagation (smaller maximum positive correlation), and some 46 
have periods that are too short compared to observations. One CMIP3 model is not shown as its day of maximum 47 
positive correlation was –16, indicating that this model is incorrectly dominated by westward propagation. Constructed 48 
following (Sperber et al., 2005). 49 
 50 
9.5.2.3 Large Scale Monsoon Rainfall and Circulation  51 
 52 
The global monsoon is the dominant mode of annual variation in the tropics (Trenberth et al., 2000; Wang 53 
and Ding, 2008). Given the billions of people that fall under its influence, high fidelity simulation of the 54 
mean monsoon and its variability is of great importance (Sperber et al., 2010; Wang et al., 2006), and 55 
metrics of a models ability to simulate the monsoon domain and its intensity were introduced by (Wang and 56 
Ding, 2008). These measures are based on the annual range of precipitation using hemispheric summer 57 
minus winter values. The monsoon precipitation domain is defined where the annual range is >2.5 mm day–1, 58 
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and the monsoon precipitation intensity is the annual range/annual mean. These measures provide a large-1 
scale view of the Earth’s monsoon systems (Wang et al., 2011). 2 
 3 
The monsoon precipitation domain and intensity from observations and CMIP3 models are shown in Figure 4 
9.33. The subtropical monsoon domain is indicated by the grey-shaded contours, while the shading is the 5 
precipitation intensity, which indicates that summer rainfall dominates the annual mean, especially over the 6 
continents. The CMIP3 multi-model ensemble generally reproduces the observed spatial patterns but 7 
somewhat underestimates the extent and intensity, especially over Asia and North America. In terms of the 8 
threat score (a categorical metric (Wilks, 1995) which indicates how well a model simulates the monsoon 9 
precipitation domain) the best CMIP3 model outperforms the multi-model mean. Additionally, there is a 10 
strong disparity between the best and poorest CMIP3 models, with the latter failing to capture the monsoon 11 
precipitation domain over the Sahel, Central America, and Australia. The models’ threat scores are smaller 12 
than the observational uncertainty, indicating the potential for improvement in the simulation of monsoon 13 
rainfall characteristics.  14 
 15 
[INSERT FIGURE 9.33 HERE] 16 
Figure 9.33: Monsoon precipitation intensity (shading, mm/day) and monsoon precipitation domain (lines) are shown 17 
for (a) observations from GPCP, (b) the CMIP3 multi-model mean, (c) the best model, and (d) the worst model in terms 18 
of the threat score for this diagnostic. The threat scores indicate how well the models represent the monsoon 19 
precipitation domain compared to the GPCP data. The threat score in panel (a) is between GPCP and CMAP rainfall to 20 
indicate observational uncertainty. A threat score of 1.0 would indicate perfect agreement between the two datasets. See 21 
Wang and Ding (2008); Wang et al. (2011); and Kim et al. (2011b) for details of the calculations.. 22 
 23 
Large variations of the monsoon systems have been recorded in paleo proxy records (see Chapter 5). They 24 
show for example that the boreal summer monsoon was stronger and penetrated further inland during the 25 
mid-Holocene, increasing monsoonal precipitation in western North America, northern Africa and China 26 
(Bartlein et al., 2010b; Zhao and Harrison, 2011). The representation of the northward shift of the rainbelt in 27 
the Sahel region has improved in the last generation of paleo-climate models, even though most models still 28 
underestimated the amount of precipitation north of 18°N (Braconnot et al., 2007d). Comparison with data 29 
over East Asia show that the PMIP2 simulations reproduce well the precipitation in China except for in the 30 
central region, but that the model spread is large (Wang et al., 2010). Evaluation of the southern-hemisphere 31 
monsoons is limited by lack of quantitative reconstructions, but initial results suggest that model skill in 32 
simulating these monsoons is limited (Zhao and Harrison, 2011)  33 
 34 
9.5.3 Interannual-to-Centennial Variability  35 
 36 
The mean climate is, by construction, the time average of the numerous scales at which the climate 37 
components vary. In addition to the annual and diurnal cycles, directly forced by the sun and described 38 
above, a number of other modes of variability arise from interactions (or feedbacks) between the various 39 
components on a number of time and space scales. Here we limit the scope to modes of variability whose 40 
timescale ranges from a few weeks (e.g., blocking regimes) to multi-decadal features that can modulate the 41 
trend arising from changes in GHGs. Most of these modes have a particular regional manifestation. The 42 
observational record is sometimes too short to fully evaluate the representation of variability in models and 43 
this motivates the use of re-analysis or proxies, even though these have their own limitation. In the 44 
following, we also emphasize recent research on the interactions between modes of variability via 45 
teleconnections, the processes involved, and model improvements since the AR4.  46 
 47 
9.5.3.1 Global Surface Temparature Variability  48 
 49 
Simulating climate variability on various time scales is important in applications of climate models to 50 
detection and attribution, and to predictions and projections of future climate. One approach to evaluation of 51 
model variability is to compare simulations of the last millennium to temperature reconstruction for this 52 
period (Chapter 5). Figure 9.34 shows the normalized spectra of last-millennium simulations run with 53 
various AOGCMs. These simulations include natural and anthropogenic forgings (solar, volcanism, 54 
greenhouse gases, land use) and so include aspects of forced and internal (unforced) variability. For 55 
comparison similar spectra are also provided for unforced variability arising from long pre-industrial control 56 
simulations. Significant differences between unforced and forced simulations are mainly found in the low 57 
frequency part of the spectra. This is due to the long term trend resulting from the combination of solar and 58 
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greenhouse gas forcing, and correspond to what is inferred from NH paleo reconstructions (Chapter 5). The 1 
lower spectral density found in the two MPI-ESM simulations results from an underestimation of the 2 
temperature trend, consistent with an underestimation of the carbon fluxes by the interactive carbon cycle 3 
(Jungclaus et al., 2010). The peak around 2–4 years which is particularly prominent in the MPI-ESM 4 
ensemble is due to strong ENSO variability and overly strong ENSO teleconnections in this model (Zhang et 5 
al., 2011; Joly et al., 2007b; Meehl et al., 2007b).  6 
 7 
[INSERT FIGURE 9.34 HERE] 8 
Figure 9.34: Power spectral density of NH temperature for a) several simulations of the last millennium performed with 9 
CMIP3-generation models (see Chapter 5) b) long pre-industrial simulations for a subset of the same models. In a) the 10 
model were all forced by the long-term evolution of the atmospheric trace gases, tropospheric aerosols (except ECHOG 11 
and CCSM3), solar irradiance, volcanism eruption (except for IPSL), even though from different reconstructions. The 12 
two MPI-ESM simulations differ by the magnitude of the change in the solar irradiance between the Little Ice Age and 13 
the present (0.1% in E1 instead of 0.25% in E2 and the other simulations) to better reflect the recent revised estimate by 14 
Solanki et al. (2004). A subset of simulations also includes the volcanic forcing or the evolution of land use (MPI-ESM 15 
and CNRM). In the MPI-ESM simulations the carbon cycle is interactive. 16 
 17 
9.5.3.2 North Atlantic Oscillation and Annular Modes 18 
 19 
This section assesses the ability of climate models to reproduce the North Atlantic Oscillation, the closely 20 
related Northern Annular Mode, and the Southern Annular Mode. Definition and interpretation of these 21 
modes is presented in Chapter 14.  22 
 23 
Based on CMIP3 coupled model simulations, Gerber et al. (2008) confirmed the AR4 assessment that 24 
climate models are able to capture the broad spatial and temporal features of these modes as well as their 25 
main inter-hemispheric differences. While models successfully simulate the broad features of the NAM, 26 
there are substantial differences in the spatial patterns amongst individual models (Miller et al., 2006; 27 
Stephenson et al., 2006) especially in non-winter seasons (Stoner et al., 2009; Zhu and Wang, 2010). Climate 28 
models have a tendency to overestimate the teleconnection between the Atlantic and Pacific basins, so that 29 
patterns of variability tend to be more annular in character than in observations (Xin et al., 2008). Models 30 
substantially over-estimated the persistence on subseasonal and seasonal time scales, particularly during 31 
austral spring and summer, and showed much broader annual cycles than found in re-analyses for either 32 
hemisphere. The latter problem is particularly evident in the Northern Hemisphere where only the multi-33 
model ensemble mean showed a robust annual cycle, although the time of peak activity was delayed by a 34 
month relative to that in re-analyses (Gerber et al., 2008). The unrealistically long timescale of jet variability 35 
is worse in models with particularly strong equatorward biases in the mean jet location, a result which has 36 
been found to hold in the North Atlantic and in the Southern Hemisphere (Barnes and Hartmann, 2010; 37 
Kidston and Gerber, 2010). 38 
 39 
As described in theAR4, several climate models have been unable to simulate the observed level of multi-40 
decadal variability in the NAO/NAM, in particular the strong positive trend over the latter half of the 20th 41 
century (Stephenson et al., 2006; Stoner et al., 2009). Underestimation of NAO trends can contribute 42 
substantially to underprediction of future warming in certain regions (Knutson et al., 2006). Scaife et al. 43 
(2009) showed that atmospheric GCMs forced with observed sea surface temperatures, sea-ice and radiative 44 
forcings are not able to simulate the strong NAO trend over the period 1965–1995. However, several coupled 45 
climate models do exhibit multi-decadal variability in unforced control simulations which is sometimes as 46 
large as the observed 50 year (Raible et al., 2005) and even 30 year trends (Selten et al., 2004; Semenov et 47 
al., 2008). Sampling variability may therefore be an explanation for the mismatch, but other explanations 48 
have also been suggested, so it is unclear to what extent the underestimation of late 20th century trends 49 
reflects real model shortcomings. While some studies suggest that greenhouse gas forcing could have played 50 
a role in this positive NAO trend (Paeth et al., 2008) model projections have a vertical structure of 51 
circulation change which is quite different from the NAO/NAM (Woollings, 2008). Scaife et al. (2005) 52 
showed that the trend can be reproduced reliably and repeatedly when the upper atmospheric winds are 53 
relaxed to the observed trend. Further evidence has emerged of the coupling of NAM variability between the 54 
troposphere and the stratosphere, and even models with improved stratospheric resolution appear to 55 
underestimate the vertical coupling (Morgenstern et al., 2010a). Furthermore, the representation of the 56 
stratosphere seems to have a direct bearing on the sign of the NAM response to anthropogenic forcing 57 
(Morgenstern et al., 2010a; Scaife et al., 2011). Improved representation of storms in higher-horizontal 58 
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resolution climate models has also been shown to improve model ability to simulate the NAO (Marti et al., 1 
2010).  2 
 3 
Dynamical processes such as blocking affect the shape of the NAO probability distribution. The daily NAO 4 
index from reanalyses has pronounced negative skewness, which is poorly represented in simulations from 5 
several climate models (Coppola et al., 2005; Woollings et al., 2010b). Climate models also poorly capture 6 
the asymmetry in persistence noted between positive and negative phases of the NAO (Woollings et al., 7 
2010b). Similarly, the CMIP3 models tend to misrepresent the distribution in the latitude of the North 8 
Atlantic eddy-driven jet stream, a quantity closely related to the NAO. Specifically the jet latitude 9 
distribution tends to be unrealistically positively skewed in models, and this bias in skewness is associated 10 
with the equatorward bias in the mean jet latitude in the models (Barnes and Hartmann, 2010). In contrast to 11 
the SAM, the North Atlantic jet shows little relation between its mean bias and its response to forcing 12 
(Woollings and Blackburn, 2011). 13 
 14 
While much of the literature remains focused on wintertime variability, the summertime equivalent of the 15 
NAO has been shown to have considerable influence on regional climate, although over a more limited 16 
region than in winter. Folland et al. (2009) tested the ability of two climate models to simulate the summer 17 
NAO, finding in general a good simulation of its main features, although in one of the models the summer 18 
NAO corresponds only to the second EOF. 19 
 20 
There are also considerable biases in the Southern Hemisphere eddy-driven jet stream in the CMIP3 models 21 
and these appear to have a direct bearing on the magnitude of the SAM response to forcing (Barnes and 22 
Hartmann, 2010; Kidston and Gerber, 2010). In terms of spatial patterns, Raphael and Holland (2006) 23 
showed that coupled models produce a clear SAM but that there are relatively large differences between 24 
models in terms of the exact shape and orientation of this pattern. Karpechko et al. (2009) found that the 25 
CMIP3 models have problems in accurately representing the impacts of the SAM on SST, surface air 26 
temperature, precipitation and particularly sea-ice in the Antarctic region. 27 
 28 
9.5.3.3 Atlantic Modes 29 
 30 
9.5.3.3.1 AMOC variability 31 
The spatial and temporal variability of the Atlantic Meridional Overturning Circulation (AMOC) has been 32 
sporadically observed (Chapter 3). Continuous AMOC time-series exist for latitues 41°N (reconstructions 33 
since 1993) and 26°N (direct observations since 2004) (Willis, 2010; Cunningham et al., 2010). At 26°N, 34 
model simulations show realistic variability for the total AMOC over the available observational record 35 
(Baehr et al., 2009; Marsh et al., 2009; Balan Sarojini et al., 2011).  36 
 37 
Most AMOC observations (continuous or sporadic) estimate the total AMOC as the sum of a wind-driven 38 
component and an ocean interior, density-driven component. The wind-driven variability appears well 39 
represented to over-represented in different models, while the density-driven variability appears to be well 40 
represented to under-represented (Baehr et al., 2009; Balan Sarojini et al., 2011). The under-representation of 41 
the variability of the density-driven contribution might point to deficiencies in the simulation of 42 
hydrographic characteristics (Baehr et al., 2009). Some of these deficiencies in the simulation of the AMOC 43 
variability might improve at higher resolution (Marsh et al., 2009). Note that most models analyzed so far are 44 
too coarse to resolve eddies, which might play a role in the total transport variability (Kanzow et al., 2009; 45 
Wunsch, 2008).  46 
 47 
Concerning the meridional coherence of the AMOC cell, models have suggested AMOC variability that is 48 
specific to individual ocean gyres (Baehr et al., 2009; Biastoch et al., 2008b; Bingham et al., 2007), 49 
something that has recently been confirmed by analysis of hydrographic data (Lozier et al., 2010).  50 
 51 
9.5.3.3.2 Atlantic multi-decadal variability / AMO 52 
The Atlantic Multidecadal Oscillation (AMO) is one of the principal modes of climate variability found in 53 
the instrumental climate record, with an apparent period of about 70 years and a pattern centred on the North 54 
Atlantic Ocean but with a near-global climatic reach (see Section 14.2.5). In the AR4, it was shown that a 55 
number of climate models produced AMO-like multidecadal variability in the North Atlantic Ocean linked to 56 
variability in the strength of the AMOC. Subsequent analyses have not changed this picture, with more 57 
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models showing Atlantic multidecadal variability. Despite this, detailed agreement is lacking, with, for 1 
example, simulated timescales ranging from 40–60 years (Park and Latif, 2010; Frankcombe et al., 2010), to 2 
a century or more (Msadek and Frankignoul, 2009; Menary et al., 2011). Models also tend to lack 3 
‘convergence’ i.e., a model with good AMO characteristics often does not retain these characteristics as the 4 
model is upgraded to the next version (Hurrell et al., 2010). This is consistent with analyses of shorter-period 5 
variability (Farneti and Vallis, 2011) which show a marked sensitivity to oceanic parameters and mean state. 6 
Recent modelling does confirm the link to the overturning circulation, but models tend to differ on the 7 
mechanism generating multidecadal Atlantic variability. These include: coupled atmosphere-ocean 8 
interactions in the far North Atlantic (Msadek and Frankignoul, 2009), water mass exchange with the Arctic 9 
(Frankcombe et al., 2010), and advected tropical salinity feedbacks (Menary et al., 2011) (Figure 9.35).  10 
 11 
The presence of AMO-like variability in unforced simulations has been taken to indicate the AMO has an 12 
internal origin within the climate system. This is further supported by the forced 20th century simulations in 13 
the CMIP3 multi-model dataset, which generally do not possess the observed sequence of AMO phases, thus 14 
implying the AMO is not a result of common forcing (Kravtsov and Spannagle, 2008; Knight, 2009; Ting et 15 
al., 2009). The indirect effects of sulphate aerosol may have been on average too small in the CMIP3 models, 16 
however, leading to an underestimation of 20th century tropical Atlantic temperature trends (Chang et al., 17 
2011). Moreover, a more recent 20th century ensemble created using a more sophisticated aerosol treatment 18 
than was typically used in CMIP3 goes considerably further in reproducing historical AMO fluctuations 19 
(Booth et al., 2011). This would suggest that at least part of the AMO may in fact be forced, and that 20 
improved aerosol representations are important in representing the AMO in models. Further evidence for this 21 
comes from the fact that changes in atmospheric loading of African dust may also be a strong driver of 22 
multidecadal temperature variability in the tropical Atlantic (Evan et al., 2009), and could act as a positive 23 
feedback on the AMO (Foltz and McPhaden, 2008). 24 
 25 
[INSERT FIGURE 9.35 HERE] 26 
Figure 9.35: From top to bottom: SST composites using AMOC time series; precipitation composites using cross-27 
equatorial SST difference time series; equatorial salinity composites using ITCZ-strength time series; subpolar-gyre 28 
depth-averaged salinity (top 800–1,000 m) using equatorial salinity time series; subpolar gyre depth averaged density 29 
using subpolar gyre depth averaged salinity time series. From left to right: HadCM3, MPI-ESM, and KCM. Black 30 
outlining signifies areas statistically significant at the 5% level for a two-tailed t test using the moving-blocks 31 
bootstrapping technique (Wilks, 1995) (Figure 3 from Menary et al. (2011)). 32 
 33 
9.5.3.3.3 Tropical zonal and meridional modes 34 
Atlantic Meridional Mode (AMM) 35 
The AMM is the dominant mode of internannual variability in the tropical Atlantic in all seasons except for 36 
boreal summer, when the Atlantic Niño becomes slightly more prominent. The AMM is characterized by an 37 
anomalous meridional shift in the inter-tropical convergence zone (ITCZ) that is caused by a warming 38 
(cooling) of SSTs and a weakening (strengthening) of the easterly trade winds in the northern (southern) 39 
tropical Atlantic (Chiang and Vimont, 2004). Variations in the AMM have been shown to be related to 40 
principal variations in hurricane tracks over the North Atlantic (Xie et al., 2005; Smirnov and Vimont, 2011). 41 
Virtually all CMIP models simulate an AMM-like SST variability represented by the 2nd EOF in their 20th 42 
century climate simulations. However, most models underestimate the SST variance associated with the 43 
AMM, and position the SST anomaly over the North Tropical Atlantic too far equatorward. More 44 
problematic is the fact that the development of the AMM in many models is led by a zonal mode during 45 
boreal winter – a feature that is not observed in nature (Breugem et al., 2006). This spurious AMM behavior 46 
in the models is likely to be associated with the severe model biases in simulating the ITCZ.  47 
 48 
Atlantic Niño 49 
CMIP3 models have considerable difficulty simulating Atlantic Niño in their 20th century climate 50 
simulations. For many models the so-called ‘Atl-3’ SST index (20°W–0°W, 3°S–3°N) displays the wrong 51 
seasonality, with the maximum value in either DJF or SON instead of JJA as in observations (Breugem et al., 52 
2006). Of the two models that capture the observed seasonality, one severely over-estimates the Atl-3 SST 53 
variance, while the other severely underestimates it. The models’ inability to capture the observed Atlantic 54 
Niño activity is likely caused by mean biases in the region. Almost all of the CMIP3 models fail to simulate 55 
some of the most fundamental features of the equatorial Atlantic Ocean – the east-west equatorial SST 56 
gradient and the eastward shoaling thermocline (e.g., Richter and Xie, 2008).  57 
 58 
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9.5.3.4 Indo-Pacific Modes 1 
 2 
9.5.3.4.1 El Niño-Southern Oscillation 3 
ENSO properties in AOGCMs 4 
The El Niño-Southern Oscillation (ENSO) phenomenon is the dominant mode of natural climate variability 5 
in the tropical Pacific on seasonal to interannual time scales (Wang and Picaut, 2004 and Chapter 14). The 6 
representation of ENSO in AOGCMs has steadily improved and now bears considerable similarity to 7 
observed ENSO properties (AchutaRao and Sperber, 2002; Guilyardi et al., 2009b; Randall et al., 2007). 8 
However, simulations of both background climate (time mean and seasonal cycle) and natural variability still 9 
exhibit serious systematic errors (Capotondi et al., 2006; Guilyardi, 2006; van Oldenborgh et al., 2005; 10 
Wittenberg et al., 2006; Stevenson et al., 2011; Dufresne et al., 2011; Watanabe et al., 2011), many of which 11 
can be traced back to deep convection, trade wind strength and cloud feedbacks (Braconnot et al., 2007a; 12 
Guilyardi et al., 2009a; L'Ecuyer and Stephens, 2007; Lloyd et al., 2010; Lloyd et al., 2009; Sun et al., 2009). 13 
Some models have been identified that perform particularly well (e.g., GFDL2.1 in CMIP3 and CNRM CM5 14 
in CMIP5, (Kakitha et al., 2011)). 15 
 16 
AOGCMs produce a variety of El Niño variability time scales (Figure 9.36): model spectra range from very 17 
regular near-biennial oscillations to spectra that are close to the observed 2 to 7 years. The amplitude of El 18 
Niño in AOGCMs ranges from less than half to more than double the observed amplitude (AchutaRao and 19 
Sperber, 2006; Guilyardi, 2006; Guilyardi et al., 2009b; van Oldenborgh et al., 2005), with CMIP5 models 20 
showing slightly less inter-model variability than was evident in CMIP3 (Figure 9.37). The observed 21 
seasonal phase locking – El Niño and La Niña anomalies tend to peak in boreal winter and are weakest in 22 
boreal spring – is often not captured by models, which either show little seasonal modulation or a phase 23 
locking to the wrong part of the annual cycle, although some models do show a tendency to have ENSO peak 24 
in boreal winter (Kakitha et al., 2011). All these biases combine to generate errors in ENSO amplitude, 25 
period, irregularity, skewness or spatial patterns (Guilyardi et al., 2009b; Leloup et al., 2008). Ohba et al. 26 
(2010) separately investigate the simulated transition process of a warm-phase and a cold-phase ENSO in the 27 
CMIP3 models. Some of the models reproduce the features of the observed transition process of El Niño/La 28 
Niña, whereas most models fail to concurrently reproduce the process during both phases. A few recent 29 
studies suggest the existence of several types of ENSO (e.g., Central Pacific vs. East Pacific CP/EP). Even 30 
though the observational record is still insufficient to fully conclude (see Chapter 14), several studies 31 
attempted to detect this distinction in the CMIP3 multi-model ensemble with mixed results (Yeh et al., 2009; 32 
Ham and Kug, 2011; Guilyardi, 2006; Lengaigne and Vecchi, 2010).  33 
 34 
[INSERT FIGURE 9.36 HERE] 35 
Figure 9.36: [PLACEHOLDER FOR SECOND ORDER DRAFT: Figure from AR4; to be updated.] Maximum 36 
entropy power spectra of surface air temperature averaged over the NINO3 region (i.e., 5°N to 5°S, 150°W to 90°W) 37 
for (a) the CMIP3 models and (b) the CMIP2 models. Note the differing scales on the vertical axes and that ECMWF 38 
reanalysis in (b) refers to the European Centre for Medium Range Weather Forecasts (ECMWF) 15-year reanalysis 39 
(ERA15) as in (a). The vertical lines correspond to periods of two and seven years. The power spectra from the 40 
reanalyses and for SST from the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) version 1.1 data set 41 
are given by the series of solid, dashed and dotted black curves. Adapted from AchutaRao and Sperber (2006) and 42 
Sperber. 43 
 44 
[INSERT FIGURE 9.37 HERE] 45 
Figure 9.37: ENSO metrics comparing CMIP3 and CMIP5 [PLACHOLDER FOR SECOND ORDER DRAFT: To be 46 
updated with more CMIP5 results.] 47 
 48 
ENSO decadal variability 49 
CMIP3 models display a wide range of skill in simulating the interdecadal variability of ENSO (Lin, 2007). 50 
The models can be categorized into three groups: those that show an oscillation with a constant period 51 
shorter than the observed ENSO period, and sometimes with a constant amplitude; those that do not produce 52 
statistically significant peaks in the ENSO frequency band, but usually produces one or two prominent peaks 53 
(episodes) at period longer than 6 years; and those that display significant interdecadal variability of ENSO 54 
in both amplitude and period. Among them, only the MPI model reproduces the observed eastward shift of 55 
the westerly anomalies in the low-frequency regime.  56 
 57 
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Given the short observational record (both for ENSO and for the external forcing fields) (Li et al., 2011b; 1 
Wittenberg, 2009; Deser et al., 2011b), the complexity and diversity of the paradigms and processes 2 
involved (Wang and Picaut, 2004), and the shortcoming of current state-of-the-art models (van Oldenborgh 3 
et al., 2005; Leloup et al., 2008; Guilyardi et al., 2009b), understanding and evaluating ENSO in models 4 
remains a considerable challenge. 5 
 6 
9.5.3.4.2 Indian Ocean Dipole  7 
The Indian Ocean zonal dipole mode (IOD) is an important source of variability (Saji et al., 1999; Webster et 8 
al., 1999) as is, at higher latitudes, the subtropical SST dipole mode (Behera and Yamagata, 2001) which 9 
appears to be part of a hemispheric response to tropical atmospheric forcing (Fauchereau et al., 2003; 10 
Hermes and Reason, 2005). Most CMIP3 AOGCMs are able to reproduce the general features of the IOD, 11 
including its phase lock onto the July-November season (Saji et al., 2006). The SST anomalies in models, 12 
however, tend to show too strong a westward extension along the equator in the eastern Indian Ocean. IOD 13 
amplitude varies a great deal among CMIP3 models, an inter-model variation that can be explained by the 14 
difference in the strength of the simulated Bjerknes feedback among zonal SST gradient, wind and 15 
thermocline depth on the equator (Lin et al., 2011).  16 
 17 
Many models simulate the observed correlation between IOD and ENSO. This correlation varies 18 
substantially in value among models, and this inter-model variation is not tied to the amplitude of ENSO 19 
(Saji et al., 2006). Models that simulate a deeper thermocline off Sumatra also tend to show a larger 20 
correlation between indices of ENSO and the IOD than do models with a shallower thermocline. A subset of 21 
CMIP3 models show a spurious correlation with ENSO following the decay of ENSO events, instead of 22 
during the ENSO developing phase, possibly due to erroneous representation of oceanic pathways 23 
connecting the equatorial Pacific and Indian Oceans (Cai et al., 2011). 24 
 25 
9.5.3.4.3 The Quasi-Biennial Oscillation (QBO)  26 
Significant progress has been made in recent years to model and understand the impacts of the QBO 27 
(Baldwin et al., 2001). More models now reproduce a QBO in climate simulations. Some of these employ 28 
high vertical and horizontal resolution (Takahashi, 1999; Kawatani et al., 2011), while others use 29 
parameterised wave spectra to circumvent the need for such high resolution (Scaife et al., 2000; Giorgetta et 30 
al., 2002; McLandress, 2002). These model results are consistent with recent observations which confirm 31 
that small scale gravity waves carry a large proportion of the momentum flux which drives the QBO (Sato 32 
and Dunkerton, 1997; Ern and Preusse, 2009). Many features of the QBO such as its width and phase 33 
asymmetry also appear spontaneously in these simulations due to internal dynamics (Dunkerton, 1991; 34 
Scaife et al., 2002; Haynes, 2006). Some of the QBO effects on the extratropical climate (Holton and Tan, 35 
1980; Hamilton, 1998; Naoe and Shibata, 2010) as well as ozone (Butchart et al., 2003; Shibata and Deushi, 36 
2005) are also reproduced. Subsequent influences on the Arctic/North Atlantic Oscillation have also been 37 
suggested from observational and modelling studies (Thompson et al., 2002; Boer and Hamilton, 2008; 38 
Marshall and Scaife, 2009). 39 
 40 
9.5.3.4.4 Pacific Decadal Variability (PDO) 41 
The “Pacific Decadal Oscillation” (PDO) refers to the leading Empirical Orthogonal Function (EOF) of 42 
monthly Sea Surface Temperature (SST) anomalies over the North Pacific (north of 20°N) from which 43 
globally-averaged SST anomalies have been subtracted (Mantua et al., 1997). It exhibits anomalies of one 44 
sign along the west coast of North America, and of opposite sign over the western and central North Pacific. 45 
Although the PDO time series exhibits considerable decadal variability, it is difficult to ascertain whether 46 
there are any robust spectral peaks given the relatively short observational record (Minobe, 1997, 1999; 47 
Deser et al., 2004; Pierce, 2001). The ability of climate models to represent the PDO, in particular its spatial 48 
pattern, temporal characteristics, and association with the tropical Indo-Pacific has been assessed by Stoner 49 
et al. (2009). Their results indicate that approximately half of the CMIP3 models simulate a realistic spatial 50 
pattern and general temporal behaviour of the PDO (e.g., enhanced variance at low frequencies); however, 51 
spectral peaks are consistently higher in frequency than those suggested by the short observational record. 52 
The models’ PDO correlations with SST anomalies in the tropical Indo-Pacific are strongly underestimated 53 
by the CMIP3 models (Lienert et al., 2011; Deser et al., 2011a). 54 
 55 
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9.5.3.4.5 Tropical Ocean Decadal Variability 1 
Pacific Subtropical Cells (STCs) are the shallow meridional cells in which water flows out of the tropics 2 
within the surface layer, subduct in the subtropics, flows equatorward in the thermocline and upwells in the 3 
equatorial ocean (Blanke and Raynaud, 1997; McCreary and Lu, 1994). The STCs provide a pathway by 4 
which extra-tropical atmospheric variability can force tropical variability. Observational studies have shown 5 
that these wind driven cells are major drivers of SST change in the tropical Pacific (McPhaden and Zhang, 6 
2002), where a decrease in tropical Pacific SST is significantly correlated with a spin-up of the STCs and an 7 
increase in SST with a spin-down. Several studies have shown that this relationship is absent from the 8 
CMIP3 climate model simulations of the 19th-20th centuries (Zhang and McPhaden, 2006). Hence the full 9 
impact of a weakening of the Walker Circulation with climate change (Vecchi et al.; Vecchi et al., 2006b) 10 
may not be fully accounted for. (Solomon and Zhang, 2006) suggest that the CMIP3 coupled models may be 11 
reproducing the observed local ocean response to changes in forcing but inadequately reproduce the remote 12 
STC-forcing of the tropical Pacific due to the underestimate of extratropical winds that force these ocean 13 
circulations. 14 
 15 
9.5.3.5 Teleconnections 16 
 17 
In general terms, teleconnections characterize the response of the climate system in one location to forcings 18 
such as SST anomaly patterns in another. SST variability provides a significant forcing of atmospheric 19 
teleconnection response and drives a significant portion of the climate variability over land (Goddard and 20 
Mason, 2002; Shin et al., 2010). Although local forcings and feedbacks can play an important role (Pitman et 21 
al., 2010; Section 9.6.1), the simulation of land surface temperatures and precipitation requires accurate 22 
predictions of SST patterns (Compo and Sardeshmukh, 2009; Shin et al., 2010). As examples, Goddard et al. 23 
(2009) explored the effect of observational uncertainty in the SST patterns on regional climate change. Shin 24 
et al. (2010) examined the difference between CMIP3 modelled SST trends and observations, and found that 25 
the skill of regional predictions over land could be improved with improved skill in tropical SST patterns. 26 
These results imply that the uncertainty in the atmospheric teleconnection response to idealized forcings can 27 
be used to assess atmospheric models (Barsugli et al., 2006; Shin et al., 2010; Li et al., 2011c). Specific 28 
modes of variability typically driven by SST patterns are discussed in more detail in the following.  29 
 30 
9.5.3.5.1 Pacific North American Pattern 31 
The majority of CMIP3 models simulate a realistic spatial structure of the PNA pattern in wintertime (Stoner 32 
et al., 2009). The temporal variability of the PNA generally resembles a white-noise process with an e-33 
folding time scale of about 10 days (Johnson and Feldstein, 2010), and some year-to-year autocorrelation 34 
reflecting influences of ENSO and the PDO (Deser et al., 2004). This temporal behavior is generally 35 
captured by the CMIP3 models, although the level of year-to-year autocorrelation varies according to the 36 
strength of the simulated ENSO and PDO (Stoner et al., 2009).  37 
 38 
9.5.3.5.2 Pacific South America Pattern 39 
The Pacific South America (PSA) pattern is one of the major atmospheric teleconnection patterns from the 40 
tropical Indo-Pacific into the mid- and high latitude South America and South Atlantic region (Colberg et al., 41 
2004; Mo and White, 1985). It also appears to act as a link between ENSO and the generation of subtropical 42 
basin modes in the Southern Hemisphere (Hermes and Reason, 2005). (Vera and Silvestri, 2009) showed that 43 
there was a considerable range in the ability of CMIP3 models to represent these wave trains. Furthermore, 44 
different models had different abilities depending on the season.  45 
 46 
9.5.3.5.3 ENSO – West African Monsoon (WAM) 47 
A regression of the WAM precipitation index with global SSTs reveal two major teleconnections (Fontaine 48 
and Janicot, 1996). The first mode highlights the strong influence of ENSO. The second mode reveals a 49 
relationship between the SST in the Gulf of Guinea and the northward migration of the monsoon rainbelt 50 
over the West African continent. Most CMIP3 20th century simulations show a single dominant Pacific 51 
teleconnection, which is, however, of the wrong sign for half of the models (Joly et al., 2007a). Only one 52 
model shows a significant second mode, emphasizing the GCMs’ difficulty in simulating the response of the 53 
African rainbelt to Atlantic SST anomalies that are not synchronous with Pacific anomalies. 54 
 55 
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9.5.3.5.4 Mid-latitude jet position 1 
Westerly jet streams occur in both hemispheres and are associated with storm tracks that can play a dominant 2 
role in regional climate variability and change. Early studies noted an increase in the strength of the westerly 3 
jets and a poleward shift in their location under increasing greenhouse gases due to the increase in 4 
meridional temperature gradient between the rapidly warming upper troposphere in the tropics and cooling 5 
lower stratosphere in the extratropics. Indeed, observations suggest that recent decades saw a large poleward 6 
shift in the subtropical jets associated with widening of the tropics (Seidel et al., 2008). However, more 7 
recently, it has been noted that the degree of poleward shifting of the jets may be systematically affected by 8 
model error (Kidston and Gerber, 2010) while higher vertical resolution models indicate that the previous 9 
consistency between models may still not indicate robust response due to shared limitations in resolution 10 
(Morgenstern et al., 2010b; Scaife et al., 2011). In the southern hemisphere, a similar response of a poleward 11 
shift in the southern hemisphere jet and associated stormtracks has been observed in recent decades.  12 
 13 
9.5.3.6 Carbon Cycle Variability 14 
 15 
9.5.3.6.1 Interannual variability in terrestrial sources and sinks of carbon  16 
Both coupled biogeochemistry/land models evaluated by Randerson et al (2009) reproduce the interannual 17 
variability in land fluxes during 1988–2004 when compared against Atmospheric Tracer Transport Model 18 
Intercomparison Project (TRANSCOM). The models are significantly and positively correlated with the time 19 
series of annual-mean fluxes and explain between 43% and 53% of the fluctuations in TRANSCOM. The 20 
models produce year-to-year variability that agrees to within 30% with the interannual standard deviation 21 
from TRANSCOM of 1.0 PgC yr–1. Over the longer time period spanning 1860 to 2002, the inclusion of 22 
nitrogen cycling and deposition on global carbon sequestration accounts for less than 20% of recent changes 23 
in annual NPP due to atmospheric composition and climate (Zaehle et al., 2010b). 24 
 25 
When these components are linked to fully coupled Earth system models, these models tend to overestimate 26 
the long-term trend in global-mean atmospheric CO2 concentrations (Cadule et al., 2010). The simulation of 27 
various types of interannual variability, including the oscillations in CO2 associated with the positive and 28 
negative phases of ENSO and long-term trends in the seasonal amplitude, is moderately skilful although 29 
some models examined by Cadule et al. (2010) exhibit essentially no skill on this metric.  30 
 31 
9.5.3.6.2 Internal and interannual variability in ocean sources and sinks of carbon  32 
Most of the ocean biogeochemical GCMs that have been compared against depth-integrated primary 33 
productivity (PP) underestimate the observed interannual variance in PP with discrepancies frequently 34 
exceeding a factor of two (Friedrichs et al., 2009). The majority of this error is contributed by the infrequent 35 
occurrence of low PP values (<0.2 g C m–2 d–1) in the models relative to the observations. Pattern 36 
correlations between temporal anomalies in PP estimated from satellite ocean-colour data and from the 37 
GCMs are generally in the range of 0.5 to 0.6. On a global scale, temporal variability in PP is contributed 38 
primarily by tropical oceans where stronger stratification and higher SSTs lead yield negative PP anomalies 39 
(Schneider et al., 2008). In analysis of a limited sample of biogeochemical GCMs, Schneider et al (2008) 40 
identify only one model that emulates the inverse relationship between PP and SST inferred from satellite 41 
ocean-colour data over low-latitude oceans. Reproduction of this inverse relationship is a necessary but not 42 
sufficient condition for projecting the effects of more El Nino-like conditions with higher SSTs and stronger 43 
stratification on the uptake of CO2 by low-latitude oceans. 44 
 45 
9.5.3.7 Summary 46 
 47 
In summary, the assessment of interannual to interdecadal variability in climate models presents a varied 48 
picture. This is either due to the short reliable observational record available to assess the models or to the 49 
diversity of model behavior, or to both. There is medium evidence and medium agreement that the NAO and 50 
Northern Annual Mode is well simulated, and low evidence and medium agreement that the Southern 51 
Annual Mode is simulated with mixed skill. There is low evidence and medium agreement that the AMOC 52 
variability and the Atlantic Multi-decadal Variability are simulated with mixed skill. There is medium 53 
evidence and high agreement that the Atlantic Meridional Mode is not correctly simulated and low evidence 54 
and medium agreement that the Atlantic Niño is not correctly simulated. There is medium evidence and high 55 
agreement that ENSO is simulated with mixed skill and medium evidence and medium agreement that the 56 
Indian Ocean Dipole is simulated with mixed skill. There is medium evidence and medium agreement that 57 
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the QBO is well simulated by the models. Finally, there is low evidence and medium agreement that the 1 
Pacific Decadal Oscillation is simulated with mixed skill, low evidence and low agreement that the Pacific 2 
North American pattern is well simulated and that the Pacific South American pattern is simulated with 3 
mixed skill. 4 
 5 
9.5.4 Extreme Events 6 
 7 
Extreme events are realizations of the tail of probability distribution functions of natural variability of 8 
climate or weather. They are higher-order statistics and thus generally expected to be more difficult to 9 
realistically represent in climate models. Shorter time scale extreme events are often associated with smaller 10 
scale spatial structure, which cannot be captured by coarse resolution models but better represented as the 11 
resolution of a model increases. In AR4, it was concluded that the models could simulate the statistics of 12 
extreme events better than expected from generally coarse resolutions of the models at that time, especially 13 
for temperature extremes (Randall et al., 2007). 14 
 15 
The IPCC has conducted an assessment of extreme events in the context of climate change -- the Special 16 
Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation 17 
(SREX) (IPCC, 2012). Although there is no comprehensive climate model evaluation with respect to 18 
extreme events in SREX, there is some consideration of model performance taken into account in assessing 19 
uncertainties in projections. 20 
  21 
9.5.4.1 Extreme Temperature 22 
 23 
Since AR4, the evaluation of CMIP3 models in terms of extreme events has been extended. Kharin et al. 24 
(2007) have comprehensively evaluated the ability of models to reproduce 20-year return values of annual 25 
extremes of near-surface temperature and daily precipitation amounts. They found that the CMIP3 models 26 
simulated present-day warm extremes reasonably well on the global scale, as compared to estimates from 27 
reanalysis. The model discrepancies in simulating cold extremes were found to be generally larger than those 28 
for warm extremes, especially in sea ice-covered areas.  29 
 30 
Some studies have compared modelled and observed historical trends of temperature extremes. As noted in 31 
SREX (Seneviratne et al., 2012), recent detection and attribution studies have shown that models tend to 32 
overestimate the observed warming of warm temperature extremes and underestimate the warming of cold 33 
extremes in the second half of 20th century (Christidis et al., 2011; Zwiers et al., 2011) [See also Chapter 34 
10]. Moreover, Meehl et al. (2009a) found that a particular climate model (CCSM3) overestimated the ratio 35 
of daily record high maximum temperatures to record low minimum temperatures averaged across the USA 36 
compared with the observed value, implying that the model tends to overestimate the increase in record high 37 
temperatures, which is consistent with the bias suggested by detection and attribution studies.  38 
 39 
As a preliminary overview of results from new generation models, Figure 9.38 shows relative error estimates 40 
based on the approach by (Gleckler et al., 2008) of available CMIP5 models for various extreme indices over 41 
land, which shows that the performance of simulated extreme events, in terms of temporal mean magnitude 42 
and spatial distribution, varies with models and indices.  43 
 44 
[INSERT FIGURE 9.38 HERE] 45 
Figure 9.38: Portrait diagram display (Gleckler, Taylor, & Doutriaux, 2008) of relative error metrics for the CMIP5 46 
temperature and precipitation indices compared to ERA40 (top) and NCEP (bottom) re-analyses for the base period 47 
1961–1990. Only land areas are considered. Top row in each diagram indicates the mean RMSE across all indices for a 48 
particular model. The indices marked with a * are bias-corrected (indices are calculated using the bias-corrected 49 
minimum and maximum temperature time series but using the temperature thresholds estimated from the re-analysis, so 50 
that the bias in simulated temperature variability can be assessed). Indices shown are ‘Warm/Cold spell duration’ 51 
(twsd/tcsd), ‘Warm/Cool days’ (tx90p/tx10p), ‘Warm/Cool nights’ (tn90p/tn10p), ‘Min/Max T2MAX’ (txmin/txmax), 52 
‘Min/Max T2MIN’ (tnmin/tnmax), ‘Ice/Summer/Frost days’ (txid/txsu/tnfd), ‘Tropical nights’ (tn20), ‘Growing season 53 
length’ (tgsl), ‘Diurnal temperature range’ (tdtr), ‘Consecutive wet/dry days’ (pxcwd/pxcdd), ‘Max 5-day/1-day 54 
precipitation amount’ (px5d/px1d), ‘Simple daily intensity index’ (psdii), ‘Annual total wet-day precipitation’ (prtot), 55 
‘Extremely/Very wet days’ (pr99p/pr95p) and ‘Number of very heavy/heavy precipitation days’ (p20mm/p10mm) from 56 
Klein Tank et al. (2009). (Haylock et al., 2008). 57 
 58 
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9.5.4.2 Extreme Precipitation 1 
 2 
Kharin et al. (2007) concluded that precipitation extremes simulated by CMIP3 models were plausible in the 3 
extratropics, but uncertainties in the Tropics were very large, both in the models and the available 4 
observational datasets. Simulated precipitation extremes are known to be highly resolution dependent. 5 
Growing evidence has shown that high-resolution models (50 km or finer atmospheric horizontal resolution) 6 
can capture the magnitude of extreme precipitation realistically (Sakamoto et al., 2011; Wehner et al., 2010). 7 
See also Section 9.7.3.3. 8 
 9 
Since the AR4, more attention has been devoted to a higher temporal resolution precipitation extremes, e.g., 10 
hourly precipitation extremes, rather than daily. Lenderink and Meijgaard (2008) have analysed a 99-year 11 
record of hourly precipitation observations from a station in the Netherlands and found that the temperature 12 
dependence of hourly precipitation intensity was greater than that expected from the Clausius-Clapeyron 13 
relation in higher temperature regimes, although the cause was not clear (Haerter and Berg, 2009; Lenderink 14 
and van Meijgaard, 2009). This feature was partly (only for very high extremes) reproduced by a 25 km 15 
resolution regional climate model.  16 
 17 
Similar to temperature extremes, studies comparing modelled and observed historical trends of precipitation 18 
extremes have found that the observed intensification of extreme precipitation over Northern Hemisphere 19 
land areas in the second half of the 20th century was consistently simulated by climate models, but the 20 
simulated amplitude of intensification was smaller than observed (Min et al., 2011) (See also Chapter 10). 21 
Related to this, it has been pointed out from comparisons between CMIP3 models and satellite-based dataset 22 
of precipitation intensity that models underestimate the temperature dependence of precipitation intensity 23 
over the tropical ocean (Allan and Soden, 2008) and at a global scale (Liu et al., 2009). These studies 24 
consistently suggest that CMIP3 models tend to underestimate the intensification of extreme precipitation 25 
with temperature increase.  26 
 27 
9.5.4.3 Other Extremes 28 
 29 
With regard to tropical cyclones, it was concluded in the AR4 that high-resolution AGCMs produced 30 
generally good simulation of their frequency and distribution, but underestimated their intensity (Randall et 31 
al., 2007). Since then, Mizuta et al. (2011) have shown that a newer version of MRI-AGCM with improved 32 
parameterizations but with the same resolution as the previous version (20 km) simulates tropical cyclones as 33 
intense as those observed with improved distribution as well. This implies that 20 km atmospheric resolution 34 
might be enough for simulating realistic intensity of tropical cyclones if adequate parameterizations are used. 35 
Another remarkable finding since AR4 is that the observed year-to-year counts of Atlantic hurricanes can be 36 
well simulated by AGCMs driven only by observed sea surface temperature (Larow et al., 2008; Zhao et al., 37 
2009). This finding is particularly important for physical understanding, detection, attribution and future 38 
projection of hurricane count changes, but also encouraging in the context of model evaluation.  39 
 40 
One of the important extreme events at longer timescale (months or longer) is drought, which is caused by 41 
variability of both precipitation and evaporation. Sheffield and Wood (2008) found that AOGCMs in the 42 
CMIP3 ensemble simulated large-scale droughts in 20th century reasonably well, although the frequency of 43 
long-term (more than 12-month duration) droughts were overestimated. 44 
 45 
9.5.4.4 Summary 46 
 47 
There is limited evidence but high agreement that models in CMIP3 ensemble simulate 20-year extreme 48 
temperatures reasonably well, but tend to overestimate the observed warming of warm temperature extremes, 49 
underestimate the observed warming of cold temperature extremes and underestimate the observed 50 
intensification of extreme precipitation. The evidence is growing, though still rather limited, and agreement 51 
is high that AGCMs driven by observed sea surface temperature can simulate the observed year-to-year 52 
counts of Atlantic hurricanes.  53 
 54 
9.6 Downscaling and Simulation of Regional-Scale Climate  55 
 56 
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In the above sections, climate model evaluation is discussed in terms of the simulation of different 1 
components of the climate system as well as climate averages, variability and extremes. This section 2 
addresses climate model evaluation for geographical regions, which both complements the previous sections 3 
and provides the basis for the use of regional-scale climate projections in climate change impact research. 4 
 5 
Regional climate scale information can be extracted from the AOGCMs. However, many important features 6 
concern finer scales than those that are resolved well in the AOGCMs. This has led to the development and 7 
use of different regional downscaling methods. The most notable of such methodologies are statistical 8 
downscaling and dynamical downscaling (a.k.a. regional climate modelling). Use is also made of variable-9 
resolution AOGCMs and high resolution AGCMs.  10 
 11 
9.6.1 Regional-Scale Simulation by AOGCMs 12 
 13 
In general, the performance of AOGCMs on continental and sub-continental scales varies with region, metric 14 
and climate aspect (e.g., Perkins et al., 2007; Overland et al., 2011; Xu et al., 2010). Van Haren et al. (2011 15 
(submitted)) showed that both the CMIP3 models and RCMs forced with these AOGCMs largely fail to 16 
capture recent precipitation trends in Europe. The authors concluded that the cause was biases in the CMIP3 17 
models in atmospheric circulation in winter and SST in summer. In contrast the same RCMs, when forced 18 
with reanalyses, fared much better. Similar results have been reported earlier by e.g., van Ulden and van 19 
Oldenborgh (2006). Räisänen (2007) noted that AOGCMs do better for temperature than precipitation and 20 
MSLP in capturing trends over the past 50 years.  21 
 22 
An example of evaluation of a regional feature from AOGCMs is net precipitation (P-E) over Antarctica. It 23 
is is an important component of sea level rise in that water storage on the ice sheet effectively withdraws 24 
water from the ocean and hence lowers sea level (discussed in more detail in Chapter 13). Raphael and 25 
Holland (2006) found that CMIP3 models underestimate moisture transport into the high-latitudes which is 26 
hard to reconcile with the realistic simulation of P-E. Detailed analyses of 15 CMIP3 models (Uotila et al., 27 
2007) suggest that AOGCMs generally reproduce late 20th century Antarctic P-E quite well, with a multi-28 
model mean P-E of 184 mm yr–1 over the period 1979–2000, as compared to observationally-based range of 29 
150–190 mm yr–1. The same analyses showed that a 5-model subset of the CMIP3 models chosen on the 30 
basis of their ability to reproduce the observed near surface circulation over Antarctica, yielded a mean P-E 31 
of 171 mm/yr. The multi-model ensemble indicates a small increase (<1%) in P-E over the period 1979–32 
2000, but individual models simulate either increases or decreases (Uotila et al., 2007). It is likely that 33 
current AOGCMs are able to simulate realistic P-E over Antarctica, but further analysis of newer model 34 
results will be required to determine if this is a robust result. 35 
 36 
The question of which scales AOGCMs should be expected to model skillfully remains a timely one 37 
(Masson and Knutti, 2011; Räisänen and Ylhäisi, 2011) Appropriate smoothing scales were found to vary 38 
from the grid-point scale to around 2000 km, depending on the variable, and region in question. Pitman et al. 39 
(2010) argued that the lack of representation of phenomena and processes that have characteristic regional 40 
distribution limits the regional-scale performance of AOGCMs. Examples are fire, aspects of land cover 41 
change and vegetation’s emissions of biogenic VOCs (BVOC).  42 
 43 
Since AR4, the resolution of AOGCMs has generally improved (Section 9.1.3.4), but typically still limits 44 
representation of many sub-continental and regional climate features. The overall performance of the 45 
AOGCM simulations of regional-scale temperature and precipitation is illustrated in Figures 9.2 and 9.4. The 46 
general cold bias is now smaller in the CMIP5 models than in the CMIP3 MME. Average RMSEs are still 47 
quite similar, and the largest biases persist in high latitude regions, the eastern parts of the tropical basins and 48 
some of the major mountaineous regions. A more detailed comparison of the annual cycle of temperature 49 
and precipitation for different regions, simulated by CMIP5 models, is provided in Figure 9.39. 50 
 51 
[INSERT FIGURE 9.39 HERE]  52 
Figure 9.39: Mean annual cycle of temperature (a) and precipitation (b) from CMIP5 GCM (dotted lines) historical 53 
runs and CRU (solid lines) data for the indicated areas. Average is taken over land points over the period 1979 to 2005. 54 
Units are mm/day for precipitation and °C for temperature. 55 
 56 
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9.6.2 Regional Climate Downscaling 1 
 2 
9.6.2.1 Recent Developments of Statistical Methods 3 
 4 
Statistical or empirical statistical downscaling (SD) techniques involve deriving empirical relationships 5 
linking large-scale atmospheric variables (predictors) and local/regional climate variables (predictands), 6 
which then can be applied to equivalent predictors from AOGCM simulations. The availability of long 7 
observational data sets can be a limiting factor in regions with sparse observations. The development of SD 8 
since the AR4 has been quite vigourous and has been reviewed by Fowler et al. (2007) and Maraun et al. 9 
(2010b).  10 
 11 
Many state-of-the-art approaches now combine different approaches (van Vliet, 2011; Vrac and Naveau, 12 
2008). An increasing number of studies focus on extremes, particulary precipitation and use methods based 13 
on extreme value theory (e.g., Wang and Zhang, 2008; Vrac and Naveau, 2008). SD methods have also been 14 
used to project statistical attributes of the predictands, instead of raw values (e.g., Tolika et al., 2008). 15 
Techniques have also been developed to consider multiple climatic variables simultaneously, in order to 16 
preserve some physical consistency and/or preserve sub-grid correlations and variability (e.g., Zhang and 17 
Georgakakos, 2011). Another development is the application of SD methods to RCMs (e.g., Boé et al., 2007; 18 
Déqué, 2007; Paeth, 2011; Quintana Seguí et al., 2010; van Vliet et al., 2011). A growing number of studies 19 
address model-structure uncertainties (e.g., Fowler et al., 2007; Najac et al., 2009; Prudhomme and Davies, 20 
2009; Burton et al., 2010; Lewis and Lamoureux, 2010; Maraun et al., 2010b). Finally, SD methods have 21 
been extended to new variables such as snowpack (e.g., Teutschbein and Wetterhall, 2011), wind (e.g., Najac 22 
et al., 2009; Goubanova et al., 2011), pan-evaporation (e.g., Chu et al., 2010) and hurricanes (Emanuel et al., 23 
2008).  24 
 25 
9.6.2.2 Recent Developments of Dynamical Methods 26 
 27 
Since the AR4, the development of RCMs has included an increase in the number of regions studied, longer 28 
simulations, higher model resolution, coordinated experiments as well as extension of model evaluation to 29 
additional processes (Rummukainen, 2010; Wang et al., 2004). This has facilitated the evaluation of 30 
simulated variability, trends and extremes. For example, Yhang and Hong (2008) tested improvements of 31 
land surface, boundary layer and cumulus parameterisation schemes in a specific RCM, which helped to 32 
improve the simulation of the East Asian summer monsoon. Dorn et al. (2009) showed that, in a coupled 33 
RCM for the Arctic, substantial improvements in sea ice simulation could be obtained by implementation of 34 
improved ice growth, ice albedo and snow cover descriptions. Samuelsson et al. (2010) showed that by 35 
including a lake model in an RCM, the effect of the collective presence of the lakes in Europe on the air 36 
temperature over adjacent land could be captured. There are now also more coupled regional climate models 37 
with interactive ocean and sea ice (Dorn et al., 2009; Doscher et al., 2010; Smith et al., 2011a; Somot et al., 38 
2008; Smith et al., 2011a). 39 
 40 
9.6.3 Fidelity of Downscaling Methods and Value Added 41 
 42 
9.6.3.1 Assessment of Skill 43 
 44 
Studies that compare different SD techniques and/or SD and dynamical downscaling approaches (e.g., 45 
Schmidli et al. (2007), Maurer and Hidalgo (2008) suggest that the downscaling skill depends on the 46 
location, the AOGCM used as RCM boundary conditions or as SD predictors, season, parameter, etc. When 47 
it comes to statistical downscaling, the statistical stationarity hypothesis (do the statistical relationship 48 
inferred from historical data remain valid under future climate change?) remains an assumption that cannot 49 
be directly tested. Some recent studies have proposed ways to examine its validity using RCM outputs (e.g., 50 
Vrac et al., 2008; Driouech et al., 2010) or using long series of observations (e.g., Schmith, 2008). For the 51 
time being, the validity of the stationarity hypothesis remains an unsettled issue. 52 
 53 
Comparison of modelled and observed climatological statistics has a long history as an evaluation method of 54 
for downscaling techniques. Examples of more recent metrics for statistical downscaling evaluation relate to 55 
intensities (e.g., Ning et al., 2011; Tryhorn and DeGaetano, 2011), to temporal behaviour (e.g.,Brands et al., 56 
2011; May, 2007; Timbal and Jones, 2008), Maraun et al. (2010a), and to physical processes (Lenderink and 57 
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Meijgaard (2008), Maraun et al. (2010b)). In addition to climate variables as such, SD capabilities are 1 
increasingly being examined through secondary variables like river discharge and stream flow, which 2 
pertains to coherency between variables and/or their spatial autocorrelation (e.g., Boé et al. (2007), 3 
Teutschbein and Wetterhall (2011)). In the case of RCMs, process-oriented evaluation, i.e., model skill at 4 
simulating processes (e.g., fluxes rather than state variables) has become more common. For example, Sasaki 5 
and Kurihara (2008) examined the ability of an RCM to reproduce observed relationships between 6 
precipitation and elevation. Driouech et al. (2010) showed that a specific variable-resolution AGCM 7 
reproduced rather well the observed link between north Atlantic weather regimes and local precipitation. 8 
Döscher et al. (2010) found that a coupled RCM reproduced empirical relationships between Arctic sea ice 9 
extent and sea ice thickness characteristics and NAO variations. Hirschi et al. (2011a) found that a number of 10 
RCMs reproduce observed relationships between soil moisture and extreme temperature, albeit with some 11 
overestimation.  12 
 13 
There is considerable evidence that the representation of the land surface and land-atmosphere coupling is an 14 
area that continues to require attention. In some regions, RCMs tend to dry out the soil too effectively at high 15 
temperatures, suggesting that projected changes in warm summertime conditions including heat waves may 16 
be subject to systematic biases that change with increasing average warming (Christensen et al., 2008; 17 
Kostopoulou et al., 2009). Both RCMs and GCMs exhibit a similar bias for present-day conditions for 18 
regions characterised by pronounced summer time drying. This is illustrated in Figure 9.40 for the 19 
Mediterranean region based on the RCMs participating in ENSEMBLES and the GCMs in CMIP3. Many 20 
models have a tendency towards an enhanced warm bias in the warmer months of the year. In terms of 21 
climate change projections, part of the warming signal in these regions could be due to model bias instead of 22 
being a part of the real effect (Boberg and Christensen, 2011). 23 
 24 
Land-surface and atmosphere coupling is particularly important for monsoon regions (see also van den Hurk 25 
and van Meijgaard, 2010), for example the West African monsoon region (e.g., Boone et al., 2010; Druyan et 26 
al., 2010). These studies found that different RCMs display biases in their simulated latent heat fluxes and 27 
precipitation as well as a general tendency to place the monsoon too far to the north and to have it mistimed. 28 
(Lucas-Picher et al., 2011) explored the skill of four RCMs in simulating the Indian Monsoon and found that 29 
these reanalyses-forced RCMs, tended to exhibit a warm bias in the north and correspondingly biases in 30 
MSLP. The representation of the monsoon was in turn affected by the biases in the regional temperature and 31 
pressure gradients. Whereas monsoon onset was generally captured, its termination was not. The regional 32 
distribution of precipitation also varied between the RCMs in question.  33 
 34 
[INSERT FIGURE 9.40 HERE] 35 
Figure 9.40: Ranked modelled versus observed monthly mean temperature for a Mediterranean subregion, for the 36 
1961–2000 period. The RCM data (panel a) are from Christensen et al. (2008) and are adjusted to get a zero mean in 37 
model temperature with respect to the diagonal. The GCM data in panel b are from CMIP3 and adjusted to get a zero 38 
mean in model temperature with respect to the diagonal. Figure after Boberg and Christensen (2011). 39 
 40 
A fundamental issue is how evaluation findings on the performance of a downscaling method translate into 41 
skill in downscaling future climate change projections. Buser et al. (2009) looked at the effect of 42 
assumptions regarding biases in RCMs. They found that the projected summertime warming in the European 43 
Alpine region, obtained from a combination of several RCMs, came out as 3.4°C and 5.4°C for assumptions 44 
of constant bias and constant relationship, respectively. Projected changes for the wintertime warming were 45 
not similarly sensitive. Buser et al. (2010) found, however, that the consideration of these two bias 46 
assumptions together, leads to overall lower projection of summer and autumn warming, but larger winter 47 
warming in different parts of Europe, as simulated by several RCMs. They traced the reason for this back to 48 
deficiencies in how the RCMs’ reproduce interannual temperature variability in the different seasons. 49 
 50 
Even though RCMs are constrained by their boundary conditions, they still generate internal variability. This 51 
varies with the synoptic situation, season, and choice of model domain (Alexandru et al., 2007; Leduc and 52 
Laprise, 2009; Nikiema and Laprise, 2010; Rapaić et al., 2010; Xue et al., 2007). In general, when the 53 
regional model boundary is close to the area of interest, the downscaling is strongly constrained by the 54 
driving boundary data. For example, in a so-called Big-brother experiment, Leduc et al. (2011) showed that 55 
the variance of the small-scale transient eddies of wind can be underestimated in smaller domains and at 56 
upper levels over North America, the effect being larger in winter than in summer (Leduc and Laprise, 57 
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2009). While the smaller scale features of precipitation improved in larger domains, the time correlation of 1 
precipitation decreased. Internal variability may lead to an RCM showing deviations from the corresponding 2 
driving data for specific situations and short periods, but these effects are generally found to be small in 3 
climate applications (Laprise et al., 2008; Separovic et al., 2008). Internal variability can be constrained by 4 
spectral nudging or other techniques (Misra, 2007); however, it is not well-established that such nudging is 5 
needed (Veljovic et al., 2010). Spectral nudging may also lead to deterioration of some features, e.g., 6 
precipitation extremes (Alexandru et al., 2009). Nevertheless, RCMs do simulate small-scale climate features 7 
that are absent in the lateral boundary conditions. Indeed, due to their more detailed representation of scales 8 
and processes, an RCM may have effects that travel up-scale and improve aspects of the larger-scale 9 
features, as shown by e.g., Lorenz and Jacob (2005) and Inatsu and Kimoto (2009), but may also cause some 10 
degradation (Castro et al., 2005; Laprise et al., 2008). These kinds of findings can provide further insights for 11 
use in the development of high-resolution global models. 12 
 13 
There has been general development of evaluation methodologies for downscaling, and this has provided 14 
more insight into the fidelity of downscaling methods in capturing features and processes. The skill of 15 
regional climate downscaling depends both on the downscaling method itself and the quality of the driving 16 
data. A key emerging finding (medium agreement, limited evidence) is that some biases that are evident in 17 
model evaluation may change with time and/or climate regime, which is important to consider in the 18 
interpretation of projections.  19 
 20 
9.6.3.2 Value Added 21 
 22 
A downscaling method should provide useful additional information compared to the driving AOGCM 23 
(Laprise et al., 2008). While not guaranteed, studies do rather consistently indicate that added value arises, 24 
and this is most obvious for regions with variable topography and fine structure in land-sea distribution, lake 25 
area, etc. Some specific examples of added value by downscaling are improved simulation of convective 26 
precipitation (Rauscher et al., 2010), near-surface temperature (Feser, 2006), near-surface temperature and 27 
wind (Kanamaru and Kanamitsu, 2007) and maximum daily precipitation (Kanada et al., 2008). Winterfeldt 28 
and Weisse (2009) found that coastal wind characteristics were improved by dynamical downscaling and the 29 
same was found for European storm damage estimates in Donat et al. (2010). Fox-Rabinovitz et al. (2008) 30 
found that global simulations with a stretched grid providing higher resolution for a specific part of the globe 31 
had reduced errors compared to uniform lower resolution. Déqué et al. (2010) found that the simulated mean 32 
climate over the high-resolution portion of a stretched grid model was similar to that produced by a global 33 
model with the same high resolution everywhere, reinforcing the notion that this kind of downscaling can 34 
provide information of comparable quality to a much more computationally expensive global high-resolution 35 
model. However, there is not a one-to-one relationship between increased resolution and model fidelity. For 36 
example, Woollings et al. (2010c) investigated the effect of different spatial and temporal resolution of 37 
Atlantic SST used as boundary conditions in an RCM. They found that a higher spatial resolution improved 38 
the simulation Atlantic storm tracks, but that a higher temporal resolution led to some degradation. Walther 39 
et al. (2011) showed how increasing resolution clearly reduces biases in precipitation, perhaps because of 40 
interplay between the resolution and convection parameterisation. Figure 9.41 provides an illustration how 41 
the geographical patterns of RCM-simulated precipitation have been found to improve with resolution. In 42 
Walther et al. (2011), the simulated peak timing and amplitude of the diurnal precipitation cycle as well as 43 
the frequency of light precipitation improved more when going from 12km to the 6km resolution, that when 44 
going from 50 to 25km or from 25 to 12km. Rojas (2006) similarly found a non-linear relationship between 45 
simulation quality and resolution. In the latter case, however, there was more improvement when increasing 46 
RCM resolution from 135km to 45km that when going from 45km to 15km. This was despite the highly 47 
variable regional topography in the domain considered.  48 
 49 
[INSERT FIGURE 9.41 HERE] 50 
Figure 9.41: Summer seasonal mean (JJA, 1987–2008) in Southern Norway gridded observational precipitation with 1 51 
km resolution from Met.no and RCM-simulated precipitation with boundary conditions from the ERA40 reanalysis and 52 
ECMWF operational analysis (top row). The RCM has been run at four different resolutions ranging from 50 to 6 km. 53 
Differences between the simulated precipitation and the gridded observations aggregated from 1 km to respectively 50, 54 
25, 12 and 6 km grids are shown in the bottom row. The model runs are from Walther et al. (2011). 55 
 56 
More formalised approaches to quantify aspects of added value have been attempted, for example by spatial 57 
filtering and more spatially-explicit skill measures (Feser, 2006; Kanamitsu and DeHaan, 2011). 58 
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Performance-based ranking of RCMs has also been explored. Christensen et al. (2010) suggested that this 1 
could apply to the ability of RCMs to simulate extremes, mesoscale features, trends, aspects of variability 2 
and consistency with the driving boundary conditions. Some of their metrics led to striking differentiation 3 
among RCMs (Lenderink, 2010), whereas others did not. The latter may imply general skilfulness of models, 4 
but also be an artefact of the choice of the metric. Nevertheless, Coppola et al. (2010) and Kjellström et al. 5 
(2010) demonstrated that weighted sets of RCMs outperform sets without weighting in terms of bias and 6 
RMSE of temperature and precipitation, although the extent to which this is a general result remains to be 7 
investigated.  8 
 9 
The overall finding from many specific studies is that downscaling does add value, especially for regions 10 
with highly-variable topography and for small-scale phenomena. The evidence comes from a variety of 11 
distinct studies, rather than some larger set of coordinated experiments, so there is high agreement, but 12 
medium evidence. 13 

