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10.SM.1	 Notes and Technical Details on Figures  
Displayed in Chapter 10

Box 10.1, Figure 1 

a). Observed global annual mean temperatures 1860–2012 rela-
tive to the 1880–1919 climatology from the Hadley Centre/Climatic 
Research Unit gridded surface temperature data set 4 (HadCRUT4) 
data set (coloured dots, with colours also indicating observed tem-
perature) compared with Coupled Model Intercomparison Project 
Phase 3 (CMIP3)/CMIP5 ensemble mean response to anthropogenic 
forcing (orange), natural forcing (blue) and best-fit linear combina-
tion (black). CMIP series was obtained by a simple average over the 
models available for each year, with equal weight given to each model. 
Anthropogenic signal obtained by differencing historical from natural 
simulations. Anthropogenic and natural simulations are masked to cor-
respond to observations following Jones et al. (2013 ) and Figure 10.1 
and noise-reduced with 5-point running mean. To avoid smoothing out 
the volcanic signals, smoothing is not performed over years where the 
ensemble mean natural simulations decreases by more than 0.05°C. 

b). Same as panel a), but plotting against CMIP ensemble mean 
anthropogenic warming instead of time. Note that the only change 
from Box 10.1 Figure 1 (a) is the location of points in the horizontal.

c). Same as panel b), but plotting observed annual mean temperatures 
against CMIP ensemble mean anthropogenic warming in one direction, 
and naturally forced temperature change in the other. Mesh shows 
best-fit plane through the observed points, obtained by an ordinary 
least-squares fit giving equal weight to all points. Black line shows 
the best-fit linear combination of model-simulated anthropogenic and 
naturally forced temperature change. Length of pins shows residual 
climate variability (difference between observations and best-fit). Gra-
dients of best-fit surface in anthropogenic and natural directions show 
best-fit scaling factors on CMIP5 ensemble mean anthropogenic and 
natural temperature change. For an animated visualisation of how this 
figure is constructed, please see the animation file provided as part of 
the Chapter 10 Supplementary Material. Uncertainty analysis of best-
fit gradients in (c) using CMIP5 control variability. 

d). Best-fit scaling factors on anthropogenic and natural tempera-
ture change, or gradients of the best-fit plane through observations 
from (c), shown by red diamond. Grey diamonds show corresponding 
gradients obtained applying an identical analysis to 114 non-overlap-
ping 153-year segments (i.e., 17,442 years in total) of global mean 
surface temperature (GMST) from unforced control variability from the 
CMIP5 ensemble. For this heuristic example, control segments have not 
been masked as in the observations, but residuals are consistent with 
observed residual variability in both variance and power spectra. Black 
ellipse shows two-dimensional 90% confidence interval obtained by 
fitting an F2,114 distribution to the grey diamonds. Red ellipse shows 
corresponding confidence interval centered on the best-fit gradients 
through the observations. Corresponding one-dimensional confidence 
intervals on scaling on model anthropogenic and natural warming 
shown by the red cross. Upper axis shows corresponding attributable 
anthropogenic warming 1951–2010 obtained from a straight-line fit to 
the CMIP ensemble mean anthropogenic warming. Location of red dia-

mond and error bar on this axis indicate best-estimate and uncertainty 
in attributable anthropogenic warming.

Figure 10.1, Figure 10.2, Figure 10.3

The right panels of Figure 10.1 (Figures 10.1d, e, f) are taken from 
Figure 3a of Forster et al. (2013 ), except that data from Fgoals-S2 have 
been excluded, and that 3-year smoothing to the data has not been 
applied here. 

Process and data to create the leftmost panels of Figure 10.1; Figures 
10.2 and 10.3 are described below. These figures are adapted from 
Jones et al. (2013 ). 

Data
All of the data used were provided as monthly Netcdf files, from the 
CMIP3 and CMIP5 archives, and Daithi Stone (providing data used in 
the AR4 figures that were not in the CMIP3 archive). CMIP3 20C3M 
experiments were extended to 2012 by using A1B scenario simula-
tions. CMIP5 historical experiments were extended to 2012 by using 
historicalExt and rcp4.5 experiments.

Regridding
All data are re-gridded onto the HadCRUT4 spatial grid (5° × 5°) since 
HadCRUT4 generally has the most restricted spatial coverage of the 
data sets considered here. There is no infilling into grid boxes with no 
observations. The re-gridding is done by area averaging any part of the 
old grid that lies within the new grid to produce a new gridpoint value. 

Masking
The data coverage is limited to where data exists in the equivalent 
month/gridpoint of HadCRUT4.