 14 
9.7 Sources of Model Errors and Uncertainty  15 
 16 
9.7.1 Approach to Linking Process Understanding and Model Performance  17 
 18 
The previous Sections have dealt with the ability of climate models to simulate recent and longer-term 19 
records, variability and extremes, and regional-scale climate. We have assessed this capability both by 20 
comparing model solutions against observations and by evaluating inter-model spread, the latter being a 21 
minimum-level estimate for model uncertainty. The current Section 9.7 assesses why models show errors and 22 
spread. This identification is crucial not only for understanding why models fail to reproduce observations, 23 
but also for diagnosing whether models obtain the right answer for the right reason.  24 
 25 
Error in model results can be conceptually subdivided into “modelling error”, caused by the difference 26 
between model formulation and physical process, and “approximation error”, caused by the difference 27 
between true model solution and numerical approximation (Oden and Prudhomme, 2002). No general 28 
framework exists for diagnosing modelling error. In contrast, for approximation error in geophysical fluid 29 
dynamics a general framework has just been formulated (Rauser et al., 2011), but application has so far been 30 
restricted to a shallow-water model. When we assess the causes of errors in current climate models, we thus 31 
cannot build on a general conceptual framework and must instead rely on more ad-hoc approaches, governed 32 
by practicality.  33 
 34 
Since the AR4 significant progress has been made in understanding climate model error and spread. Section 35 
9.7.2 assesses process-oriented evaluation, meaning that not only the end result is of interest (for example, 36 
change in climate sensitivity caused by a change in cloud parameterisation) but the entire causal process 37 
chain. Section 9.7.3 considers targeted numerical experiments, devoted in to: the application of climate 38 
models in weather-forecasting mode (“Transpose AMIP”, Section 9.7.3.1), useful because some important 39 
model errors manifest themselves within days; the simulation of key periods in the past, useful because 40 
models are applied in configurations for which they have not been tuned (Section 9.7.3.2); the effect of high 41 
spatial resolution, important because more of the processes are shifted from where we are uncertain about 42 
representation (unresolved) to where we know the underlying equations (resolved), thus reducing “modelling 43 
error” (Section 9.7.3.3); and perturbed-physics ensembles in which uncertain model parameters are varied 44 
systematically (Section 9.7.3.4). Section 9.7.4 assesses the rich literature since AR4 devoted to 45 
understanding the feedbacks causing spread in climate sensitivity, which we expect still to be a large source 46 
of spread in projected climate change. Section 9.7 ends with a synthesis, linking the lessons learned from the 47 
process-based analysis assessed here to the model errors assessed earlier. 48 
 49 
9.7.2 Process Oriented Evaluation 50 
 51 
Our focus in previous Sections has been on the comparison of observed and simulated climate variables at 52 
the global scale. These routine tests provide a valuable summary of overall model performance but their 53 
broad scope does not isolate specific processes or feedbacks believed to be of importance for realistic 54 
simulation of climate change.  55 
 56 
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Process-oriented evaluation is often applied over limited areas to focus on particular processes or phenomena 1 
(e.g., monsoons, deep convection) and the objective is to quantify how well a specific process, feedback, or 2 
phenomenon is represented in a model. In contrast to overall evaluation, process-oriented evaluation is based 3 
on the understanding of the individual processes or mechanisms involved, hence ensuring the phenomena are 4 
correctly represented for the right reasons, and not via error compensation. Moreover, it is sometimes 5 
possible to relate the ability of a model to represent a process in the current climate and the credibility of the 6 
same model to project the change in the process in the future climate (Boe et al., 2009a; Boe et al., 2009b; 7 
Eyring et al., 2007; Hall and Qu, 2006). This feature of process-oriented evaluation is crucial for 8 
understanding model spread in future projections and constraining future projections using observed data. 9 
See Section 9.8 for more discussion.  10 
 11 
Isolating the processes involved in representing ENSO variability is one example of this kind of evaluation. 12 
Jin et al. (2006) and Kim and Jin (2010b) performed a linear-feedback analysis on the SST equation and 13 
identified five different feedbacks affecting the Bjerknes (or BJ) index, which in turn characterizes ENSO 14 
stability. Kim and Jin (2010a) applied this process-based analysis of ENSO to the CMIP3 multi-model 15 
ensemble and demonstrated a significant positive correlation between ENSO amplitude and the BJ index. 16 
When respective components of the BJ index obtained from the coupled models were compared with those 17 
from observations, it was revealed that most coupled models underestimated the negative thermal damping 18 
feedback and the positive zonal advective and thermocline feedbacks. 19 
 20 
Process oriented evaluation is also useful for evaluating the ability of a model to simulate other regional 21 
phenomena (e.g., Inoue and Ueda, 2009; Nishii et al., 2009; Yokoi et al., 2009a). For example, Nishii et al. 22 
(2009) have established a relationship between the seasonal march of storm-track activity over the Far East 23 
and the occurrence of the first spring storm with strong southerly winds over Japan. They evaluated the 24 
ability of each model in the CMIP3 ensemble to simulate the particular seasonal march of the storm-track 25 
activity. 26 
 27 
Evaluation of chemistry-climate simulations has also made use of process-based approaches. In contrast to 28 
most of the previous studies that applied performance metrics, the focus of the SPARC-CCMVal (2010) 29 
report was, as in Waugh and Eyring (2008), on quantitatively evaluating important processes rather than the 30 
quantity of interest itself (in this case was stratospheric ozone). This is a key aspect of the CCMVal model 31 
evaluation concept which aims to identify the sources of model errors and to avoid cases where an ozone 32 
performance metric may look good because of compensating errors in the underlying processes (Eyring et 33 
al., 2005). Chemical and radiative processes in the CCMs were assessed in the SPARC CCMVal report, and 34 
the upper troposphere / lower stratosphere (UTLS) has been subsequently examined (Gettelman et al., 2010; 35 
Hegglin et al., 2010). The identification of model deficiencies through a process-oriented evaluation has led 36 
to quantifiable improvements in particular models from the first to the second round of CCMVal (e.g., 37 
transport, inorganic chlorine abundance, tropical tropopause temperatures) and to a much better 38 
understanding of the strengths and weaknesses of CCMs. The quantitative evaluation has also allowed 39 
identification of remaining common systematic errors in the simulation of tropical lower stratospheric 40 
temperature and water vapour, details of the Antarctic polar vortex and the ozone hole, and the 41 
representation of the quasi-biennial oscillation (SPARC-CCMVal, 2010).  42 
 43 
The evaluation of clouds in models has seen a significant increase in process-oriented approaches (Chen and 44 
Del Genio, 2009; Williams and Webb, 2009; Williams and Tselioudis, 2007; Williams and Brooks, 2008) 45 
many of which are making use of definitions of cloud regimes using satellite data and evaluate the models’ 46 
performance in capturing both the spatial distribution and occurrence of cloud regimes as well as the 47 
radiative, microphysical and precipitation properties for each regime. (Williams and Brooks, 2008) have also 48 
successfully made use of initial value techniques and showed that errors in climate simulations can be 49 
successfully identified using such approaches. The regime-oriented evaluation of clouds provides a powerful 50 
tool to both inform studies that aim at isolating processes (see Section 9.2.2.2) and to derive process oriented 51 
performance metrics (Williams and Webb, 2009). 52 
 53 
9.7.3 Targeted Experiments 54 
 55 
9.7.3.1 Transpose AMIP  56 
 57 
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It is well understood that the source of many errors in climate model simulations can be traced to 1 
uncertainties in the parameterisation of sub-grid scale processes in the atmosphere. These processes, 2 
including clouds, convection and turbulence, are computed from the large-scale (i.e., resolved-scale) state of 3 
the atmosphere. Furthermore, differences in the simulation of these processes account for much of the spread 4 
between models in their climate change projections (Soden and Held, 2006; Webb et al., 2006). These 5 
processes have inherent timescales that are considerably shorter than those associated with the evolution of 6 
the large-scale state; therefore it is valuable to test their response when initialized with an observed large-7 
scale state, before errors in the processes can substantially alter the large-scale. Such tests are performed by 8 
initializing the atmosphere portion of a climate model with a global analysis of the large-scale atmospheric 9 
state from a numerical weather prediction center – essentially running the climate model in ‘weather forecast 10 
mode’ (see also Section 9.2.2.5). From examination of the first few days of model simulations one can 11 
identify which errors in climate simulation are due to errors in the parameterisation of these processes and 12 
which errors result from longer time scale feedbacks of these processes with the large-scale state of the 13 
atmosphere or other component models of Earth’s climate. 14 
 15 
The increasing use of this technique by the climate modeling community has led to an intercomparison 16 
project entitled Transpose-AMIP. From many recent studies with individual models, as well as the long-term 17 
experience at modeling centers with both climate and weather prediction goals (Martin et al., 2010), it is 18 
anticipated that Transpose-AMIP will be valuable in identifying the source of model errors and assessing 19 
confidence in the ability of climate models to simulate the fast processes. A recent example shows that biases 20 
in tropical precipitation associated with the double Intertropical Convergence Zone result from longer-time 21 
scale interactions with the large-scale state (Phillips et al., 2004). For phenomena with time-scales of weeks, 22 
such as soil moisture and the Madden Julian Oscillation, errors in simulated precipitation are related to 23 
whether the model in climate mode can successfully simulate the fast processes associated with these 24 
phenomena (Boyle et al., 2008; Klein et al., 2006; Martin et al., 2010). Errors in cloud properties are present 25 
from very early on in a forecast in at least one model (Williams and Brooks, 2008), although this was not the 26 
case in another model (Zhang et al., 2010b). The Transpose-AMIP methodology also allows model 27 
developers to test new parameterisations against advanced process observations that are only available for 28 
limited locations and times (Bodas-Salcedo et al., 2008; Boyle and Klein, 2010; Hannay et al., 2009; 29 
Williamson and Olson, 2007; Williamson et al., 2005; Xie et al., 2008).  30 
 31 
9.7.3.2 Simulation of Key Periods in the Past  32 
 33 
Comparison of model results for the LGM, the mid-Holocene and the Last millennium also help to identify 34 
some of the feedbacks that explain differences between model results. Sensitivity experiments have also 35 
been used to estimate the uncertainties arising from the experimental set up or from systematic model biases.  36 
 37 
The comparison between the PMIP1 ensemble simulations with atmosphere alone models and PMIP2 38 
ensemble with coupled ocean-atmosphere models confirmed that the feedbacks from the ocean improved 39 
model-data comparisons in several regions (Braconnot et al., 2007d). The impact of the SST biases in the 40 
control simulation on the simulated mid-holocene asian monsoon was investigated by (Ohgaito and Abe-41 
Ouchi, 2009). Using the MIROC3.2 model coupled to a slab ocean model they mimic the SST produced by 42 
the different PMIP2 pre-industrial simulation. They show that the pattern of the preindustrial SST has larger 43 
impact than the magnitude of the bias on mid-Holocene simulations of the Asian monsoon. However, the 44 
representation of atmospheric processes such as convection seems to dominate the model spread in this 45 
region.  46 
 47 
The sensitivity of the simulated change in AMOC at the LGM to different aspects of fresh water forcing, 48 
including river runoff, precipitation minus evaporation or ice calving has been reported in several 49 
publications (Kageyama et al., 2009). They show that the transition from an active circulation to a shut down 50 
is sensitive to small changes in these fluxes. A correct simulations of the temperature and salinity fields is 51 
thus required in high latitude which imposes a realistic treatment of the river runoff and of its change 52 
(Alkama et al., 2008). 53 
 54 
Vegetation and CO2 feedbacks are also crucial in simulations of the LGM (Woillez et al., 2011). Biases in 55 
vegetation contribute to model errors in polar amplification of past climate change (O'ishi and Abe-Ouchi, 56 
2011) and errors related to coupling between vegetation and soil moisture are implicated in intermodel 57 
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spread and excess aridity in continental regions (Wohlfahrt et al., 2008; Braconnot et al., 2007b; Dallmeyer 1 
et al., 2010; Wang et al., 2008; Harrison and Prentice, 2003). 2 
 3 
9.7.3.3 Sensitivity to Resolution, High-Resolution GCMs 4 
 5 
Impacts of improved resolution on model performance (or, equivalently, the role of insufficient resolution as 6 
a source of model error) can be tested by comparing simulations from the same model (or a component of 7 
the model) run at different resolutions.  8 
 9 
Since the AR4, several studies have investigated the resolution dependence of various aspects of model 10 
performance. Roeckner et al. (2006) compared seasonal mean climate simulated by an AGCM (ECHAM5) 11 
run at different horizontal and vertical resolutions. They found that at lower vertical resolution (19 levels) 12 
there was no consistent improvement with increasing horizontal resolution, while at higher vertical 13 
resolution (31 levels) model error decreased monotonically with increasing horizontal resolution. Wehner et 14 
al. (2010) showed that an AGCM (CAM2) run at around 50 km horizontal resolution realistically reproduced 15 
observed intensity of extreme daily precipitation over the continental United States, while lower resolution 16 
runs severely underestimated the intensity. Improvements of precipitation intensity and distributions 17 
especially related to fine-scale orography have also been found in AOGCMs with enhanced atmospheric 18 
horizontal resolutions to around 50 km (Delworth et al., 2011; Gent et al., 2010; Sakamoto et al., 2011) and 19 
in AGCMs run at similar resolution (Lau and Ploshay, 2009) or finer (20 km) (Kitoh et al., 2011). 20 
Improvements are also found in diurnal cycle of tropical precipitation with higher resolution (Ploshay and 21 
Lau, 2010). 22 
 23 
As for oceanic components, although in principle solving the same equations, ocean models that resolve 24 
eddies simulate an ocean that is quite distinct from that simulated by an ocean model that does not. This 25 
point is well illustrated by the European Drakkar Project, wherein a hierarchy of global ocean-ice model 26 
configurations (with resolutions from two degrees to 1/12 degree) has been used to systematically study 27 
modifications arising from refining the ocean resolution (allowing better representation of the ocean 28 
mesoscale, and more accurate land-sea boundaries) (e.g., Penduff et al., 2010; Penduff et al., 2011). A 29 
similar hierarchy was documented for the Southern Ocean in Hallberg and Gnanadesikan (2006). Certain 30 
indices, such as sea level variability and eddy kinetic energy, are improved with refined resolution (Hallberg 31 
and Gnanadesikan, 2006; Penduff et al., 2010; Penduff et al., 2011). Furthermore, Biastoch et al (2008a) 32 
emphasizes the importance of resolving Agulhas eddies to properly simulate Atlantic decadal variability. 33 
Notably, some high latitude watermass transformation processes may degrade due to inadequate eddy 34 
parameterizations in refined, though not fully eddy resolving, simulations (Gulev et al., 2007). A relatively 35 
high resolution (around 1/2 degree, not eddy permitting) ocean model can also realistically simulate the 36 
tropical cyclone-induced cooling of sea surface temperature (Vincent et al., 2011). 37 

 38 
Marti et al. (2010) increased the atmospheric resolution of an AOGCM (IPSL CM4) and found 39 
improvements in storm-tracks and the North Atlantic oscillation over the standard model. The impact of the 40 
higher atmospheric resolution also extends to improvements in the Atlantic meridional overturning 41 
circulation in the ocean and ocean-atmosphere dynamical coupling in the tropics. However, in their case, the 42 
improved dynamics in the tropics resulted in a too large ENSO amplitude and somewhat deteriorated 43 
performance in that aspect. Adopting much higher resolutions, mesoscale eddying ocean simulations 44 
(roughly 10 km or finer) coupled to fine scale (order 50 km or finer) atmospheric models exhibit vigorous 45 
frontal scale air-sea interactions between sea surface temperature and winds, such as those seen in high-46 
resolution satellite observations, with some of these interactions impacting on processes important for water 47 
mass formation (Bryan et al., 2010). In the tropics, a hierarchy of GFDL coupled climate models with 48 
varying grid resolution (Delworth et al., 2011) point to the dual importance of atmosphere and ocean 49 
resolution for ameliorating biases associated with the double ITCZ occurring in the tropical Pacific (Lin, 50 
2007). Other studies utilizing AOGCMs with eddy permitting ocean also report improvements in aspects 51 
such as tropical instability waves and coastal upwelling (Roberts et al., 2009; Sakamoto et al., 2011; Shaffrey 52 
et al., 2009). An enhanced atmospheric resolution also contributes to the improved coastal climate by better 53 
simulated stratocumulus clouds and wind patterns associated with more realistic topography (Gent et al., 54 
2010; Shaffrey et al., 2009).  55 
 56 
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In summary, growing evidence after AR4 confirms that improvement of resolution is a promising way to 1 
improve various aspects of model performance. Particularly, there is much evidence and high agreement in 2 
the literature for improvements in precipitation intensity and distribution with increased atmospheric 3 
horizontal resolution to around 50 km or finer, and for improvements in ocean currents and air-sea 4 
interactions with ocean eddy permitting simulations. However, it should be noted that improved resolution 5 
sometimes causes a degradation of performance in some large-scale aspects, as in the case of ENSO 6 
amplitude in Marti et al. (2010), since there are still substantial uncertainties in parameterizations in the 7 
models.  8 
 9 
9.7.3.4 RCMs 10 
 11 
Compared to AOGCMs, coordinated RCM experiments and ensembles have only recently become 12 
commonplace, and now exist for Europe (Christensen et al., 2010), North America (Gutowski et al., 2010), 13 
South America (Menendez et al., 2010), Africa (Druyan et al., 2010; Paeth et al., 2011; Ruti et al., 2011), 14 
and Asian regions (Feng and Fu, 2006). As specific RCMs have often been developed for specific regions, 15 
an application of a model for different regions provides means for additional model evaluation. 16 
Consequently, these developments enable new studies for improved characterization of uncertainty due to 17 
model formulation, as well as exploration of performace-based metrics (Christensen et al., 2010).  18 
 19 
Transferability experiments are a category of coordinated RCM experiments. They involve running RCMs 20 
for different regions, which and may help to expose shortcomings that are not evident in applications for the 21 
“home region” of the model. Many of the coordinated RCM ensembles mentioned above include models 22 
predominantly developed for different regions. There are also specific transferability studies, which indeed 23 
suggest that RCMs exhibit different skill for different regions, e.g., for simulated temperature and 24 
precipitation as well surface energy fluxes, (Takle et al., 2007; Gbobaniyi et al., 2011). In all, the most 25 
common conclusion from RCM intercomparison studies is, that no single model outperforms the others, 26 
which supports the usefulness of the multi-model approach also in the case of RCMs in model evaluation 27 
and, by extension, in climate projections. 28 
 29 
9.7.3.5 Perturbed Physics Ensembles  30 