Creation of Annual Means
Anomalies are calculated for each month/gridpoint relative to the 
1961–1990 average, where at least 50% of the data in the reference 
period are needed to calculate the average. Annual means are calculat-
ed from monthly data for each calendar year, where at least 2 months 
are non-missing. 

Global Means
GMST anomalies are calculated by area averaging all available grid-
point data for each year. For Figure 10.1 the average of the global 
mean for the reference period is calculated (1880–1919). The anoma-
lies are then calculated with respect to the reference period. 

Figure 10.1

All model simulations are displayed even if they do not cover the whole 
period.

Figure 10.2

For each gridpoint a linear regression is applied to the available data 
to calculate the trend, requiring no period longer than 5 consecutive 
years with missing data. 
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Figure 10.3

For each latitude (on the HadCRUT4 grid), the average of the trend 
across the longitudes is calculated. Any of the observational data sets 
having less than 50% coverage of HadCRUT4’s coverage at a given 
latitude are not shown on the figure at that latitude.

Model Spread
For Figures 10.2 and 10.3 showing estimates of the spread of models, 
the 5 to 95% ranges are estimated by ordering the data (after weight-
ing each simulation by the inverse of the number of simulations the 
model it belongs to has and multiplied by the number of models) and 
then choosing the central 90% range as limits (see Jones et al., 2013 ).

Data

Figure 10.4

Scaling factors in (b) shown with a square are reproduced from Ribes 
and Terray (2013) (Figure 3, top right panel) and those in (d) are repro-
duced from Ribes and Terray (2013) (Figure 3, top left panel). In cases 
where Ribes and Terray (2013) show confidence ranges which include 
both plus and minus infinity, uncertainty bars are shown here as con-
tinuous across the range plotted. Scaling factors shown with a triangle 
in (b) are reproduced from Gillett et al. (2013 ) (Figure 4a), and those in 
(d) are reproduced from Gillett et al. (2013 ) (Figure S1). Results labelled 
‘multi’ correspond to those labelled ‘ObsU’ in Gillett et al. (2013 ), and 
account for observational uncertainty and model uncertainty. Scaling 
factors in (b) shown with a diamond are reproduced from Jones et al. 
(2013 ) (Figure 16a). Results labelled ‘multi’ correspond to those labelled 
‘Weighted avg’ in Jones et al. (2013 ). Corresponding attributable trends 
over the 1951–2010 period are taken directly from Jones et al. (2003) 
(Figure 16b), and are derived from the Ribes and Terray (2013) and Gil-
lett et al. (2013 ) regression coefficients by multiplying regression coef-
ficients for each forcing by the corresponding least squares trend in 
GMST simulated in response to that forcing over the 1951–2010 period. 
FGOALS-g2 was excluded from this figure because it did not include the 
effects of volcanic aerosol in its historicalNat simulations.

Figure 10.5

This figure shows the assessed ranges derived as described in Section 
10.3.1.1.3. We derive assessed ranges for the attributable contribu-
tion of greenhouse gases (denoted GHG, green), other anthropogenic 
forcings (OA, orange) and natural forcings (NAT, blue) by taking the 
smallest ranges with a precision of one decimal place that span the 5 
to 95% ranges of attributable trends for the 1951–2010 period from 
the Jones et al. (2013 ) weighed multi-model analysis and the Gillett et 
al. (2013 ) multi-model analysis considering observational uncertainty 
(Figure 10.4a). The assessed range for the attributable contribution of 
combined anthropogenic forcings was derived in the same way from 
the Gillett et al. (2013 ) multi-model attributable trend shown in Figure 
10.4c. The assessment of the internal variability is taken from the 
estimates of the 5th to 95th percentiles of 60-year trends of internal 
variability estimated by Knutson et al. (2013). We moderate our likeli-
hood assessment and report likely ranges rather than very likely ranges 
directly implied by these studies in order to account for residual sourc-
es of uncertainty (see Section 10.3.1.1.3). Shown on the figure are the 
likely ranges shown as the whiskers with the end of the coloured bars 
being at the mid point of the attributable trend ranges. The midpoint of 
NAT is zero but the blue NAT bar is widened to make it visible.

Figure 10.6 

This figure is updated from the figure in Imbers et al. (2013) which is 
described in detail there. Estimates of contributions to global tempera-
ture changes are described in individual contributing papers.

Figure 10.6 is an updated version of an equivalent figure published in 
Imbers et al. (2013). The four studies represented in Figure 10.6 are 
identical to Figure 1 in Imbers et al. (2013); only the data from the 
Folland et al. (2013) have been updated. The four studies’ aims were 
slightly different, as well as the signals included into the global mean 
temperature decomposition and length and sampling intervals of their 
time series. In what follows we briefly describe each of the studies 
represented in Figure 10.6.