 31 
Perturbed physics ensembles (PPE) have been developed to evaluate the sensitivity of a single model to 32 
uncertain model parameters, and to evaluate the range of model parameters consistent with observed climate 33 
records. Both goals have been addressed using full-complexity component models and reduced-complexity 34 
EMICs (see below). Owing to the computational requirements, full-complexity AOGCMs have only recently 35 
begun to be employed within the PPE framework (Brierley et al., 2010b; Collins et al., 2007; Sanderson et 36 
al., 2010).  37 
 38 
Initial work with PPEs was undertaken in the EMIC community to sample model response uncertainty and 39 
calibrate parameters so as to reproduce climate change observations (Forest et al., 2008; Forest et al., 2002; 40 
Knutti et al., 2002) This approach provides estimates of joint distributions of model parameters that typically 41 
correspond to climate system properties. As a model evaluation tool, these joint distributions are then used to 42 
assess uncertainty in models for which creating ensembles are prohibitively expensive, namely, AOGCMs 43 
and ESMs. Key model diagnostics such as climate sensitivity, ocean carbon uptake, or aerosol forcing are 44 
analyzed in both EMICs and ESMs; the joint distributions from the EMIC calibration provide a measure of 45 
uncertainties in the ESMs given their distribution within the calibrated estimate of the model diagnostics 46 
(Forest et al., 2008; Forest et al., 2002; Knutti et al., 2002; Sokolov et al., 2010; Stott and Forest, 2007; 47 
Tebaldi and Knutti, 2007b; Xiao et al., 1998).  48 
 49 
Several PPE ensembles constructed with the Hadley Centre climate model (HadCM3) have been compared 50 
with the multi-model ensembles of CMIP3 and CFMIP (Collins et al., 2010). For many variables the range 51 
of errors in the PPE ensembles is comparable to that found in the CMIP3 ensemble. In the PPE experiments, 52 
the systematic component (i.e., common to all members) of the total error is larger than the random 53 
component (unique to individual members). As a result, the ensemble average does not yield better 54 
agreement with observations than the individual members, in contrast to the often superior MME average 55 
(Reichler and Kim, 2008). However, there is evidence that the experimental design of a PPE can be 56 
controlled to more closely mimic the multi-model case where the magnitude of the random and systematic 57 
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errors is comparable. This kind of comparison between the error structure of MMEs and PPEs can help 1 
improve understanding of the fundamental differences between the two, and may possibly lead to a better 2 
characterization of model uncertainty.  3 
 4 
9.7.4 Climate Sensitivity and Climate Feedbacks  5 
 6 
9.7.4.1 Equilibrium Climate Sensitivity, Idealised Radiative Forcing, and Transient Climate Response in 7 

the CMIP5 Ensemble 8 
 9 
Climate sensitivity, the equilibrium change in global-mean surface temperature after doubling the 10 
atmospheric CO2 concentration relative to pre-industrial, is the most important single measure of climate 11 
response because the response to a CO2 increase of many other climate variables scales according to the 12 
increase in global-mean surface temperature (Meehl et al., 2007b). Diagnosing the climate sensitivities of the 13 
CMIP5 models is therefore crucial for understanding the similarities and differences between different 14 
models’ responses in climate projections.  15 
 16 
The method of diagnosing climate sensitivity within CMIP5 has changed considerably since AR4 (Randall et 17 
al., 2007). There, an atmospheric GCM was coupled to a non-dynamic mixed-layer (slab) ocean model; in 18 
equilibrium the implied ocean heat transport convergence was diagnosed to yield the observed SST. CO2 19 
concentration was then doubled, and the model with fixed implied ocean heat transport convergence 20 
integrated to a new equilibrium. While computationally efficient, this method had the disadvantage of 21 
employing a different model from the AOGCM used for the historical simulations and climate projections. 22 
However, in the few comparisons that were made between the equilibrium climate sensitivity of an AOGCM 23 
and it corresponding slab version, the agreement was within 10% or even less (Boer and Yu, 2003; 24 
Danabasoglu and Gent, 2009; Li et al., 2011a). Nevertheless, in CMIP5 it was decided to diagnose climate 25 
sensitivity directly from the AOGCMs used elsewhere in CMIP5, following (Gregory et al., 2004). The CO2 26 
concentration is instantaneously quadrupled and kept constant for 150 years of simulation; both climate 27 
sensitivity and radiative forcing (see below) are then diagnosed from a linear fit of the energy balance 28 
 29 

N F Tα= − ∆  (9.1) 30 
 31 
where N is the instantaneous radiative imbalance at the top of the atmosphere, F the radiative forcing (see 32 

Chapter 7), α the inverse of the climate sensitivity parameter (see Glossary), and ∆T the perturbation in 33 

global-mean surface temperature. If F and α are constant, a linear fit of (Equation 9.1) to the AOGCM output 34 

displaying N against ∆T in principle yields climate sensitivity and F as the intercept of the linear fit with the 35 

N=0-axis and ∆T=0-axis, respectively. Because in CMIP5 the CO2 concentration is quadrupled and not 36 
doubled, F and climate sensitivity are obtained by a division by two from the intercepts, assuming a 37 
logarithmic dependence of F and climate sensitivity on CO2 concentration (Manabe and Bryan, 1985).The 38 
method employed in CMIP5 obviates the need to maintain a separate slab version of the AOGCM, but 39 

introduces uncertainties arising from assuming constant F and α (Boer and Yu, 2003; Williams et al., 2008), 40 
from the possibility that feedbacks might be different during the transient and the equilibrium phase 41 
(Yokohata et al., 2008), and from assuming a strictly logarithmic dependence of climate response on the CO2 42 
concentration, for which there is evidence (Manabe and Bryan, 1985) but at least two counterexamples, 43 
although with a lower-resolution model than most of those assessed in AR4 or used in CMIP5 (Gregory et 44 
al., 2004; Li et al., 2011a). A rigorous comparison of the method of (Gregory et al., 2004) against the 45 
equilibrium climate response of an AOGCM to CO2 increase (quadrupling) found the method of (Gregory et 46 
al., 2004) to be accurate to within 10% (Li et al., 2011a). 47 
 48 
An alternative method to using (9.1) for diagnosing radiative forcing is to keep SST fixed while quadrupling 49 
the CO2 concentration and then to diagnose the radiative imbalance at the top of the atmosphere (Hansen et 50 
al., 2005). Both methods are used in CMIP5; the difference in the outcome gives a measure of the 51 
methodological uncertainty. To obtain comparability with the climate sensitivity, both estimates of radiative 52 
forcing are likewise divided by 2 to obtain the result equivalent to CO2 doubling.  53 
 54 
The third important quantity in this context is the transient climate response, defined as the global-mean 55 
surface temperature change, averaged over the 20-year period centred on the time of CO2 doubling in an 56 
experiment in which the CO2 concentration is increased by 1% compound per year. The transient climate 57 
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response is smaller than the equilibrium climate sensitivity because ocean heat uptake delays surface 1 
warming; hence, different ocean heat uptake in different models also contributes to a spread in transient 2 
climate response.  3 
 4 
Based on the methods just outlined, Table 9.2 shows the diagnosed radiative forcing for CO2 doubling, the 5 
equilibrium climate sensitivity, and the transient climate response from the CMIP5 ensemble. The two 6 
estimates of radiative forcing agree with each other to within 5% for four models, although for three models 7 
the deviation is around 10%, pointing to nonlinearities or deviations from the basic assumptions. However, 8 
the spread between methods for diagnosing radiative forcing is much less than spread among models for 9 
radiative forcing, which is around 40%. Equilibrium climate sensitivity and transient climate response vary 10 
by a factor of two or slightly less, respectively. The model spread in climate sensitivity, from 2.1 K to 4.6 K, 11 
is nearly indistinguishable from that in AR4, and while every model whose heritage can be traced to AR4 12 
shows some change in climate sensitivity, there is no discernible systematic tendency in how climate 13 
sensitivities changed from AR4 to CMIP5. This broad similarity between AR4 and CMIP5 and the good 14 
agreement between different methods where they were applied to the same atmospheric GCM indicate that 15 
the uncertainty in methodology is minor compared to the overall spread in climate sensitivity. The change in 16 
transient climate response from AR4 to CMIP5 is generally of the same sign but of smaller magnitude, 17 
compared to the change in climate sensitivity.  18 
 19 
 20 
Table 9.2: Climate sensitivity estimates from the AOGCMs (see Table 9.1 for model details). The entries were 21 
calculated based on the CMIP5 archive and according to (Hansen et al., 2005) for radiative forcing, fixed SST; 22 
(Gregory et al., 2004) for radiative forcing, regression, and equilibrium climate sensitivity; and from the 20-year mean 23 
centred on the year of CO2 doubling in a 1% per year increase experiment for the transient climate response. Notice that 24 
the entries in columns 2–4 were obtained by dividing the original results, which were obtained for CO2 quadrupling, by 25 
two.  26 

Model 
Radiative forcing (W m–2) Equilibrium Climate 

Sensitivity (K) 
Transient Climate 
Response (K) Fixed SST Regression 

CanESM2 3.68 3.84 3.69 2.4 

CNRM-CM5  n.a. 3.72 3.25 2.1 

CSIRO-Mk3-6-0  3.10 2.59 4.08 1.8 

HadGEM2-ES  3.50 2.92 4.58  2.5 

INM-CM4  3.12 2.98 2.08  1.3 

IPSL-CM5A-LR  3.25 3.10 4.13  2.0 

MIROC-ESM  n.a. n.a. n.a.  2.2 

MIROC5  n.a. 4.13 2.72  1.5 

MPI-ESM-LR  4.32 4.09 3.63  n.a. 