The first study shown in Figure 10.6 is from Folland et al. (2013 ). Part 
of their aim was to forecast annual global mean temperature anom-
alies using a statistical model that estimates the contributions of six 
physical factors to GMST change and variability. The factors are net 
forcing from anthropogenic GHGs and aerosols, forcings from volcanic 
aerosols and changes in solar output, and the influences two internal 
modes of variability: El Niño-Southern Oscillation (ENSO) (represented 
by the first high-frequency eigenvector of global sea surface tempera-
tures) and the Atlantic Multi-decadal Oscillation (AMO) (derived from 
the third low-frequency eigenvector of global sea surface temperatures 
of Parker et al. (2007)).

In their predictability analysis, the influence of these factors on observed 
surface temperatures is estimated from cross validated multiple linear 
regression using annual surface temperature values from 1891 to 2011 
from an average of HadCRUT3, National Climate Data Centre (NCDC) 
and Goddard Institute of Space Studies (GISS). Owing to the cross val-
idation method, an ensemble of 121 reconstructions of the observed 
variable is obtained. In our analysis we show the ensemble mean time 

Observational Data Set Period Covered

GISTEMP 1880–2012

HadCRUT4 1850–2012

MLOST 1880–2012

Table 10.SM.1 | Observational data sets.

Archive
Number of models 
used (that cover 

1901–2012 period)

Total number of 
members (that cover 
1901–2012 period)

Historical CMIP3 13 (9) 63 (35)

CMIP5 44 (40) 147 (127)

historicalNat CMIP3 6 (Hegerl et al., 2010) 30 (Hegerl et al., 2010)

CMIP5 17 (10) 52 (38)

historicalGHG CMIP3 NA NA

CMIP5 16 (9) 48 (35)

Table 10.SM.2 |  Model Data. Summary of data used. Historical data were extended 
into the 21st century either by using any available A1B SRES simulations for CMIP3, and 
RCP4.5 for CMIP5, or RCP8.5 in cases where RCP4.5 was not available.
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series and its 95% confidence range resulting from regression with the 
HadCRUT3 data set alone to 2012, giving 122 reconstructions. There 
are two differences between the way the ENSO and volcanic predictors 
are used here and in Folland et al. (2013). In Figure 10.6 appropriately 
smoothed volcanic and solar data simulated to the end of each year 
are used as well as ENSO data simulated from January to September of 
each year. In Folland et al. (2013) the ENSO data used for the prediction 
of a year were averaged over October and November of the previous 
year while the volcanic and solar data used were simulated up to the 
end of the previous year. Imbers et al. (2013) used an earlier version 
of the data of Folland et al. (2013) with the same differences in the 
way ENSO and volcanic predictors are used but using annual surface 
temperature values from 1891 to 2010 from an average of HadCRUT3 
as training data for the statistical model, updated here using annual 
surface temperature values from 1891 to 2012.

Lean and Rind’s (2009) results are also shown in Figure 10.6. Their 
goal was to forecast global and regional climate change in the near 
future by decomposing the observed record of monthly mean surface 
air temperature in terms of its combined linear response to ENSO, solar 
and volcanic activity and anthropogenic influences (Lean and Rind, 
2008; see also Kopp and Lean, 2011). They used 1980–2008 monthly 
time series of mean surface temperature anomalies with respect to 
1951–1980 and performed a multivariate linear regression against the 
instrumental surface temperature record HadCRUT3v (Brohan et al., 
2006) to find the optimal combination of those four signals that better 
explain that record. Their solar, volcanic, anthropogenic and ENSO sig-
nals are lagged by 1, 7, 120 and 4 months respectively with respect to 
the temperature observations in order to maximize the proportion of 
global variability that the statistical model captures (76% of the vari-
ance observed since 1980).

The results of the third study considered in Figure 10.6 are from 
Kaufmann et al. (2011), who used a statistical model derived to esti-
mate the relation between emissions of carbon dioxide (CO2) and meth-
ane (CH4), the concentrations of these gases, and global surface tem-
perature (Kaufmann et al., 2006), to evaluate whether anthropogenic 
emissions of radiative active gases along with variability can account 
for the 1998–2008 hiatus in warming. The model is estimated with 
annual data from 1960 to 1998 and used to project 1998–2008 tem-
peratures. The signals included in this model are: GHGs, anthropogenic 
sulphur emissions, solar insolation, ENSO (represented by the Southern 
Oscillation Index (SOI)) and radiative forcing of volcanic sulphates.

The last study shown in Figure 10.6 is from Lockwood (2008). Lock-
wood (2008) intended to analyse the contribution of changes in solar 

output to global mean surface temperature. The statistical model con-
sists on a multivariate fit to the global monthly mean surface tempera-
ture anomaly for the period 1953–2007. The signals included in the fit 
are the solar, volcanic and anthropogenic components (the latest as a 
linear trend), and the ENSO3.4 index to represent the effect of El Niño. 