MRI-CGCM3  3.60 3.25 2.60  1.6 

NorESM1-M  n.a. 3.11 2.80  1.4 

 27 
 28 
9.7.4.2 Model Evaluation of EMICs and Constraints on Climate Sensitivity 29 
 30 
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Earth-system models of intermediate complexity (EMICs) are used in Chapters 6, 10 and 12. In Chapter 6, 1 
carbon-cycle components of EMICs are discussed with specific attention to feedbacks, and are used to 2 
analyze permissible emissions for stabilization scenario RCP4.5. In Chapter 10, EMICs are used to estimate 3 
the probability distributions of equilibrium climate sensitivity (ECS). In Chapter 12, EMICs are used to 4 
explore commitment scenarios that extend the RCP transient forcing scenarios to year 3000. These scenarios 5 
explore climate stabilization and long-term targets in which either radiative forcings are set to a constant 6 
value (i.e., constant concentrations) or emissions are set to zero after 2300.  7 
 8 
Because EMICs are calibrated to reproduce present-day climate, model evaluation requires testing them in 9 
alternative scenarios (e.g., paleoclimate) or comparing directly with results from transient scenarios from 10 
AOGCMs (e.g., Forest et al., 2008; Meinshausen et al., 2009). When results from the latter are combined 11 
with probability distributions of ECS or TCR, the MME for AOGCMs/ESMs can be assessed against the 12 
observationally constrained distributions. Some EMICs have been modified to include ice-sheets (UVic 2.9, 13 
CLIMBER-2.4) and ocean sediment models (DCESS, UVic 2.9, Bern3D-LPJ). Plattner et al. (2008) 14 
presented results of an EMIC intercomparison project that explored stabilization scenarios and concluded 15 
that the EMICs compared favorably over the 2000 to 2100 period with the AOGCM results. This implies that 16 
the models are well-suited for simulations extending over the future millenium. Attributes of current EMICs 17 
are provided in Table 9.3.  18 
 19 
[INSERT TABLE 9.3 HERE] 20 
Table 9.3: Features of Earth System Models of Intermediate Complexity (EMICs). 21 
 22 
9.7.4.3 Role of Cloud Feedbacks in Climate Sensitivity 23 
 24 
Cloud feedbacks represent one of the main causes for the range in climate sensitivity across multi-model 25 
ensembles of AOGCMs. The spread due to inter-model differences in cloud feedbacks is approximately 3 26 
times larger than the spread contributed by feedbacks due to variations in water vapor, lapse-rate, and ocean 27 
heat uptake (Dufresne and Bony, 2008), and is a primary factor governing the range of climate sensitivity 28 
across 18 models in the CMIP3 ensemble (Volodin, 2008b). Differences between the equilibrium sensitivity 29 
to 2 × CO2 and the transient climate response to 1% CO2 yr–1 at the time of doubling are due primarily to the 30 
differences in the shortwave cloud feedback between the two experiments (Yokohata et al., 2008). In 31 
perturbed ensembles of the Hadley Centre Atmospheric Model coupled to a slab ocean (HadSM3) and the 32 
Model for Interdisciplinary Research on Climate (MIROC3.2), the primary factor contributing to the spread 33 
in equilibrium climate sensitivity in both ensembles is the low-level shortwave cloud feedback (Yokohata et 34 
al., 2010). Changes in the sign of low-cloud feedbacks to increased CO2 forcing also explain the lower 35 
sensitivity of the new MIROC5 model relative to the prior version MIROC3.2 (Watanabe et al., 2010). 36 
 37 
Application of radiative kernel techniques to multiple models forced by doubled CO2 show that while 38 
changes in cloud forcing can be either positive or negative, the cloud feedbacks are generally positive or near 39 
neutral (Shell et al., 2008; Soden et al., 2008). All of the models examined in a multi-thousand member 40 
ensemble of AOGCMs constructed by parameter perturbations also have net positive or neutral cloud 41 
feedbacks (Sanderson et al., 2010). This finding is consistent with the modeled and measured relationships 42 
between SSTs and top-of-atmosphere radiative fluxes, which suggest that interannual cloud variations act as 43 
a positive feedback in the current climate (Chung et al., 2010b).  44 
 45 
Over the north-east Pacific, decadal-scale fluctuations in surface and satellite-based measurements of low-46 
level cloud cover are significantly negatively correlated with variations in SST (Clement et al., 2009). This 47 
negative correlation is consistent with a positive low-cloud feedback in this region operating on decadal time 48 
scales. Models that reproduce this negative correlation and other relationships between cloud cover and 49 
regional meteorological conditions simulate a positive low-cloud feedback over much of the Pacific basin 50 
(Clement et al., 2009).  51 
 52 
Analyses of the tendencies in cloud condensate when multiple models are subjected to a CO2 increase shows 53 
that inter-model differences in cloud response are attributable to different parameterisations of ice 54 
sedimentation processes (Ogura et al., 2008). In experiments with perturbed physics ensembles of AOGCMs, 55 
the parameterisation of icefall speed also emerges as one of the most important determinants of climate 56 
sensitivity (Sanderson et al., 2010; Sanderson et al., 2008b).  57 
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 1 
9.7.4.3 Relationships Among Forcings, Feedbacks, and Climate Sensitivity 2 
 3 
Despite the range in equilibrium sensitivity of 2.1°C to 4.4°C for AR4 AOGCMs, these models reproduce 4 
the global surface air temperature anomaly of 0.76°C over 1850–2005 to within 25% relative error. The 5 
relatively small range of transient climate response suggests that there is another mechanism in the models 6 
that counteracts the relatively large range in sensitivity, and that mechanism appears to be a systematic 7 
negative correlation across the multi-model ensemble between climate sensitivity and anthropogenic forcing  8 
(Anderson et al., 2010; Kiehl, 2007; Knutti, 2008). The effect of eliminating this compensation between 9 
forcing and feedback could range from relatively minor (Knutti, 2008) to major expansion in the range of 10 
equilibrium climate sensitivity to 2.1°C–4.4°C (Huybers, 2010). 11 
  12 
9.7.4.3.1 Role of humidity and lapse rate feedbacks in climate sensitivity 13 
Correlations between coincident variations in SST and clear-sky outgoing longwave radiation (OLR) provide 14 
estimates on the rate of radiative damping of SST fluctuations. Modelled values for clear-sky damping are 15 
internally consistent across the AR4 multi-model ensemble and are a good approximation of the empirical 16 
damping rate obtained from SST data and satellite observations of clear-sky OLR (Chung et al., 2010a). The 17 
modelled and observationally derived damping rates are consistent with a strong positive correlation between 18 
SST and water vapour on regional to global scales. The relationship of fluctuations in SST and upper-19 
tropospheric humidity can be derived directly from the Atmospheric Infrared Sounder (AIRS), and the 20 
results show that a typical AGCM is capable of reproducing the positive rate of increase in specific humidity 21 
with increased SST of 10%–25%°C–1 (Gettelman and Fu, 2008).  22 
 23 
9.7.4.3.2 Role of oceanic heat uptake and other oceanic processes in climate Sensitivity 24 
Atmospheric feedbacks derived using the radiative kernel technique from perturbed-physics AOGCM 25 
ensembles are relatively insensitive to perturbations of ocean parameters (Sanderson et al., 2010). In 26 
perturbed-physics ensembles with alterations to parameters governing three key ocean processes, the effects 27 
of the perturbations on the ocean heat uptake and transient climate response are relatively small (Collins et 28 
al., 2007). The key ocean processes perturbed in these experiments include isopycnal and vertical diffusivity 29 
and the structure of the mixed layer adjacent to the ocean surface.  30 
 31 
9.7.4.3.3 Sources of uncertainty in modelled climate sensitivity 32 
Objective methods for perturbing uncertain model parameters to optimize performance relative to a set of 33 
observational metrics have shown a tendency toward an increase in the mean and a narrowing of the spread 34 
of estimated climate sensitivity (Jackson et al., 2008a). This tendency is opposed by the effects of gaining 35 
better knowledge regarding structural biases shared across a multi-model ensemble. Determination that there 36 
is a nonzero probability of shared structural biases tends to reduce the mode of the sensitivity distribution 37 
towards lower values while simultaneously the tail of the distribution towards larger sensitivities (Lemoine, 38 
2010). Roe and Baker (2007) suggest that symmetrically distributed (e.g., Gaussian) uncertainties in 39 
feedbacks lead to inherently asymmetrically distributed uncertainties in climate sensitivity with increased 40 
probability in extreme positive values of the sensitivity. Roe and Baker (2007) conclude that this relationship 41 
makes it extremely difficult to reduce uncertainties in climate sensitivity through incremental improvements 42 
in the specification of feedback parameters. Subsequent analysis suggests that this finding and the underlying 43 
relationship between uncertainties in feedbacks and climate sensitivity artefacts both of their statistical 44 
formulation (Hannart et al., 2009) and their linearization (Zaliapin and Ghil, 2010). 45 
 46 
Using a Bayesian framework to analyse perturbed physics experiments using a slab-ocean GCM, Sanderson 47 
et al (2008b) and Rougier et al (2009) find that the rate of cloud entrainment is the single most important 48 
source of uncertainty in AOGCM sensitivity. An additional source of uncertainty in equilibrium sensitivity is 49 
apparently an inherent feature of the idealized experiments used to derive it. These experiments involve 50 
instantaneously increasing (usually doubling) the concentrations of CO2 and then monitoring the rate at 51 
which radiative equilibrium is restored or estimating the asymptotic equilibrated surface temperature 52 
increase. The instantaneous increase induces very rapid atmospheric and terrestrial adjustments analogous to 53 
the semi-direct effects of aerosols including adjustments to the cloud field, tropospheric lapse rate and 54 
humidity and snow cover (Andrews and Forster, 2008; Gregory and Webb, 2008). These findings have 55 
highlighted the importance of separating the fast responses that depend on (instantaneous) changes in forcing 56 
and the feedbacks that follow the much slower adjustments in ocean temperature. 57 
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 1 
9.7.4.4 Comparison Between Future Climate and Last Glacial Maximum 2 
 3 
The AR4 reported on attempts to relate the simulated LGM changes in tropical SST to global climate 4 
sensitivity, providing a range of acceptable climate sensitivity values (Hegerl et al., 2007). These studies 5 
tested either ensemble simulations with varying parameters or the PMIP2 multi-model ensemble (Crucifix, 6 
2006). (Edwards et al., 2007) summarized these studies (Figure 9.42) and discussed the value added and 7 
limitations of combining constraints on past climate and present climate, such as done by (Annan and 8 
Hargreaves, 2006). LGM Temperature changes in the tropics and in Antarctica have been shown to scale 9 
well with climate sensitivity (Hargreaves et al., 2007), because the signal is mostly dominated by the CO2 10 
forcing in these regions (Braconnot et al., 2007c) (Figure 9.33). The analogy between the LGM climate 11 
sensitivity and future climate sensitivity is however not perfect. In ensemble simulations with the MIROC 12 
model coupled to a slab ocean model the LGM cooling and the warming induced by a doubling of CO2 are 13 
not symmetrical (Hargreaves et al., 2007). Differences in the cloud radiative feedback are at the origin of this 14 
asymmetry (Yoshimori et al., 2009).  15 
 16 
[INSERT FIGURE 9.42 HERE] 17 
Figure 9.42: (a) Comparison of simulated and observed changes in annual mean temperature, LGM compared to 18 
modern and ocean compared to land, (b) simulated relationship between regional cooling in the tropics and over eastern 19 
Antarctica and global cooling. This figure is adapted from (Crucifix, 2006; Cunningham et al., 2009; Kageyama et al., 20 
2006; Masson-Delmotte et al., 2006; Otto-Bliesner et al., 2009) using the PMIP2 dataset (Braconnot et al., 2007d). In a) 21 
the colour dots represent the different model results for the two regions, and the large crosses the estimates for the 22 
ocean and land surface data from (Waelbroeck et al., 2009) and (Bartlein et al., 2010b) respectively. In b) the different 23 
points represent different model results and the hatched bars the estimates with error bars for the (Waelbroeck et al., 24 
2009) SST reconstruction and East Antarctica air temperature reconstruction from ice cores (Masson-Delmotte et al., 25 
2006). 26 
 27 
The overall feature that emerges is that model tend to underestimate the polar amplification, which is a 28 
feature also seen in other climatic contexts (Masson-Delmotte et al., 2010). Note that the comparison over 29 
the Antarctic ice sheet is complex because there are possible inconsistency between the ice sheet topography 30 
use to force the model and the ice core indication (Masson-Delmotte et al., 2006). Nevertheless the 31 
underestimation is also shown from independent land and ocean data when comparing the cooling in the 32 
tropics and in high latitudes. The ratio between the change in temperature over land and over the ocean is 33 
rather similar in different models, resulting mainly from differences in the hydrological cycle over land and 34 
ocean (Sutton et al., 2007). This ratio is similar for future climate projections and LGM simulations 35 
(Cunningham et al., 2009). The LGM data do not support the model simulations with equivalent cooling 36 
over land and ocean.  37 
 38 
Although the LGM climate does not provide a direct assessment of climate sensitivity, it helps to infer the 39 
realism of model behaviour. In particular, the evaluation of LMG simulations indicate that it is likely that the 40 
polar amplification, and thereby the equator to pole latitudinal gradient, is underestimated in climate change 41 
experiments and that the models that do not produce the proper ratio of land/sea temperature changes do not 42 
reproduce proper contrast of evaporation over land and ocean. 43 
 44 
9.8 Relating Model Performance to Credibility of Model Applications  45 
 46 
9.8.1 Overall Assessment of Model Performance 47 
 48 
This chapter has quantitatively assessed the performance of individual CMIP5 models as well as the multi-49 
model mean in comparison to observations. A wide range of skills was obtained showing that there is a large 50 
variation in the ability of the models to simulate essential climate variables (Cadule et al., 2010; Connolley 51 
and Bracegirdle, 2007; Gleckler et al., 2008; Macadam et al., 2010; Pincus et al., 2008; Reichler and Kim, 52 
2008), underlying key processes (Waugh and Eyring, 2008; Williams and Webb, 2009), and climate 53 
phenomena (Guilyardi et al., 2009b; Stoner et al., 2009). The large variation in skill occurs both for different 54 
performance metrics applied to a single model as well as for the same performance metric applied to 55 
different models. No model scores high or low in all metrics, but some models perform substantially better in 56 
comparison to others. The assessment has also shown that some classes of models, e.g., those with higher 57 
horizontal resolution, higher model top or a more complete representation of the carbon cycle, aerosols or 58 
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chemistry, agree better with observations in selected processes, phenomena or ECVs than others 1 
[PLACEHOLDER FOR SECOND ORDER DRAFT: tbc when more CMIP5 output available].  2 

 3 
Figure 9.8.1 provides a synthesis of key findings with respect to how well models (CMIP3 and CMIP5 in 4 
some cases) represent important features of the climate in the 20th century. The figure makes use of the 5 
calibrated language for uncertainty assessments as defined in Mastrandrea et al. (2011). The y-axis refers to 6 
the level of agreement between available model evaluation studies, while the assessment on the x-axis 7 
weighs the available evidence for this judgment, including number of studies and quality of observational 8 
data. Generally, evidence is most robust when there are multiple, independent studies that evaluate multiple 9 
models using high-quality observations. The level of agreement is high if multiple studies come to the same 10 
conclusions or if there is only one study. However, in the latter case the evidence is low since multiple 11 
independent lines of evidence are missing. Overall, confidence increases towards the top-right corner as 12 
suggested by the increasing strength of shading. In addition, this figure has a third color coded dimension 13 
that assesses how well the models perform compared to observations. The figure shows that several 14 
important aspects of the climate are simulated well by contemporary models (blue entries), with varying 15 
level of evidence and agreement. For example, global mean surface air temperature (SAT) is simulated well 16 
and has been evaluated in multiple studies using high-quality observations, so is placed in the upper right 17 
corner of the figure. In contrast, the diurnal cycle of SAT is also simulated well but the evidence and 18 
agreement among studies is only medium. On the other hand, the models are showing mixed results or still 19 
have problems simulating other important aspects of the climate, as signified by the grey or red text in the 20 
figure. A description that explains the expert judgment for each of the key climate features presented in 21 
Figure 9.8.1 can be found in the body of this chapter, with a concrete link to the specific sections given in the 22 
figure caption.  23 
 24 
[INSERT FIGURE 9.43 HERE] 25 
Figure 9.43: Summary of the findings of Chapter 9 with respect to how well the CMIP3 models simulate important 26 
features of the climate of the 20th century [PLACEHOLDER FOR SECOND ORDER DRAFT: Will be updated with 27 
CMIP5 models]. Confidence in the assessment increases towards the top-right corner as suggested by the increasing 28 
strength of shading. Features that current state-of-the-art AOGCMS and ESMs simulate well, show mixed results, or 29 
have problems representing are shown in blue, grey, and red, respectively. The figure highlights the following key 30 
features (subject to revisions), with the sections that back up the assessment added in brackets: 31 
Annual cycle SIE:   Annual cycle Arctic and Antarctic Sea Ice Extent (Section 9.4.3) 32 
AMOC:     Atlantic Meridional Overturning Circulation (Section 9.4.2.6) 33 
Antarctic P-E:    Antarctic Precipitation minus Evaporation (Section 9.6.1) 34 
Circulation regimes:   Blocking events and others circulation regimes (Section 9.5.2.2) 35 
Clouds and CRE:   Clouds and Cloud Radiative Effects (Section 9.4.1) 36 
ENSO:     El Niño Southern Oscillation (Section 9.5.3.7) 37 
Global Monsoon:   see Section 9.4.2 38 
Global Scale P:   Global scale precipitation (Section 9.4.1)  39 
Meridional heat transport:  see Section 9.4.2.6 40 
MJO:     Madden Julian Oscillation (Section 9.5.2.2) 41 
NAO:     Northern Annual Mode (Section 9.5.3.7) 42 
OHC:     Ocean Heat Content (Section 9.4.2) 43 
SAF:     Snow albedo feedback (Sections 9.8.3) 44 
SAO:     Southern Annual Mode (Section 9.5.3.7) 45 
SAT:     Surface Air Temperature (Section 9.4.1) 46 
SIE:     Sea Ice Extent (Sections 9.4.3 and 9.8.3)  47 
SSIE:     September SIE (Sections 9.4.3 and 9.8.3) 48 
SSS:     Sea Surface Salinity (Section 9.4.2.6) 49 
SST:     Sea Surface Temperature (Sections 9.4.1 and 9.4.2.6) 50 
Trends in T and P Extremes: Trends in temperature and precipitation extremes (Section 9.5.4) 51 
Trop Atlantic / Pacific MS:  Tropical Atlantic / Pacific Mean State (Section 9.4.2) 52 
Trop Indian Ocean MS:  Tropical Indian Ocean Mean State (Section 9.4.2.6) 53 
Upper ocean heat uptake:  see Section 9.4.2 54 
UTTT:    Upper tropospheric temperature trends (Section 9.4.1) 55 
WBC:     Western Boundary Current (Section 9.4.2.6) 56 
[PLACEHOLDER FOR SECOND ORDER DRAFT: This figure is a preliminary version subject to revisions; it will be 57 
updated with more CMIP5 results and will possibly be separated into different panels that show: Panel 1: Climatologies 58 
and trends; Panel 2: Variability including extremes; Panel 3: Regional performance.] 59 
 60 
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9.8.2 Implications of Model Evaluation for Climate Change Detection and Attribution  1 
 2 
Climate models are developed, tuned and evaluated based on historical climate conditions. Their evaluation 3 
is therefore of direct use by detection and attribution studies using a combination of observation records and 4 
model studies to assess anthropogenic signature on recent climate trends. The key aspects for 5 
detection/attribution studies in terms of model evaluation are that models accurately reproduce climate 6 
variability and patterns. Biases in magnitude or forcing fingerprint are less important. For instance, the 7 
detection and attribution study by Santer et al. (2009) shows that the anthropogenic water vapour fingerprint 8 
is insensitive to current model uncertainties, and is governed by basic physical processes that are well-9 
represented in CMIP3 models.  10 
 11 
Several statements in the AR4 Chapter 9 (Hegerl et al., 2007) related the conclusions of D&A studies to the 12 
quality of the simulated climate. They indicated in particular that anthropogenic changes were detected on 13 
temperature rather accurately at large scale and continental scale, but that there was less confidence in the 14 
understanding of forced changes in other variables surface as surface pressure and precipitation. In addition 15 
difficulties were highlighted in attributing temperature changes on smaller than continental scales and shorter 16 
than 50 year time scales, because of model accuracy and misrepresentation of some of the key patterns.  17 
 18 
The representation of climate variability at different time and space scales in CMIP5 cautions that care must 19 
be taken when considering DA studies at the regional or more local scales. Indeed models still suffer from 20 
major biases in the representation of the intraseasonal to multidecadal variability that affects regional 21 
features (Sections 9.5.2 and 9.5.3). Recent studies of climate extremes provides further assessment that 22 
models have some skill in this regard, however, most models do not reproduce the right balance between 23 
cold and warm extremes. They also confirm that resolution affects the confidence that can be placed in the 24 
analyses of extreme in precipitation (Section 9.5.4).  25 
 26 
9.8.3 Implications of Model Evaluation for Model Applications to Future Climate  27 
 28 
The ability of a climate model to reproduce past climate and its variability is a necessary, but not sufficient, 29 
condition for reliable projections of future change. Certainly the ability to realistically simulate the response 30 
to historical changes in climate forcing (between contemporary and paleo, or transient changes over the 20th 31 
century) provides some reassurance that projections of future change are credible. However, future climate 32 
forcing drives the climate system outside of the observed range. The ability of climate models to realistically 33 
reproduce observed climate processes, variability and interrelationships contributes to our confidence in their 34 
ability to simulate future change in spite of the excursion into ‘unknown territory’. The application of models 35 
to climate prediction on seasonal to interannual time scales (discussed in Chapter 11) provides some modest 36 
ability to directly verify climate model predictions. Nevertheless, direct evaluation of long-term future 37 
climate projections is limited to inferences drawn from past performance.  38 
 39 
The collection of contemporary climate models is rather inhomogeneous, with some models performing 40 
better in some regards, and less well in others. This raises the question whether at least for some applications 41 
the reliability of climate projections can be improved by weighting the models according to their ability to 42 
reproduce observed climate. In weather and seasonal forecasting a large range of skill measures is routinely 43 
applied and sophisticated methods to combine multiple model results have been shown to be superior to 44 
simple multi-model mean averages (Stephenson et al., 2005). However, demonstrating the advantages of a 45 
weighted multi-model mean of climate projections remains difficult due to the longer time-scales and 46 
challenges to establish conclusive links between model performance in the current climate and the response 47 
to climate change forcings. 48 
 49 
Several studies have started to explore the value of weighting based on the models’ ability to simulate 50 
observed climate (Christensen et al., 2010; Connolley and Bracegirdle, 2007; Knutti et al., 2010a; Murphy et 51 
al., 2007; Pierce et al., 2009; Raisanen et al., 2010; Scherrer, 2010; Schmittner et al., 2005a; Waugh and 52 
Eyring, 2008). In general, only small differences between the weighted and unweighted multi-model mean 53 
were found, while the standard deviation in the weighted mean was smaller. Other approaches have 54 
employed statistical techniques mostly based on a Bayesian approach in which prior distributions of model 55 
simulations are weighted by their ability to reproduce present day climatological variables and trends to 56 
produce posterior predictive distributions of climate variables (Furrer et al., 2007; Tebaldi and Knutti, 57 
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2007a). Perturbed physics ensembles in which perturbations are made to the parameters in a single modelling 1 
structure have also been explored (Murphy et al., 2007), see also Chapter 12, Section 12.4.1.  2 
 3 
[INSERT FIGURE 9.44 HERE] 4 
Figure 9.44: Left: Scatter plot of simulated springtime snow albedo feedback (Δαs/ΔTs) values in climate change 5 
(ordinate) versus simulated springtime Δαs/ΔTs values in the seasonal cycle (abscissa) in transient climate change 6 
experiments with 17 AOGCMs from CMIP3 (αs and Ts are surface albedo and surface air temperature, respectively). 7 
From Hall and Qu (2006); [update with CMIP5 data; show CMIP3 in different colour in addition]. Right: Constraint on 8 
the climate sensitivity of land carbon in the Tropics (30°N-30°S) from interannual variability in the growth-rate of 9 
global atmospheric CO2. This version is based on C4MIP GCMs (black labels), and three land carbon “physics 10 
ensembles” with HadCM3 (red labels). The y-axis is calculated over the period 1960–2099 inclusive, and the y-axis is 11 
calculated over the period 1960-2010 inclusive. In both cases the temperature used is the mean (land+ocean) 12 
temperature over 30°N-30°S.  The vertical grey band shows the estimated sensitivity of the observed global CO2 13 
growth-rate to the observed tropical mean temperature. 14 
 15 
There are several encouraging examples of “emergent constraints”, where the large inter-model variations in 16 
mean climate, past trends, or seasonal variability are well correlated with comparably large inter-model 17 
variations in aspects of the model projections (Boe et al., 2009a; Boe et al., 2009b; Eyring et al., 2007; Hall 18 
and Qu, 2006; Mahlstein and Knutti, 2010). In the archetypal example of an emergent constraint, Hall and 19 
Qu (2006) showed that inter-model variations in the contemporary seasonal cycle of snow cover are strongly 20 
correlated with comparably large inter-model variations in snow albedo feedback under future climate 21 
change, see Figure 9.44 (de Jong et al., 2009; Hall and Qu, 2006). Since the seasonal variation in snow-cover 22 
is reasonably well-known from observations, the intermodel relationship provides a means to transform this 23 
observation into a constraint on the strength of the snow-albedo feedback under climate change. The right 24 
panel of Figure 9.44 shows an alternative approach based-on an emergent constraint between the sensitivity 25 
of tropical land carbon to warming (i.e., without CO2 fertilization effects) and the sensitivity of the 26 
interannual variability of the growth-rate of atmospheric CO2 to the interannual variability in the annual 27 

mean tropical temperature (30°N–30°S). The y-axis of this plot is essentially the γL of Friedlingstein et al. 28 
(2006), but for the tropics only. The x-axis of this plot is the regression of the anomaly in the atmospheric 29 
CO2 growth-rate on the tropical temperature anomaly, for each model. Variants of this regression, using the 30 
NINO3 index rather than the mean tropical temperature, have been published on a number of previous 31 
occasions (e.g., Jones and Cox, 2005). The strong relationship between these two variables is consistent with 32 
the fact that the interannual variability in the CO2 growth-rate is known to be dominated by the response of 33 
the tropical land to climatic anomalies, associated particularly with ENSO. The interannual sensitivity of the 34 
CO2 growth-rate to tropical temperature can be estimated from observational data. The intermodel 35 
relationship therefore provides a means to transform this into a constraint on the sensitivity of tropical land 36 
carbon to tropical climate change. 37 
 38 
[INSERT FIGURE 9.45 HERE] 39 
Figure 9.45: Projected decline of Arctic sea ice area with increasing global temperature. Shaded areas depict the 40 
uncertainty range (red based on observations from 1980–2007 and blue from 1960–2010). The time period in the legend 41 
indicates the time window that is used to estimate polar amplification. The models are calibrated to start at the current 42 
observational point (1980–2007) and show points for sea ice larger than 1.0 million km2. Warming in 2090–2099 and 43 
associated uncertainties for three SRES non-intervention emission scenarios from (IPCC, 2007) are indicated at the 44 
bottom. From Mahlstein and Knutti (2011). 45 
 46 
Another area where model weighting has been explored is Arctic September sea ice extent, where a large 47 
decline has been observed since 1979, that was severely underestimated by the CMIP3 models (Stroeve et 48 
al., 2007). Boe et al. (2009b) found a good correlation between past and future sea ice extent which they 49 
argued is physically based since they are both determined to a large extend by the initial sea ice thickness. In 50 
a second step they weighted the projections of September Arctic sea ice extent by using only those models 51 
that simulate a trend close to that observed and found that, unlike in the unweighted CMIP3 multi-model 52 
mean, the Arctic is likely to be ice-free before the end of the 21st century under the SRES A1B scenario. 53 
Other studies used a correlation between the change in global mean or Arctic surface temperature with 54 
changes in the sea ice extent to narrow the uncertainty in climate projections for this specific application 55 
(Mahlstein and Knutti, 2011; Zhang, 2010). As an example, Figure 9.45 shows a scenario independent 56 
estimate of predicted Arctic sea ice extent based on a recalibrated ensemble of CMIP3 models using 57 
observations over 28 years. The calibrated sea ice extrapolation based on observations since 1980 suggests a 58 
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most likely threshold for a near ice free Arctic in September of about 2°C above present, about half of the 1 
value the CMIP3 multi-model mean suggests. However, open issues remain. An appropriate weighting is 2 
only possible if the model biases are much larger than the estimated variability (Weigel et al., 2010), and 3 
natural variability in Arctic sea ice extent is large (Kay et al., 2011; Winton, 2011). In addition, Blanchard-4 
Wrigglesworth et al. (2011) found that the predictability of Arctic sea ice extent beyond three years is 5 
dominated by climate forcing rather than initial conditions. These issues need to be considered in the 6 
recalibration and weighting of multi-model ensembles, in particular when observed trends are relatively 7 
short. The weighting of Arctic sea ice extent therefore remains an open area of research, see further 8 
discussion in Chapter 12. 9 
 10 
The examples above demonstrate that progress has been made in relating some processes to key climate 11 
feedbacks. One challenge associated with the interpretation of the range of model results is that of model 12 
dependency associated with shared assumptions, codes, and datasets. Several recent studies suggest that the 13 
effective number of independent models in the CMIP3 ensemble is much smaller (Annan and Hargreaves, 14 
2011; Jun et al., 2008; Masson and Knutti, 2011; Pennell and Reichler, 2011). In particular, models 15 
developed at the same centre tend to be similar. Any multi-model mean, whether weighted or not by 16 
agreement with observations, is influenced by the initial sample of models and their interdependency. 17 
 18 
All models suffer from a multitude of systematic errors, and the importance of these errors to the reliability 19 
of projections is not well understood. The implications of this on the above emergent constraints are unkown. 20 
Ultimately, our confidence in model projections is built upon the demonstration of how well models 21 
represent a wide range of processes on various spatial and temporal scales (Eyring et al., 2005; Knutti et al., 22 
2010b), especially those related to important feedbacks in the Earth’s climate system. Hence the thorough 23 
evaluation of climate models as carried out in this chapter appears prudent to guide the assessment of model 24 
quality.  25 
 26 
 27 
[START FAQ 9.1 HERE] 28 
 29 
FAQ 9.1: Are Climate Models Getting Better, and How Would We Know? 30 
 31 
Climate models are extremely complex pieces of software that simulate, with as much fidelity as possible, 32 
the marvellously complex interactions between the atmosphere, ocean, land surface, and ice, the global 33 
ecosystem, and a variety of chemical and biological processes. Complexity in such models has certainly 34 
increased over the years and in that sense current Earth System models are vastly ‘better’ than the models 35 
available at the time of the previous IPCC Assessments. Current models also operate at much higher spatial 36 
resolution (i.e., they resolve much finer-scale detail) owing to the continuing increase in available computing 37 
resources. Today’s models have also benefitted from the past two decades of research into various climate 38 
processes, more comprehensive observations, and generally improved scientific understanding. Overall, 39 
climate models of today are better than their predecessors. However, as every bit of added complexity also 40 
introduces new sources of error and new interactions between model components that may, perhaps only 41 
temporarily, degrade the overall simulation of the climate system. 42 
 43 
Quantifying model performance is the primary objective of Chapter 9, and corresponding chapters have 44 
appeared in all of the previous IPCC Working Group I reports. Reading back over these earlier assessments 45 
provides a general sense of the improvements that have been made. However, past reports have typically 46 
provided a rather broad survey of model performance (either by showing differences between model-47 
calculated versions of some climate quantity and some corresponding observational estimate). Inevitably 48 
some models perform better for certain climate variables, but no individual model clearly emerges as ‘the 49 
best’ overall. Recently, there has been progress in computing various ‘performance metrics’ whose aim is to 50 
synthesize model performance relative to a range of different observations in a simple numerical ‘score’ 51 
(e.g., (Gleckler et al., 2008; Murphy et al., 2004). Of course, the definition of such a score, how it is 52 
computed, the observations that are used (which are themselves uncertain to some extent), and the manner in 53 
which various scores are combined are all important and will all affect the end result. Nevertheless, if the 54 
metric is computed consistently, one can use it to compare different generations of models. (Reichler and 55 
Kim, 2008) demonstrated that, at least for the particular ‘performance index’ they computed, there was a 56 
steady improvement in models participating in the series of Coupled Model Intercomprison Projects: CMIP1 57 
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included models from the mid 1990s; CMIP2 included models from around 2000; and CMIP3 from about 1 
2005. Their showed that, although each generation exhibited a range in model performance, the average 2 
model performance index improved steadily between each generation, with even the poorest performing 3 
model in a later generation performing on par with the mean model of the previous generation. A summary 4 
of model performance over time is shown in FAQ 9.1, Figure 1. 5 
 6 
So, yes, climate models are getting better, and we can demonstrate this with quantitative performance 7 
metrics. The issue that remains is that model performance can only be evaluated relative to past observations. 8 
In order to have confidence in future projections made with such models, it is considered necessary that past 9 
climate, its variability and change, be well simulated. But this may not sufficient. Whereas weather 10 
predictions, seasonal climate predictions and to some degree paleoclimate simulations, can be evaluated 11 
against observations, climate projections spanning a century or more of the future cannot. However, given 12 
that climate models are based on verifiable physical principles, and are able to reproduce many important 13 
aspects of past response to external forcing, and they are considerd to be able to provide a scientifically 14 
sound preview of the climate to come, given a climate forcing scenario. 15 
 16 
[PLACEHOLDER FOR SECOND ORDER DRAFT: FAQ 9.1, Figure 1 will be created based on results 17 
from all the past CMIP intercomparisons --- this is to be determined based on analyses still to be done and 18 
results that are not yet available. A ‘mocked up’ figure as a placeholder has been provided.] 19 
 20 
[INSERT FAQ 9.1, FIGURE 1 HERE] 21 
FAQ 9.1, Figure 1: Quantitative examination of model skill as measured in the three recent phases of CMIP (CMIP2, 22 
CMIP3 and CMIP5). The RMSE is normalized in each case by the observational standard deviation to facilitate 23 
comparison across variables. Results are shown for global precipitation and surface air temperature. [PLACEHOLDER 24 
FOR SECOND ORDER DRAFT: This figure very preliminary; will be updated as additional CMIP5 simulations 25 
become available. Additional fields may also be included in future renditions.] Redrafted from (P. Gleckler, K. Taylor, 26 
and C. Doutriaux, 2008) and updated with CMIP5 results. 27 
 28 
[END FAQ 9.1 HERE] 29 
 30 
 31 

32 
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Tables 1 
 2 
Table 9.1: Salient features of the AOGCMs and ESMs participating in CMIP5. Column 1: identification (Model ID) along with the calendar year (‘vintage’) of the first publication 3 
for each model; Column 2: sponsoring institution(s), main reference(s) and flux correction implementation (not yet described); Subsequent Columns for each of the 8 CMIP5 4 
realms: component name, code independence and main component reference(s). Additionally, there are standard entries for the Atmosphere realm: horizontal grid resolution, 5 
number of vertical levels, grid top (low or high top); and for the Ocean realm: horizontal grid resolution, number of vertical levels, top level, vertical coordinate type, ocean free 6 
surface type (“Top BC”). This table information was automatically extracted from the CMIP5 online questionnaire (http://q.cmip5.ceda.ac.uk/) as of 12 November 2011. 7 

Model ID 
Vintage Main 

Reference(s) 

Institution 

Flux correction 
information 

Component 
Name 

Aerosols 

Code 
Independence 
Reference 

Name 
Atmosphere 

Horizontal Grid 
Number of Levels 
Grid Top 
Code Independence 
References 

Atmospheric 

Name 
Chemistry 

Code 
Independence 
References 

Name 
Land Ice 

Code 
Independence 
References 

Name 
Land Surface 

Code 
Independence 
References 

Name 

Ocean 
Biogeochemistry 

Code 
Independence 
References 

Name 
Ocean 

Horizontal Grid 
Number of Levels 
Top Level 
Z Coordinate 
Top BC 
Code Independence 
References 

Name 
Sea ice 

Code 
Independence 
References 

ACCESS1.0 
2011 

Centre for 
Australian 
Weather and 
Climate Research 
  

Aerosols 
XX% 

Atmosphere 
XX% 

Atmospheric 
Chemistry 
XX% 

Land Ice 
XX% 

Land Surface 
XX% 

Ocean 
Biogeochemistry 
XX% 

Ocean 
XX% 

Sea Ice 
XX% 

CanESM2 
2010 

Canadian Centre 
for Climate 
Modelling and 
Analysis 
  

Aerosols 
XX% 

Atmosphere 
T63L35 
35 
0.5 hPa 
XX% 

Atmospheric 
Chemistry 
XX% 

Land Ice 
XX% 

Land Surface 
XX% 

Ocean 
Biogeochemistry 
XX% 

Ocean 
256 X 192 
40 
5 m 
depth 
other 
XX% 

Sea Ice 
XX% 

BCC_AGCM2.1 
2010 

Beijing Climate 
Center, China 
Meteorological 
Administration 
  

Aerosols 
XX% 

Atmosphere 
XX% 

Atmospheric 
Chemistry 
XX% 

Land Ice 
XX% 

Land Surface 
XX% 

Ocean 
Biogeochemistry 
XX% 

Ocean 
XX% 

Sea Ice 
XX% 
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Model ID 
Vintage Main 

Reference(s) 

Institution 

Flux correction 
information 

Component 
Name 

Aerosols 

Code 
Independence 
Reference 

Name 
Atmosphere 

Horizontal Grid 
Number of Levels 
Grid Top 
Code Independence 
References 

Atmospheric 

Name 
Chemistry 

Code 
Independence 
References 

Name 
Land Ice 

Code 
Independence 
References 

Name 
Land Surface 

Code 
Independence 
References 

Name 

Ocean 
Biogeochemistry 

Code 
Independence 
References 

Name 
Ocean 

Horizontal Grid 
Number of Levels 
Top Level 
Z Coordinate 
Top BC 
Code Independence 
References 

Name 
Sea ice 

Code 
Independence 
References 

BCC_CSM1.1 
2011 

Beijing Climate 
Center, China 
Meteorological 
Administration 
  

Not 
implemented 
XX% 
None 

BCC_AGCM2.1 
T42 T42L26 
26 
2.917hPa 
XX% 

Not 
implemented 
 

Not 
implemented 
 

BCC-
AVIM1.0 
XX% 

Ocean 
Biogeochemistry 
XX% 

MOM4-L40 
1° with enhanced 
resolution in the 
meridional direction 
in the tropics (1/3° 
meridional resolution 
at the equator) 
tripolar 
40 
20 
Z-coordinate 
linear split-explicit 
XX% 

SIS 
XX% 

CMCC-CESM 
2009 

Centro Euro-
Mediterraneo per 
I Cambiamenti 
Climatici 
Fogli et al., 2009; 
Vichi, et al., 2011 

Aerosols 
XX% 

Atmosphere 
XX% 

Atmospheric 
Chemistry 
XX% 

Land Ice 
XX% 

Land Surface 
XX% 

Ocean 
Biogeochemistry 
XX% 

OPA8.2 
2° zonal resolution, 
meridional resolution 
varying from 0.5° at 
the equator to 2° cos 
/ south of 20°S 
Orca2_T 
31 
4,9999938 
depth 
linear implicit 
XX% 
Madec et al., 1998 

LIM2 
XX% 
Fichefet and 
Morales-
Maqueda, 
1997; Fichefet 
and Morales 
Maqueda, 
1999; 
Timmermann 
et al., 2005 
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Model ID 
Vintage Main 

Reference(s) 

Institution 

Flux correction 
information 

Component 
Name 

Aerosols 

Code 
Independence 
Reference 

Name 
Atmosphere 

Horizontal Grid 
Number of Levels 
Grid Top 
Code Independence 
References 

Atmospheric 

Name 
Chemistry 

Code 
Independence 
References 

Name 
Land Ice 

Code 
Independence 
References 

Name 
Land Surface 

Code 
Independence 
References 

Name 

Ocean 
Biogeochemistry 

Code 
Independence 
References 

Name 
Ocean 

Horizontal Grid 
Number of Levels 
Top Level 
Z Coordinate 
Top BC 
Code Independence 
References 

Name 
Sea ice 

Code 
Independence 
References 

CNRM-CM5 
2010 

Centre National 
de Recherches 
Meteorologiques - 
Centre Europeen 
de Recherche et 
Formation 
Avancees en 
Calcul 
Scientifique 
Emile-Geay, and 
Madec, 2009; 
Voldoire, 2011 

Not 
implemented 
 

ARPEGE 
(Atmosphere) 
none tl127r 
31 
10 hPa 
XX% 
ARPEGE-Climat_V5 
Version 5.2, 2011 

Not 
implemented 
 

Not 
implemented 
 

SURFEX 
(Land and 
Ocean 
Surface) 
XX% 
Masson et al., 
2003; Le 
Moigne et al., 
2009 

Not implemented 
 

NEMO 
0.7 degree on 
average ORCA1 
42 
5 m 
linear filtered 
XX% 

Gelato5 (Sea 
Ice) 
XX% 
Salas-Mélia, 
2002 

EC-EARTH 
2010 

Europe 
  

Not 
implemented 
 

IFS c31r1 
1.125 longitudinal 
spacing, Gaussian grid 
T159L62 
62 
1 
XX% 

Not 
implemented 
 

Not 
implemented 
 

HTESSEL 
XX% 

Not implemented 
 

NEMO_ecmwf 
The grid is a tripolar 
curvilinear grid with 
a 1 degree resolution. 
ORCA1 
31 
1 
linear filtered 
XX% 

LIM2 
XX% 

gfdl-esm2g 
2011 

Geophysical 
Fluid Dynamics 
Laboratory 
Delworth et al., 
2006 
  

Not 
implemented 
 

Atmosphere 
XX% 
GFDL Global 
Atmospheric Model 
Development Team, 
2004 

Not 
implemented 
 

Not 
implemented 
 

Land Surface 
XX% 

Ocean 
Biogeochemistry 
XX% 

Ocean 
1 degree 
tripolar360x210L50 
63 
0 
other 
non-linear split-
explicit 
XX% 

SIS 
XX% 
Delworth et 
al., 2006; 
Winton, 2000 
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Model ID 
Vintage Main 

Reference(s) 

Institution 

Flux correction 
information 

Component 
Name 

Aerosols 

Code 
Independence 
Reference 

Name 
Atmosphere 

Horizontal Grid 
Number of Levels 
Grid Top 
Code Independence 
References 

Atmospheric 

Name 
Chemistry 

Code 
Independence 
References 

Name 
Land Ice 

Code 
Independence 
References 

Name 
Land Surface 

Code 
Independence 
References 

Name 

Ocean 
Biogeochemistry 

Code 
Independence 
References 

Name 
Ocean 

Horizontal Grid 
Number of Levels 
Top Level 
Z Coordinate 
Top BC 
Code Independence 
References 

Name 
Sea ice 

Code 
Independence 
References 

gfdl-cm2p1 
2011 

Geophysical 
Fluid Dynamics 
Laboratory 
Delworth et al., 
2006 
  

Aerosols 
XX% 

Atmosphere 
2.5 degree longitude, 2 
degree latitude 
M45L24 
24 
midpoint of top box is 
3.65 hPa 
XX% 
GFDL Global 
Atmospheric Model 
Development Team, 
2004 

Not 
implemented 
 

Land Ice 
XX% 

Land Surface 
XX% 

Not implemented 
 

Ocean 
1 degree 
tripolar360x200L50 
50 
0 
depth 
non-linear split-
explicit 
XX% 

SIS 
XX% 
Delworth et 
al., 2006; 
Winton, 2000 

gfdl-hiram-c180 
2011 

Geophysical 
Fluid Dynamics 
Laboratory 
Delworth et al., 
2006; Donner et 
al., 2011 
  

Not 
implemented 
 

Atmosphere 
Averaged cell size: 
approx. 50x50 km. 
C180L32 
32 
2,164 
XX% 
Donner et al., 2011 

Not 
implemented 
 

Not 
implemented 
 

Land Surface 
XX% 
Milly and 
Shmakin, 
2002; 
Shevliakova et 
al., 2009 

Not implemented 
 

Not implemented 
Not implemented 
Not implemented 
Not implemented 
Not implemented 
Not implemented 
XX% 
None 

Not 
implemented 
XX% 
None 

gfdl-esm2m Geophysical 
Fluid Dynamics 
Laboratory 
Delworth et al., 
2006 
  

Not 
implemented 
 

Atmosphere 
XX% 
GFDL Global 
Atmospheric Model 
Development Team, 
2004 

Not 
implemented 
 

Not 
implemented 
 

Land Surface 
XX% 

Ocean 
Biogeochemistry 
XX% 

Ocean 
non-linear split-
explicit 
XX% 

SIS 
XX% 
Delworth et 
al., 2006; 
Winton, 2000 
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gfdl-cm3 
2011 

Geophysical 
Fluid Dynamics 
Laboratory 
Delworth et al., 
2006; Donner et 
al., 2011 
  

Aerosols 
XX% 

Atmosphere 
~200km C48L48 
48 
XX% 
Donner et al., 2011 

Atmospheric 
Chemistry 
XX% 
Austin and 
Wilson, 2006 
Horowitz et 
al., 2003 
Sander et al., 
2000 

Not 
implemented 
 

Land Surface 
XX% 
Milly and 
Shmakin, 
2002; 
Shevliakova et 
al., 2009 

Not implemented 
 

Ocean 
1 degree 
tripolar360x200L50 
50 
0 
depth 
non-linear split-
explicit 
XX% 

SIS 
XX% 
Delworth et 
al., 2006; 
Winton, 2000 

inmcm4 
2009 

Russian Institute 
for Numerical 
Mathematics 
Volodin et al., 
2010 
  

Not 
implemented 
 

Atmosphere 
2x1.5 degrees in 
longitude and latitude 
latitude-longitude 
21 
sigma=0.01 
XX% 

Not 
implemented 
 

Land Ice 
XX% 

Land Surface 
XX% 
Alekseev et 
al., 1998; 
Volodin and 
Lykossov, 
1998 

Ocean Biogeo 
Chemistry 
XX% 
Volodin, 2007 

Ocean 
1x0.5 degrees in 
longitude and 
latitude generalized 
spherical coordinates 
with poles displaced 
outside ocean 
40 
sigma=0.0010426 
sigma 
linear implicit 
XX% 
Marchuk et al., 2010; 
Volodin et al., 2010. 

Sea Ice 
XX% 
Iakovlev, 2008 
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IPSL-CM5A-
LR 
2010 

Institut Pierre 
Simon Laplace 
  

Not 
implemented 
 

Atmosphere 
96x95 equivalent to 
1,9° x 3,75° 
LMDZ96x95 
39 
4Pa 
XX% 
Hourdin et al., 2006 

Not 
implemented 
 

Not 
implemented 
 

Land Surface 
XX% 

Ocean Biogeo 
Chemistry 
XX% 
Aumont et al., 
2003; Aumont 
and Bopp, 2006 

Ocean 
2° ORCA2 
31 
0m 
depth 
linear filtered 
XX% 
Madec, 2008 

Sea ice 
XX% 
Fichefet and 
Maqueda, 
1997;Goosse 
and Fichefet, 
1999. 
Timmermann 
et al., 2005 

MIROC-ESM 
2010 

University of 
Tokyo, National 
Institute for 
Environmental 
Studies, and 
Japan Agency for 
Marine-Earth 
Science and 
Technology 
  

Aerosols 
XX% 

Atmosphere 
2.815x2.815degree 
T42 
80 
0.0036hPa or 85km 
XX% 

Not 
implemented 
 

Not 
implemented 
 

Land Surface 
XX% 

Ocean Biogeo 
Chemistry 
XX% 

Ocean 
non-linear split-
explicit 
XX% 
Hasumi and Emori, 
eds., 2004 

Sea Ice 
XX% 

MIROC4h 
2009 

University of 
Tokyo, National 
Institute for 
Environmental 
Studies, and 
Japan Agency for 
Marine-Earth 
Science and 
Technology 
  

Aerosols 
XX% 

Atmosphere 
0.5625x0.5625degree 
T213 
56 
about 0.9hPa 
XX% 

Not 
implemented 
 

Not 
implemented 
 

Land Surface 
XX% 

Not implemented 
 

Ocean 
non-linear split-
explicit 
XX% 
Hasumi and Emori, 
eds., 2004 

Sea Ice 
XX% 



First Order Draft Chapter 9 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute  9-116  Total pages: 171 

Model ID 
Vintage Main 

Reference(s) 

Institution 

Flux correction 
information 

Component 
Name 

Aerosols 

Code 
Independence 
Reference 

Name 
Atmosphere 

Horizontal Grid 
Number of Levels 
Grid Top 
Code Independence 
References 

Atmospheric 

Name 
Chemistry 

Code 
Independence 
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MIROC5 
2010 

University of 
Tokyo, National 
Institute for 
Environmental 
Studies, and 
Japan Agency for 
Marine-Earth 
Science and 
Technology 
  

Aerosols 
XX% 

Atmosphere 
XX% 

Atmospheric 
Chemistry 
XX% 

Land Ice 
XX% 

Land Surface 
XX% 

Ocean Biogeo 
Chemistry 
XX% 

Ocean 
XX% 

Sea Ice 
XX% 

HadCM3 
1998 

UK Met Office 
Hadley Centre 
Collins et al., 
2001; Gordon et 
al., 2000; Johns et 
al., 2003; Pope et 
al., 2000 
  

Aerosols 
XX% 
Jones et al., 
2001 

Atmosphere HadAM3 
(N48L19) 
3.75 degrees in 
longitude by 2.5 
degrees in latitude. 
N48 
19 
0,005 
XX% 
Pope et al., 2000 

Not 
implemented 
 

Not 
implemented 
 

Land Surface 
XX% 
Collatz et al., 
1991; Collatz 
et al., 1992; 
Cox et al., 
1999; Cox, 
2001; Mercado 
et al., 2007 

Not implemented 
 

Ocean HadOM (lat: 
1.25 lon: 1.25 L20) 
1.25 deg in longitude 
by 1.25 deg in 
latitude N144 
20 
5 
depth 
linear implicit 
XX% 
Cox, 1984; 
UNESCO, 1981 

Sea Ice 
XX% 
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HadGEM2-CC 
2010 

UK Met Office 
Hadley Centre 
Bellouin et al., 
2007; Collins et 
al., 2008 
  

Aerosols 
XX% 
Bellouin et al., 
2007 

Atmosphere 
1.875 deg in longitude 
by 1.25 deg in latitude 
N96 
60 
84132,439 
XX% 
Davies et al., 2005 

Atmospheric 
Chemistry 
XX% 
Bellouin et al., 
2011; Jones et 
al., 2001 

Land Ice 
XX% 
Johns et al., 
2006 

Land Surface 
XX% 
Cox et al., 
1999; Essery 
et al., 2003 

Ocean Biogeo 
Chemistry 
XX% 

Ocean 
1.875 deg in 
longitude by 1.25 
deg in latitude N96 
hybrid height 
linear implicit 
XX% 
Bryan, 1969; Cox, 
1984; Johns et al., 
2006 

Sea Ice 
XX% 
McLaren et al., 
2006; 
Thorndike et 
al., 1975 

HadGEM2-ES 
2009 

UK Met Office 
Hadley Centre 
Bellouin et al., 
2007; Collins et 
al. 2008 
  

Not 
implemented 
 

Atmosphere 
1.875 degrees in 
longitude by 1.25 
degrees in latitude 
N96 
38 
39254,8 
XX% 
Davies et al. 2005 

Atmospheric 
Chemistry 
XX% 
O'Connor et al. 
2009 
O'Connor et 
al., 2010 

Land Ice 
XX% 
Johns et al., 
2006 

Land Surface 
XX% 
Cox et al., 
1999; Essery 
et al., 2003 

Ocean Biogeo 
Chemistry 
XX% 

Ocean 
1 deg by 1 deg 
between 30 N/S and 
the poles; meridional 
resolution increases 
to 1/3 deg at the 
equator N180 
40 
5 
depth 
linear implicit 
XX% 
Bryan 1969; Cox 
1984; Johns et al. 
2006 

Sea Ice 
XX% 
McLaren et al., 
2006; 
Thorndike et 
al., 1975 
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MPI-ESM-MR 
2009 

Max Planck 
Institute for 
Meteorology 
Marsland et al., 
2003.; Raddatz et 
al., 2007 
  

Not 
implemented 
 

ECHAM6 
approx 1.8 deg T63 
95 
0.1 hPa 
XX% 

Not 
implemented 
 

Not 
implemented 
 

JSBACH 
XX% 
Raddatz et al., 
2007 

HAMOCC 
XX% 
HAMOCC: 
Technical 
Documentation 

MPIOM 
approx. 0.4 deg 
TP04 
40 
Z-coordinate 
linear implicit 
XX% 
Marsland et al., 2003 

Sea Ice 
XX% 
Marsland et 
al., 2003 

MPI-ESM-P 
2009 

Max Planck 
Institute for 
Meteorology 
Marsland et al., 
2007; Raddatz et 
al., 2007 
  

Not 
implemented 
 

ECHAM6 
approx 1.8 deg T63 
47 
0.1 hPa 
XX% 

Not 
implemented 
 

Not 
implemented 
 

JSBACH 
XX% 
Raddatz et al., 
2007 

HAMOCC 
XX% 
HAMOCC: 
Technical 
Documentation 

MPIOM 
linear implicit 
XX% 
Marsland et al., 2003 

Sea Ice 
XX% 
Marsland et 
al., 2003 

MPI-ESM-LR 
2009 

Max Planck 
Institute for 
Meteorology 
Marsland et al., 
2003; Raddatz et 
al., 2007 
  

Not 
implemented 
 

ECHAM6 
approx 1.8 deg T63 
47 
0.1 hPa 
XX% 

Not 
implemented 
 

Not 
implemented 
 

JSBACH 
XX% 
Raddatz et al., 
2007 

HAMOCC 
XX% 
HAMOCC: 
Technical 
Documentation 

MPIOM 
average 1.5 deg 
GR15 
40 
6 
depth 
linear implicit 
XX% 
Marsland et al., 2003 

Sea Ice 
XX% 
Marsland et 
al., 2003 
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GISS-E2-R 
2011 

NASA Goddard 
Institute for Space 
Studies USA 
Schmidt et al., 
2006 
  

Aerosols 
XX% 
Bauer et al., 
2007; Koch et 
al., 2006; 
Menon et al. 
2010; 
Tsigaridis and 
Kanakidou, 
2007 

Atmosphere 
40 
0.1 hPa 
XX% 

G-PUCCINI 
XX% 
Shindell et al., 
2006 

Land Ice 
XX% 

Land Surface 
XX% 

Not implemented 
 

Russell Ocean 
32 
0 m 
other 
XX% 

Sea Ice 
XX% 

GISS-E2-H NASA Goddard 
Institute for Space 
Studies USA 
Schmidt et al., 
2006. 
  

Aerosols 
XX% 
Bauer et al., 
2007; Koch et 
al., 2006; 
Menon et al., 
2010; 
Tsigaridis and 
Kanakidou, 
2007. 

Atmosphere 
XX% 

G-PUCCINI 
XX% 
Shindell et al., 
2006 

Land Ice 
XX% 

Land Surface 
XX% 

Not implemented 
 

HYCOM Ocean 
hybrid Z-isopycnic 
non-linear split-
explicit 
XX% 

Sea Ice 
XX% 

GISS-E2CS-H 
2011 

NASA Goddard 
Institute for Space 
Studies USA 
Schmidt et al., 
2006 
  

Aerosols 
XX% 
Bauer, et al., 
2007; Koch et 
al., 2006; 
Menon et al., 
2010; 
Tsigaridis and 
Kanakidou, 
2007 

Atmosphere 
40 
0.1 hPa 
XX% 

G-PUCCINI 
XX% 
Shindell et al., 
2006 

Land Ice 
XX% 

Land Surface 
XX% 

Not implemented 
 

HYCOM Ocean 
hybrid Z-isopycnic 
non-linear split-
explicit 
XX% 

Sea Ice 
XX% 
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GISS-E2CS-R 
2011 

NASA Goddard 
Institute for Space 
Studies USA 
Schmidt et al., 
2006 
  

Aerosols 
XX% 
Bauer et al., 
2007; Koch, et 
al., 2006; 
Menon, et al., 
2010; 
Tsigaridis and 
Kanakidou, 
2007 

Atmosphere 
40 
0.1 hPa 
XX% 

G-PUCCINI 
XX% 
Shindell, et al., 
2006 

Land Ice 
XX% 

Land Surface 
XX% 

Not implemented 
 

Russell Ocean 
32 
0 m 
other 
XX% 

Sea Ice 
XX% 

CCSM4 1° 
2010 

US National 
Centre for 
Atmospheric 
Research 
  

Aerosols 
XX% 
Neale, et al., 
2010; Oleson 
et al., 2010. 

Atmosphere 
0.9x1.25 f09 
27 
2.194067 hPa 
XX% 
Neale, et al., 2010; 
Lean et al., 1995 

Not 
implemented 
 

Not 
implemented 
 

Land Surface 
XX% 

Not implemented 
 

Ocean 
320x384 
60 
5 
depth 
linear implicit 
XX% 

Sea Ice 
XX% 

CCSM4 2° 
2010 

US National 
Centre for 
Atmospheric 
Research 
  

Aerosols 
XX% 
Neale et al., 
2010; Oleson 
et al., 2010. 

Atmosphere 
1.9x2.5 f19 
27 
2.194067 hPa 
XX% 
Neale et al., 2010; 
Lean et al., 1995 

Not 
implemented 
 

Not 
implemented 
 

Land Surface 
XX% 

Not implemented 
 

Ocean 
320x384 
60 
5 
depth 
linear implicit 
XX% 

Sea Ice 
XX% 
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HadGEM2-ES 
2009 

UK National 
Centre for 
Atmospheric 
Science 
Bellouin et al., 
2007; Collins et 
al., 2008 
  

Aerosols 
XX% 
Bellouin et al., 
2007 

Atmosphere 
XX% 
Davies et al., 2005 

Atmospheric 
Chemistry 
XX% 
O'Connor, et 
al., 2009; 
O'Connor et 
al., 2010 

Land Ice 
XX% 
Johns et al., 
2006 

Land Surface 
XX% 
Cox et al., 
1999; Essery 
et al., 2003 

Ocean Biogeo 
Chemistry 
XX% 

Ocean 
linear implicit 
XX% 
Bryan, 1969; Cox, 
1984; Johns et al., 
2006 

Sea Ice 
XX% 
McLaren et al., 
2006; 
Thorndike et 
al., 1975 

HiGEM1-2 
2009 

UK National 
Centre for 
Atmospheric 
Science 
Bellouin et al., 
2007; Collins et 
al., 2008 
  

Aerosols 
XX% 
Bellouin et al., 
2007. 

Atmosphere 
XX% 
Davies et al., 2005 

Atmospheric 
Chemistry 
XX% 
O'Connor, et 
al., 2009 
O'Connor et 
al., 2010 

Land Ice 
XX% 
Johns et al., 
2006 

Land Surface 
XX% 
Cox et al., 
1999; Essery 
et al., 2003 

Ocean Biogeo 
Chemistry 
XX% 

Ocean 
linear implicit 
XX% 
Bryan, 1969; Cox, 
1984; Johns et al., 
2006 
 

Sea Ice 
XX% 
McLaren et al., 
2006; 
Thorndike et 
al., 1975 

NorESM1-M 
2011 

Norwegian 
Climate Centre 
  

Aerosols 
XX% 

CAM4 
1.9 degrees 
meridionally, 2.5 
degrees zonally 
26 
3.54 hPa 
XX% 

Atmospheric 
Chemistry 
XX% 

Not 
implemented  

CLM4 
XX% 

Ocean Biogeo 
Chemistry 
XX% 

MICOM 
1.125 degrees along 
the equator 
53 
1 
hybrid Z-isopycnic 
XX% 

CICE4 
XX% 

HadGEM2-AO 
2008 

Korean National 
Institute for 
Meteorological 
Research 
  

Aerosols 
XX% 

Atmosphere 
XX% 

Atmospheric 
Chemistry 
XX% 

Land Ice 
XX% 

Land Surface 
XX% 

Ocean Biogeo 
Chemistry 
XX% 

Ocean 
XX% 

Sea Ice 
XX% 
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CSIRO-Mk3-6-
0 
2007 

Queensland 
Climate Change 
Centre of 
Excellence and 
Commonwealth 
Scientific and 
Industrial 
Research 
Organisation 
Chou and Lee, 
2005; Gordon et 
al., 2010;Grant et 
al., 1999; 
Rotstayn et al., 
2007; Rotstayn et 
al., 2010; 
Rotstayn and 
Lohmann, 2002; 
Sato et al., 1993 
  

Aerosols 
XX% 
Rotstayn et al., 
2007; Rotstayn 
et al., 2010; 
Rotstayn and 
Liu, 2009; 
Rotstayn and 
Lohmann, 
2002. 

Atmosphere 
~1.875x1.875 mk36 
18 
18 
XX% 
Gordon et al., 2002; 
Gordon et al., 2010; 
Rotstayn et al., 2010 

Not 
implemented 
 

Land Ice 
XX% 

Land Surface 
XX% 
Gordon et al., 
2002; Gordon 
et al., 2010 

Not implemented 
 

Ocean 
~0.9x1.875 ocean 
horizontal 
31 
5 
depth 
N/A 
XX% 
Gordon et al., 2002; 
Gordon et al., 2010; 
Rotstayn et al., 2010 

Sea Ice 
XX% 

 1 
 2 
Table 9.3: Features of Earth System Models of Intermediate Complexity (EMICs) 3 

Model Atmosphere Ocean Sea Ice Coupling Land Surface Biosphere Ice Sheets Sediment and Weathering 
Bern3D-LPJ 
(Ritz et al., 
2011) 

EMBM,2-D(φ, 
λ), NCL, 10° × 
(3 − 19)° (Ritz 
et al., 2011) 

FG, 3-D, RL, 
ISO, MESO, 
10° × (3 − 19)°, 
L32 (Müller and 
Roeckner, 2006) 

0-LT, 
DOC, 2-
LIT (Ritz 
et al., 
2011) 

PM, NH, 
RW (Ritz et 
al., 2011) 

Bern3D component: 1-
LST, NSM, RIV (Ritz 
et al., 2011); LPJ 
component: 8-LST, 
CSM (uncoupled 
hydrology) (Wania et 
al., 2009) 

BO (Gangsto et al., 2011; 
Parekh et al., 2008; 
Tschumi et al., 2008), BT 
(Sitch et al., 2003; 
Stocker et al., 2011; 
Strassmann et al., 2008), 
BV (Sitch et al., 2003) 

N/A CS, SW, (Tschumi et al., 2011) 
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CLIMBER-
2.4 
(Petoukhov et 
al., 2000) 

SD, 3-D, 
CRAD, ICL, 10° 
x 51°, L10 
(Petoukhov et 
al., 2000) 
 

FG with 
parameterized 
zonal pressure 
gradient, 2-D (φ, 
z), 3 basins, RL, 
2.5°, L21 
(Wright and 
Stocker, 1992) 

1-LT, PD, 
2-LIT 
(Petoukhov 
et al., 
2000) 

NM, NH, 
NW 
(Petoukhov 
et al., 2000) 

1-LST, CSM, RIV 
(Petoukhov et al., 
2000) 

BO, BT and BV 
(Brovkin et al., 2002) 

TM, 3-D, 0.75° x 
1.5°, L20* (Calov 
et al., 2002) 

N/A 

CLIMBER-3a 
(Montoya et 
al., 2005) 

SD, 3-D, 
CRAD, ICL, 
7.5° x 22.5°, 
L10 (Petoukhov 
et al., 2000) 

PE, 3-D, FS, 
ISO, MESO, 
TCS, DC*, 
3.75° x 3.75°, 
L24 (Montoya 
et al., 2005) 

2-LT, R, 2-
 LIT 
(Fichefet 
and 
Morales 
Maqueda, 
1997) 

AM, NH, 
RW 
(Montoya et 
al., 2005) 

1-LST, CSM, RIV 
(Petoukhov et al., 
2000) 

BO(Six and 
MaierReimer, 1996), BT 
and BV (Brovkin et al., 
2002) 

N/A N/A 

DCESS 
(Shaffer et al., 
2008) 

EMBM, 2-box 
in φ with fit of 
mean surface 
temperature to a 
continuous 
Lagrange 
polynomial in φ, 
LRAD, CHEM* 
(Shaffer et al., 
2008) 

PCE 
(Parameterized 
circulation and 
exchange), 2-
box in φ, 
MESO, L55 
(Shaffer and 
Sarmiento, 
1995; Shaffer et 
al., 2008) 

PT 
(parameteri
zed from 
mean 
surface 
temperatur
e 
distribution 
in φ) 
(Shaffer et 
al., 2008) 

NH, NW 
(Shaffer et 
al., 2008) 

NST, NSM (Shaffer et 
al., 2008) 

BO, BT (Shaffer et al., 
2008) 

N/A CS, SW 
Additional Ocean sediment: VP 
(variable porosity), VB (variable 
bioturbation), OAR (oxic-anoxic 
remineralization), CC (carbonate 
carbon), OC (organic carbon) 
(Shaffer et al., 2008) 

MESMO 1.0 
(Matsumoto et 
al., 2008) 

EMBM, 2-D (φ, 
λ), NCL, 10◦ × 
(3 − 19)◦ 
(Fanning and 
Weaver, 1996) 

FG, 3-D, RL, 
ISO, MESO, 10◦ 
× (3 − 19)◦, L16 
(Edwards and 
Marsh, 2005) 

0-LT, 
DOC, 2-
LIT 
(Edwards 
and Marsh, 
2005) 

PM, NH, 
RW 
(Edwards 
and Marsh, 
2005) 

NST, NSM, RIV 
(Edwards and Marsh, 
2005) 

BO (Matsumoto et al., 
2008) 

N/A N/A 

UVic 2.9  
(Weaver et al., 
2001) 

DEMBM,2-
D(φ,λ NCL,1
.8°x3.6° 
(Weaver et al., 
2001) 

PE,3-
D,RG,ISO,MES
O,1.8°x3.6° 
(Weaver et al., 
2001) 

0-LT,R,2-
LIT(Weave
r et al., 
2001) 

AM,NH,NW 
(Weaver et 
al., 2001) 

1-LST,CSM,RIV 
(Meissner et al., 2003) 

Biosphere: BO 
(Schmittner et al., 
2005b), BT and BV 
(Cox, 2001) 

TM, 3-D, 20 km x 
20 km, L10  
(Fyke et al., 2011) 

CS, SW (Eby et al., 2009) 

Notes: 1 
(a) EMBM = energy-moisture balance model; DEMBM = energy-moisture balance model including some dynamics; SD = statistical-dynamical model; QG = quasi-geostrophic 2 
model; 1-D (φ) = zonally and vertically averaged; 2-D(φ, λ  = vertically averaged; 2-D(φ, z) = zonally averaged; 3-D = three-dimensional; LRAD = linearized radiation scheme; 3 
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CRAD = comprehensive radiation scheme; NCL = non-interactive cloudiness;  ICL = interactive cloudiness; CHEM = chemistry module; horizontal and vertical resolutions: the 1 
horizontal resolution is expressed either as degrees latitude x longitude or as spectral truncation with a rough translation to degrees latitude x longitude; the vertical resolution is 2 
expressed as ‘Lm’, where m is the number of vertical levels.  3 
(b) FG = frictional geostrophic model; PE = primitive equation model; 2-D (φ, z) = zonally averaged; 3-D = three-dimensional; RL = rigid lid; FS = free surface; ISO = isopycnal 4 
diffusion; MESO = parametrization of the effect of mesoscale eddies on tracer distribution; TCS = complex turbulence closure scheme; DC = parametrization of density-driven 5 
down-sloping currents; horizontal and vertical resolutions: the horizontal resolution is expressed as degrees latitude x longitude; the vertical resolution is expressed as ‘Lm’, where m 6 
is the number of vertical levels.  7 
(c) n-LT = n-layer thermodynamic scheme; PD = prescribed drift; DOC = drift with oceanic currents; R = viscous-plastic or elastic-viscous-plastic rheology; 2-LIT = two-level ice 8 
thickness distribution (level ice and leads).  9 
(d) PM = prescribed momentum flux; GM = global momentum flux adjustment; AM = momentum flux anomalies relative to the control run are computed and added to 10 
climatological data; NM = no momentum flux adjustment; GH = global heat flux adjustment; NH = no heat flux adjustment; GW = global freshwater flux adjustment; RW = regional 11 
freshwater flux adjustment; NW = no freshwater flux adjustment.  12 
(e) NST = no explicit computation of soil temperature; n-LST = n-layer soil temperature scheme; NSM = no moisture storage in soil; BSM = bucket model for soil moisture; CSM = 13 
complex model for soil moisture; RIV = river routing scheme.  14 
(f) BO = model of oceanic carbon dynamics; BT = model of terrestrial carbon dynamics; BV = dynamical vegetation model.  15 
(g) TM = thermomechanical model; M = mechanical model (isothermal); 1-D (φ) = vertically averaged with east-west parabolic profile; 2-D (φ, λ  = vertically averaged; 3-D = 16 
three-dimensional; horizontal and vertical resolutions: the horizontal resolution is expressed either as degrees latitude x longitude or kilometres x kilometres; the vertical resolution is 17 
expressed as ‘Lm’, where m is the number of vertical levels. 18 
(h) CS = complex ocean sediment model; CW = complex weathering model; SW = simple, specified or diagnostic weathering model. 19 
 20 
 21 
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Figures 1 

 2 

 3 

 4 

Figure 9.1: A sketch illustrating the interconnection of model components in Atmosphere-Ocean General Circulation 5 

Models (AOGCMs) and Earth system models (ESMs), and the way in which parameterisations are embedded in each 6 

component. 7 

 8 

9 
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Figure 9.2: Left: Schematic summary of CMIP5 short-term experiments with tier 1 experiments (yellow background) 4 

organized around a central core (pink background). From (Taylor, Stouffer, & Meehl, 2011), their Figure 2. Right: 5 

Schematic summary of CMIP5 long-term experiments with tier 1 and tier 2 experiments organized around a central 6 

core. Green font indicates simulations to be performed only by models with carbon cycle representations, and “E-7 

driven” means “emission-driven”. Experiments in the upper hemisphere either are suitable for comparison with 8 

observations or provide projections, whereas those in the lower hemisphere are either idealized or diagnostic in nature, 9 

and aim to provide better understanding of the climate system and model behaviour. From (Taylor, et al., 2011), their 10 

Figure 3. 11 

 12 

13 
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Figure 9.3: Annual mean surface (2 meter) air temperature (K) for the period (1985–2005). Top panel: Multi-model 4 

ensemble (MME) constructed with 11 available AOGCMs used in the CMIP5 historical experiment. Middle panel 5 

shows the MME bias compared to observations (Jones, 1999). Bottom panel shows the average of the individual model 6 

absolute biases. 7 

 8 

9 
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Figure 9.4: Annual surface (2 meter) air temperature (K) range (DJF-JJA) for the period (1985–2005). Top panel 4 

shows updated observations from Jones (1999). Bottom panel shows bias in the multi-model ensemble (MME) 5 

constructed with 11 available AOGCMs used in the CMIP5 historical experiment.  6 

 7 

8 
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Figure 9.5: Annual mean precipitation for the period (1985–2005). Top panel: Multi-model ensemble (MME) 4 

constructed with 11 available AOGCMs used in the CMIP5 historical experiment. Middle panel shows the MME bias 5 

with updated observations (Adler et al., 2003). Bottom panel shows the average of the individual model absolute biases. 6 

 7 

8 
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Figure 9.6: Annual mean errors in shortwave (top left), longwave (middle left) and net (bottom left) cloud radiative 4 

effect of the CMIP3 multi-model mean. Also shown are zonal averages of the absolute values of the same quantities 5 

from observations (CERES ES-4 and ERBE S-4G, thick black lines) and individual models (thin grey lines). For a 6 

definition of cloud radiative effect and maps of its absolute values, see Chapter 7.  7 

8 
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Figure 9.7: September to November total column ozone climatology (1980–1999) from the CCMVal-2 multi-model 4 

mean (a) and the bias of it from the NIWA database (b). (c,d) same as (a,b), but for the AC&C / SPARC ozone database 5 

that was used as forcing in a subset of the CMIP5 model simulations. Ozone depletion increased after 1960 as 6 

equivalent stratospheric chlorine (ESC) values steadily increased throughout the stratosphere. Modified from Cionni et 7 

al. (2011). 8 

 9 

10 
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Figure 9.8: Global annual mean climatology (1980–1999) pattern correlations between CMIP3 simulations and 4 

corresponding observations (see Table [9.x] for the default references for each field). Results for sea surface 5 

temperature and SW cloud radiative effects exclude data pole-ward of 50 degrees in both hemispheres. Individual 6 

model results are identified as dash marks. The green bars represent the average result for each variable.  7 

 8 

9 
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Figure 9.9: Relative error measures for 20th century CMIP3 models, based on the global annual cycle climatology 4 

(1980–1999) in the historical (20c3m) experiments. Treating each variable independently, the space-time RMSE is 5 

normalized by the median result across all models. A value of 0.3 indicates an error 30% larger than the median error, 6 

whereas –0.3 is 30% smaller than the median error. A diagonal splits each grid square showing the relative error with 7 

respect to both the primary (upper left triangle) and the alternate (lower right triangle) reference data sets. Taken from 8 

Gleckler et al. (2008). The two left hand columns depict the relative error for both the multi-model mean and median 9 

(which is distinct from the normalization by the median of individual models).  10 

 11 
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Figure 9.10: Observed and simulated annual mean global average anomaly time series of surface air temperature. Lines 4 

(thin) show results from single simulations currently available for CMIP5. Thick black and red lines represent the 5 

observations and the multi-model mean respectively. Vertical grey bars represent times of major volcanic eruptions. 6 

Observational data are the HadCRUTT3v merged surface temperature, 2 meter of land and surface over the ocean. The 7 

current plot shows 2 meter temperature over the land and ocean for model simulations (to be updated with merged 8 

surface temperature). All anomalies are with respect to a 1961–1990 climatology. 9 

 10 

11 
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Figure 9.11: Scatter plot of the variability of W as a function of the trend in W as a function of the TLT trend for the 4 

tropical oceans. Trends are calculated over the periods given in Table 1. In Figure 3a, UAH V5.2 and UAH V5.1 yield 5 

nearly identical results, so the UAH V5.2 data point is hidden. The lines shown bisect the two different linear fits 6 

obtained with first W, then TLT assumed to be the dependent variable. Isobe et al. (1990) show that this is a good 7 

method for finding an estimate of an underlying relationship in the presence of unknown measurement errors and or 8 

scatter that is not strictly related to measurement error, as is the case here. The climate model and reanalysis results are 9 

for the 1981–1999 period, while the satellite results are for the 1988–2006 period, so the trend results from the satellite 10 

data and the models and reanalysis cannot be directly compared. Also, for UAH V5.1, the calculations are performed 11 

over the 1988–2005 period when both SSM/I and UAH 5.1 data are available. 12 

 13 

14 
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Figure 9.12: Time series of total column ozone over Antarctica (averaged from 60–90°S) from 1960 to 2000 for the 4 

CCMVal-2 multi-model mean (red line) and standard deviation (blue shaded area) in comparison to the AC&C / 5 

SPARC ozone database (green line) and observations from the NIWA database (black dots). Ozone depletion increased 6 

after 1960 as equivalent stratospheric chlorine (ESC) values steadily increased throughout the stratosphere. Modified 7 

from Cionni et al. (2011). 8 

 9 

10 
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Figure 9.13: Surface air temperature difference between the Last Glacial Maximum (21 ka) and today (top), and 4 

precipitation difference between the mid-Holocene (6 ka) and today (bottom), as shown by palaeo-environmental data 5 

(left) and the PMIP2 ensemble model simulations (right). The top uses reconstructed and simulated mean temperature 6 

of the coldest month (K) for the LGM, the bottom uses reconstructed and simulated mean annual precipitation 7 

(mm/day) for the MH. The land reconstructions are from (Bartlein et al., 2010) and the ocean reconstruction are from 8 

(Waelbroeck et al., 2009). On the right figures the red line highlights the root-mean square of the inter-model 9 

differences. 10 

 11 

12 
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Figure 9.14: [PLACEHOLDER FOR SECOND ORDER DRAFT: Figure from AR4; to be redone from CMIP5 when 4 

results available.] Time-mean observed potential temperature (°C), zonally averaged over all ocean basins (labelled 5 

contours) and multi-model mean error in this field, simulated minus observed (colour-filled contours). The observations 6 

are from the 2004 World Ocean Atlas compiled by (Levitus, Antonov, & Boyer, 2005) for the period 1957 to 1990, and 7 

the model results are for the same period in the 20th-century simulations in the CMIP3 ensemble. 8 

 9 

10 
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Figure 9.15: Sub-Tropical Mode Water (STMW) turnover time for various models compared with (Kwon & Riser, 4 

2004); time is calculated by annual maximum volume divided by annual production. Values are means; error bars give 5 

ranges of one standard deviation. Square data symbols indicate those models with a distinct (if small) secondary water 6 

mass transformation rate peak corresponding to STMW formation. Triangular data symbols indicate those models with 7 

broad, diffuse, or indiscernible STMW formation peak (from (McClean & Carman, 2011). 8 

 9 

10 
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Figure 9.16: Taylor diagram of the dynamic sea-level height seasonal cycle climatology (1987–2000). The radial 4 

coordinate shows the standard deviation of the spatial pattern, normalised by the observed standard deviation. The 5 

azimuthal variable shows the correlation of the modelled spatial pattern with the observed spatial pattern. The root-6 

mean square error is indicated by the dashed grey circles about the observational point. Analysis is for the global ocean, 7 

50°S–50°N. The reference dataset is AVISO, a merged satellite product (Ducet, Le Traon, & Reverdin, 2000), which is 8 

described in Chapter 3. Figure currently shows results for the CMIP3 models and the CMIP5 data currently available. 9 

 10 

11 



First Order Draft Chapter 9 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 9-142 Total pages: 171 

 1 

  2 

 3 

Figure 9.17: Time series of observed and simulated (CMIP3) global ocean heat content (0–700 m) anomalies during 4 

the second half of the 20th Century. The three observational estimates (thick lines) are discussed in Chapter 3. 5 

Individual (one per model) simulations are shown, with solid lines for models that included volcanic forcings and 6 

dashed lines for those that did not. When updated with CMIP5 results, this figure may evolve into multiple panels, e.g., 7 

to depict averaging across multiple realizations to better capture trends and include results from historically forced 8 

ESMs. 9 

10 
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Figure 9.18: Temperature and salinity for modern (open symbols) and LGM (filled symbols) as estimated from data 4 

(with error bars) at ODP sites (Adkins et al., 2002) and predicted by the PMIP2 models. Site 981 triangles) is located in 5 

the North Atlantic (Feni Drift, 55_N, 15_W, 2184 m). Site 1093 (upside down triangles) is located in the South Atlantic 6 

(Shona Rise, 50_S, 6_E, 3626 m). OnlyCCSMincluded a 1 psu adjustment of ocean salinity at initialization to account 7 

for fresh water frozen into LGMice sheets; HadCM, MIROC, and ECBilt LGM predicted salinities have been adjusted 8 

to allow comparison. Show quantitatively how deep-ocean properties can be evaluated for both modern and 9 

palaeoclimate. From (Otto-Bliesner et al., 2007). 10 

 11 
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Figure 9.19: Zonal mean zonal wind stress over the oceans in CMIP3 20th century simulations. [PLACEHOLDER 4 

FOR SECOND ORDER DRAFT: Final figure will include CMIP5 results and more observational estimates.] 5 

 6 

7 
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Figure 9.20: (a) SST and (b) zonal wind stress along equator in the Indian, Pacific, and Atlantic Oceans for the CMIP3 4 

and CMIP5 20th-century simulations. Observations are from HadISST1.1 for SST (Rayner et al., 2003) and ERSTAO 5 

for wind stress (Menkes et al., 1998). 6 

 7 
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Figure 9.21: [PLACEHOLDER FOR SECOND ORDER DRAFT: From AR4, to be redone using CMIP5 and more 4 

observational estimates.] Annual mean, zonally averaged oceanic heat transport implied by net heat flux imbalances at 5 

the sea surface, under an assumption of negligible changes in oceanic heat content. The observationally based estimate, 6 

taken from (Trenberth & Caron, 2001) for the period February 1985 to April 1989, derives from reanalysis products 7 

from the National Centers for Environmental Prediction (NCEP)/NCAR (Kalnay et al., 1996) and European Centre for 8 

Medium Range Weather Forecasts 40-year reanalysis (ERA40); (Uppala et al., 2005). The model climatologies are 9 

derived from the years 1980 to 1999 in the 20th-century simulations in the CMIP3. 10 

 11 
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Figure 9.22: Mean sea ice extent (the ocean area within 15% sea ice concentration) seasonal cycle in the Northern 5 

(upper panel) and Southern (lower panel) hemispheres as simulated by the CMIP5 (blue line) and CMIP3 (black line) 6 

ensembles. The observed sea-ice extent cycles (1980–1999) are based on the Hadley Centre Sea Ice and Sea Surface 7 

Temperature – HadISST (Rayner, et al., 2003) (red line) and the National Snow and Ice Data Center – NSIDC (Fetterer, 8 

Knowles, Meier, & Savoie, 2002) (brown line) data sets. The shaded areas show the inter-model standard deviation for 9 

each ensemble. 10 

 11 
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Figure 9.23: Sea ice distribution in the Northern Hemisphere (upper panels) and the Southern Hemisphere (lower 4 

panels) for March (left) and September (right). A) AR5 baseline climate (1986–2005) simulated by 14 of CMIP5 5 

AOGCMs. For each 1° × 1° longitude-latitude grid cell, the figure indicates the number of models that simulate at least 6 

15% of the area covered by sea ice. B) AR4 baseline climate (1980–1999) differences between 14 CMIP5 and 14 7 

CMIP3 (AR4 (Randall et al., 2007) Figure 8.10) AOGCMs. For each 2.5° × 2.5° longitude-latitude grid cell, the figure 8 

indicates the difference in the number of CMIP5 and CMIP3 models that simulate at least 15% of the area covered by 9 

sea ice. The observed 15% concentration boundaries (red line) are based on the Hadley Centre Sea Ice and Sea Surface 10 

Temperature – HadISST data set (Rayner, et al., 2003).  11 

 12 
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Figure 9.24: Arctic September sea-ice extent from observations (NSIDC, red line) (Fetterer, et al., 2002), the 12 4 

CMIP5 model multi-model ensemble mean (dark greenish line), the 12 CMIP3 model multi-model ensemble mean 5 

(black line), and one standard deviation ranges of the model estimates (bluish and grey shadings, correspondingly). 6 

Note that these are September means, not yearly minima.  7 

 8 
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Figure 9.25: Terrestrial snow-cover distribution in the Northern Hemisphere simulated by 9 CMIP5 AOGCMs for 4 

February. For each 1° × 1° longitude-latitude grid cell, the figure indicates the number of models that simulate at least 5 5 

kg m–2 of snow water equivalent. The observed 20% concentration boundaries (red line) are based on the (Robinson & 6 

Frei, 2000) and cover the period 1986–2005. The annual mean 0°C isotherm at 3.3 m depth averaged across the 9 7 

AOGCMs (yellow line) is a proxy for the permafrost boundary. Observed permafrost zonation in the Northern 8 

hemisphere (magenta dashed line) is based on (Nelson, Anisimov, & Shiklomanov, 2002). 9 

 10 

11 



First Order Draft Chapter 9 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 9-151 Total pages: 171 

 1 

 2 

 3 

 4 

Figure 9.26: Simulation of land carbon uptake (top left) and ocean carbon uptake (top right) in the CMIP5 Earth 5 

System Models (ESMs), for the period 1960–2005, relative to 1960. All of these models include the impact of land-use 6 

changes on land carbon storage. For comparison, the observation-based estimates provided by the Global Carbon 7 

Project (“GCP”, (Le Quere et al., 2009) are also shown as the dotted line. The bottom right panel shows the sum of the 8 

land and ocean uptake from 1900 to 2005, again relative to 1960. 9 

 10 
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Figure 9.27: Simulation of net land CO2 flux (top left) and ocean CO2 flux (top right) in the CMIP5 Earth system 4 

models (ESMs), for the period 1995–2005. In each panel the mean flux over the period is plotted on the x-axis, while 5 

the standard deviation of the annual fluxes is plotted on the y-axis. For comparison, the observation-based estimates 6 

provided by the Global Carbon Project (“GCP”, (Le Quere, et al., 2009) are also shown as the dotted line.  7 

 8 

9 



First Order Draft Chapter 9 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 9-153 Total pages: 171 

 1 

 2 

 3 

Figure 9.28: The relative error in visible aerosol optical thickness (AOT) from the median of a subset of CMIP5 4 

models’ historical simulations, relative to satellite retrievals of AOT. The figure was constructed following (Kinne et 5 

al., 2006). The satellite AOT is from the MODIS instrument on the NASA Terra satellite from 2001 through 2005. The 6 

data version is MODIS 4; the model output is from CSIRO Mk3-6-0, GISS ER-2, HadGEM2-ES, IPSL CM5A-LR, and 7 

NorESM1-M. 8 

 9 
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Figure 9.29: Time series of the global oceanic-mean AOT from individual CMIP5 models’ historical simulations 4 

against the time series of global oceanic-mean AOT from the Global Aerosol Climatology Project (GACP). The figure 5 

is constructed following (Mishchenko et al., 2007). The "brightening" trend shown with the straight green line is 6 

discussed in Chapter 7. The model output is from CSIRO Mk3-6-0, GISS ER-2, HadGEM2-ES, IPSL CM5A-LR, and 7 

NorESM1-M. 8 
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Figure 9.30: Composite diurnal cycle of surface air temperature from observations (black line) and CMIP3 models 4 

(coloured lines) averaged over land (left) and ocean (right) areas for three different zones. Adapted from (Dai & 5 

Trenberth, 2004). 6 
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Figure 9.31: Composite diurnal cycle precipitation from observations (black) and a subset of CMIP3 models (coloured 4 

lines) averaged over land (left) and ocean (right) areas for three different zones. Adapted from (Dai, 2006). 5 
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Figure 9.32: Outgoing Longwave Radiation (OLR), 20–100 day filtered, from observations and each of the CMIP3 4 

models’ simulations of 20th-century climate is projected on the two leading Empiricol Orthogonal Functions (EOF’s) of 5 

OLR that constitute the Madden-Julian Oscillation (MJO). Shown is the maximum positive correlation between the 6 

resulting MJO Principal Components (PC’s) and the time lag at which it occurred for all winters (November-March). 7 

The maximum positive correlation is an indication of the coherence with which the MJO convection propagates from 8 

the Indian Ocean to the Maritime Continent/western Pacific and the time lag is approximately 1/4 of the period of the 9 

MJO. Most models have weaker coherence in the MJO propagation (smaller maximum positive correlation), and some 10 

have periods that are too short compared to observations. One CMIP3 model is not shown as its day of maximum 11 

positive correlation was –16, indicating that this model is incorrectly dominated by westward propagation. Constructed 12 

following (Sperber, Gualdi, Legutke, & Gayler, 2005). 13 

 14 

15 



First Order Draft Chapter 9 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 9-158 Total pages: 171 

 1 

 2 

 3 

Figure 9.33: Monsoon precipitation intensity (shading, mm/day) and monsoon precipitation domain (lines) are shown 4 

for (a) observations from GPCP, (b) the CMIP3 multi-model mean, (c) the best model, and (d) the worst model in terms 5 

of the threat score for this diagnostic. The threat scores indicate how well the models represent the monsoon 6 

precipitation domain compared to the GPCP data. The threat score in panel (a) is between GPCP and CMAP rainfall to 7 

indicate observational uncertainty. A threat score of 1.0 would indicate perfect agreement between the two datasets. See 8 

(Wang & Ding, 2008; Wang, Kim, Kikuchi, & Kitoh, 2011); and (Kim et al., 2011) for details of the calculations.. 9 
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 4 

Figure 9.34: Power spectral density of NH temperature for a) several simulations of the last millennium performed with 5 

CMIP3-generation models (see Chapter 5) b) long pre-industrial simulations for a subset of the same models. In a) the 6 

model were all forced by the long-term evolution of the atmospheric trace gases, tropospheric aerosols (except ECHOG 7 

and CCSM3), solar irradiance, volcanism eruption (except for IPSL), even though from different reconstructions. The 8 

two MPI-ESM simulations differ by the magnitude of the change in the solar irradiance between the Little Ice Age and 9 

the present (0.1% in E1 instead of 0.25% in E2 and the other simulations) to better reflect the recent revised estimate by 10 

(Solanki, Usoskin, Kromer, Schussler, & Beer, 2004). A subset of simulations also includes the volcanic forcing or the 11 

evolution of land use (MPI-ESM and CNRM). In the MPI-ESM simulations the carbon cycle is interactive. 12 
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Figure 9.35: From top to bottom: SST composites using AMOC time series; precipitation composites using cross-4 

equatorial SST difference time series; equatorial salinity composites using ITCZ-strength time series; subpolar-gyre 5 

depth-averaged salinity (top 800–1,000 m) using equatorial salinity time series; subpolar gyre depth averaged density 6 

using subpolar gyre depth averaged salinity time series. From left to right: HadCM3, MPI-ESM, and KCM. Black 7 

outlining signifies areas statistically significant at the 5% level for a two-tailed t test using the moving-blocks 8 

bootstrapping technique (Wilks, 1995) (Figure 3 from Menary et al. (2011)). 9 
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Figure 9.36: [PLACEHOLDER FOR SECOND ORDER DRAFT: Figure from AR4; to be updated.] Maximum 4 

entropy power spectra of surface air temperature averaged over the NINO3 region (i.e., 5°N to 5°S, 150°W to 90°W) 5 

for (a) the CMIP3 models and (b) the CMIP2 models. Note the differing scales on the vertical axes and that ECMWF 6 

reanalysis in (b) refers to the European Centre for Medium Range Weather Forecasts (ECMWF) 15-year reanalysis 7 

(ERA15) as in (a). The vertical lines correspond to periods of two and seven years. The power spectra from the 8 

reanalyses and for SST from the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) version 1.1 data set 9 

are given by the series of solid, dashed and dotted black curves. Adapted from (AchutaRao & Sperber, 2006) and 10 

Sperber. 11 
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Figure 9.37: ENSO metrics comparing CMIP3 and CMIP5 [PLACHOLDER FOR SECOND ORDER DRAFT: To be 4 

updated with more CMIP5 results.] 5 
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Figure 9.38: Portrait diagram display (Gleckler, Taylor, & Doutriaux, 2008) of relative error metrics for the CMIP5 4 

temperature and precipitation indices compared to ERA40 (top) and NCEP (bottom) re-analyses for the base period 5 

1961–1990. Only land areas are considered. Top row in each diagram indicates the mean RMSE across all indices for a 6 

particular model. The indices marked with a * are bias-corrected (indices are calculated using the bias-corrected 7 

minimum and maximum temperature time series but using the temperature thresholds estimated from the re-analysis, so 8 

that the bias in simulated temperature variability can be assessed). Indices shown are ‘Warm/Cold spell duration’ 9 

(twsd/tcsd), ‘Warm/Cool days’ (tx90p/tx10p), ‘Warm/Cool nights’ (tn90p/tn10p), ‘Min/Max T2MAX’ (txmin/txmax), 10 

‘Min/Max T2MIN’ (tnmin/tnmax), ‘Ice/Summer/Frost days’ (txid/txsu/tnfd), ‘Tropical nights’ (tn20), ‘Growing season 11 

length’ (tgsl), ‘Diurnal temperature range’ (tdtr), ‘Consecutive wet/dry days’ (pxcwd/pxcdd), ‘Max 5-day/1-day 12 

precipitation amount’ (px5d/px1d), ‘Simple daily intensity index’ (psdii), ‘Annual total wet-day precipitation’ (prtot), 13 

‘Extremely/Very wet days’ (pr99p/pr95p) and ‘Number of very heavy/heavy precipitation days’ (p20mm/p10mm) from 14 

Klein Tank et al. (2009). (Haylock et al., 2008). 15 
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Figure 9.39: Mean annual cycle of temperature (a) and precipitation (b) from CMIP5 GCM (dotted lines) historical 4 

runs and CRU (solid lines) data for the indicated areas. Average is taken over land points over the period 1979 to 2005. 5 

Units are mm/day for precipitation and °C for temperature. 6 

7 
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Figure 9.40: Ranked modelled versus observed monthly mean temperature for a Mediterranean subregion, for the 5 

1961–2000 period. The RCM data (panel a) are from Christensen et al. (2008) and are adjusted to get a zero mean in 6 

model temperature with respect to the diagonal. The GCM data in panel b are from CMIP3 and adjusted to get a zero 7 

mean in model temperature with respect to the diagonal. Figure after Boberg and Christensen (2011). 8 
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Figure 9.41: Summer seasonal mean (JJA, 1987–2008) in Southern Norway gridded observational precipitation with 1 4 

km resolution from Met.no and RCM-simulated precipitation with boundary conditions from the ERA40 reanalysis and 5 

ECMWF operational analysis (top row). The RCM has been run at four different resolutions ranging from 50 to 6 km. 6 

Differences between the simulated precipitation and the gridded observations aggregated from 1 km to respectively 50, 7 

25, 12 and 6 km grids are shown in the bottom row. The model runs are from Walther et al. (2011). 8 
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Figure 9.42: (a) Comparison of simulated and observed changes in annual mean temperature, LGM compared to 4 

modern and ocean compared to land, (b) simulated relationship between regional cooling in the tropics and over eastern 5 

Antarctica and global cooling. This figure is adapted from (Crucifix, 2006; Cunningham et al., 2009; Kageyama et al., 6 

2006; Masson-Delmotte et al., 2006; Otto-Bliesner et al., 2009) using the PMIP2 dataset (Braconnot et al., 2007). In a) 7 

the colour dots represent the different model results for the two regions, and the large crosses the estimates for the 8 

ocean and land surface data from (Waelbroeck, et al., 2009) and (Bartlein, et al., 2010) respectively. In b) the different 9 

points represent different model results and the hatched bars the estimates with error bars for the (Waelbroeck, et al., 10 

2009) SST reconstruction and East Antarctica air temperature reconstruction from ice cores (Masson-Delmotte, et al., 11 

2006). 12 
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Figure 9.43: Summary of the findings of Chapter 9 with respect to how well the CMIP3 models simulate important 4 

features of the climate of the 20th century [PLACEHOLDER FOR SECOND ORDER DRAFT: Will be updated with 5 

CMIP5 models]. Confidence in the assessment increases towards the top-right corner as suggested by the increasing 6 

strength of shading. Features that current state-of-the-art AOGCMS and ESMs simulate well, show mixed results, or 7 

have problems representing are shown in blue, grey, and red, respectively. The figure highlights the following key 8 

features (subject to revisions), with the sections that back up the assessment added in brackets: 9 

Annual cycle SIE:   Annual cycle Arctic and Antarctic Sea Ice Extent (Section 9.4.3) 10 

AMOC:     Atlantic Meridional Overturning Circulation (Section 9.4.2.6) 11 

Antarctic P-E:    Antarctic Precipitation minus Evaporation (Section 9.6.2) 12 

Circulation regimes:   Blocking events and others circulation regimes (Section 9.5.2.2) 13 

Clouds and CRE:   Clouds and Cloud Radiative Effects (Section 9.4.1) 14 

ENSO:     El Niño Southern Oscillation (Section 9.5.3.7) 15 

Global Monsoon:   see Section 9.4.2 16 

Global Scale P:   Global scale precipitation (Section 9.4.1)  17 

Meridional heat transport:  see Section 9.4.2.6 18 

MJO:     Madden Julian Oscillation (Section 9.5.2.2) 19 

NAO:     Northern Annual Mode (Section 9.5.3.7) 20 

OHC:     Ocean Heat Content (Section 9.4.2) 21 

SAF:     Snow albedo feedback (Sections 9.8.3) 22 

SAO:     Southern Annual Mode (Section 9.5.3.7) 23 

SAT:     Surface Air Temperature (Section 9.4.1) 24 

SIE:     Sea Ice Extent (Sections 9.4.3 and 9.8.3)  25 

SSIE:     September SIE (Sections 9.4.3 and 9.8.3) 26 

SSS:     Sea Surface Salinity (Section 9.4.2.6) 27 

SST:     Sea Surface Temperature (Sections 9.4.1 and 9.4.2.6) 28 

Trends in T and P Extremes: Trends in temperature and precipitation extremes (Section 9.5.4) 29 

Trop Atlantic / Pacific MS:  Tropical Atlantic / Pacific Mean State (Section 9.4.2) 30 

Trop Indian Ocean MS:  Tropical Indian Ocean Mean State (Section 9.4.2.6) 31 

Upper ocean heat uptake:  see Section 9.4.2 32 

UTTT:    Upper tropospheric temperature trends (Section 9.4.1) 33 

WBC:     Western Boundary Current (Section 9.4.2.6) 34 

[PLACEHOLDER FOR SECOND ORDER DRAFT: This figure is a preliminary version subject to revisions; it will be 35 

updated with more CMIP5 results and will possibly be separated into different panels that show: Panel 1: Climatologies 36 

and trends; Panel 2: Variability including extremes; Panel 3: Regional performance.] 37 
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Figure 9.44: Left: Scatter plot of simulated springtime snow albedo feedback (Δαs/ΔTs) values in climate change 4 

(ordinate) versus simulated springtime Δαs/ΔTs values in the seasonal cycle (abscissa) in transient climate change 5 

experiments with 17 AOGCMs from CMIP3 (αs and Ts are surface albedo and surface air temperature, respectively). 6 

From Hall and Qu (2006); [update with CMIP5 data; show CMIP3 in different colour in addition]. Right: Constraint on 7 

the climate sensitivity of land carbon in the Tropics (30°N-30°S) from interannual variability in the growth-rate of 8 

global atmospheric CO2. This version is based on C4MIP GCMs (black labels), and three land carbon “physics 9 

ensembles” with HadCM3 (red labels). The y-axis is calculated over the period 1960-2099 inclusive, and the y-axis is 10 

calculated over the period 1960-2010 inclusive. In both cases the temperature used is the mean (land+ocean) 11 

temperature over 30°N-30°S.  The vertical grey band shows the estimated sensitivity of the observed global CO2 12 

growth-rate to the observed tropical mean temperature. 13 
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Figure 9.45: Projected decline of Arctic sea ice area with increasing global temperature. Shaded areas depict the 4 

uncertainty range (red based on observations from 1980-2007 and blue from 1960-2010). The time period in the legend 5 

indicates the time window that is used to estimate polar amplification. The models are calibrated to start at the current 6 

observational point (1980-2007) and show points for sea ice larger than 1.0 million km2. Warming in 2090-2099 and 7 

associated uncertainties for three SRES non-intervention emission scenarios from (IPCC, 2007) are indicated at the 8 

bottom. From (Mahlstein & Knutti, 2011). 9 
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FAQ 9.1, Figure 1: Quantitative examination of model skill as measured in the three recent phases of CMIP (CMIP2, 4 

CMIP3 and CMIP5). The RMSE is normalized in each case by the observational standard deviation to facilitate 5 

comparison across variables. Results are shown for global precipitation and surface air temperature. [PLACEHOLDER 6 

FOR SECOND ORDER DRAFT: This figure very preliminary; will be updated as additional CMIP5 simulations 7 

become available. Additional fields may also be included in future renditions.] Redrafted from (P. Gleckler, K. Taylor, 8 

and C. Doutriaux, 2008) and updated with CMIP5 results. 9 
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