Figure 10.7

Taken from Figure 7 of Jones et al. (2013 ).

Figure 10.8 

The figure is adapted from Lott et al. (2013).

Observational Data Sets
A number of new radiosonde data sets have been developed since the 
studies of a decade ago. Following the review by Thorne et al. (2011) 
and having assessed which sets had coverage for the entire period, 
four data sets were chosen for analysis. The first of these is Hadley 
Centre Atmospheric Temperature data set 2 (HadAT2) (Thorne et al., 
2005). Of the observational data sets, this has the least spatial cover-
age, and thus is used as a common mask for all other data, both obser-
vations and models, to allow a like-for-like comparison.

The other three observational data sets are from the Radiosonde Inno-
vation Composite Homogenization RAdiosone OBservation COrrection 
using REanalyses (RICH/RAOBCORE) family (Haimberger et al., 2012). 
The first of these sets used is RAOBCORE 1.5, which uses the European 
Centre for Medium Range Weather Forecasts (ECMRWF) 40-year rea-
nalysis (ERA-40) (Uppala et al., 2005) and ERA-Interim reanalyses (Dee 
et al., 2011) to detect and adjust breakpoints. The other two are the 
ensembles of realizations known as RICH-obs 1.5 and RICH- τ 1.5. Both 
of these generate the ensemble by varying processing decisions (such 
as minimum number of data points or treatment of transitions), with 
breakpoint detection derived from RAOBCORE. However, they differ in 
the way they handle the adjustments. RICH-obs makes adjustments 
by directly comparing station time series, while RICH- τ compares the 
differences between the time series and the ERA-Interim background.

Model Data Sets
For the selection of model data sets, the decision was limited by the 
need for that model to have runs with natural forcings (NAT), as well as 
runs with only GHG forcings and finally with all historical (i.e., anthro-
pogenic and natural) forcings (ALL), between 1961 and 2010 available 
on the CMIP5 (Taylor et al., 2012) archive at the time the analysis was 
undertaken. This led to the models shown in Table 10.SM.3 being used.

Modelling Centre (or Group) Model(s)
Members Included

ALL NAT GHG

Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change Centre of Excellence CSIRO-Mk3.6.0 10 5 5

NASA Goddard Institute for Space Studies
GISS-E2-R 5 5 5

GISS-E2-H 5 5 5

Canadian Centre for Climate Modelling and Analysis CanESM2 5 5 5

Met Office Hadley Centre HadGEM2-ES 4 4 4

Beijing Climate Center, China Meteorological Administration BCC-CSM1.1 3 1 1

Table 10.SM.3 |  CMIP5 models used for this study, and the number runs with each forcing.



10SM-6

Chapter 10 Supplementary Material	 Detection and Attribution of Climate Change: from Global to Regional

10SM

All data sets were adjusted to a common temperature anomaly rela-
tive to the 1961–1990 climatology, re-gridded to the HadAT2 grid and 
masked before zonal averages were taken. The following set of pres-
sure levels common to all data sets was used: 850, 700, 500, 300, 200, 
150, 100, 50 and 30 hPa. The three latitude bands analyzed are a tropi-
cal zone (20°S to 20°N) and north and south extratropical zones (60°S 
to 20°S and 20°N to 60°N), along with the average over the whole 
studied area (i.e., 60°S to 60°N). 

Different from Lott et al. (2013) Figures 10.8 and 10.SM.1 do not 
include the Centre National de Recherches Météorologiques (CNRM-
CM5) and Norwegian Earth System Model 1-M (NorESM1-M) models. 
CNRM-CM5 was excluded because of unrealistic stratospheric ozone 
forcing (Eyring et al., 2013). The NorESMI-M was not included because 
the GHG single forcing runs for this model also include ozone forcing. 

Trend Calculations
For both the models and observations, the trends at each pressure 
level were calculated using a median pairwise algorithm (as this copes 
better with outliers than a conventional linear fit) (Lanzante, 1996). 
These trends were plotted against pressure level, for all models and 
forcings within them. For each forcing ensemble of model runs, the 
shaded region shows the 5 to 95% range determined based on indi-

Figure 10.SM.1 |  Observed and simulated zonal mean temperatures trends from 1979 to 2010 for CMIP5 simulations containing both anthropogenic and natural forcings (red), 
natural forcings only (blue) and greenhouse gas forcing only (green) where the 5th to 95th percentile ranges of the ensembles are shown. Three radiosonde observations are shown 
(thick black line: Hadley Centre Atmospheric Temperature data set 2 (HadAT2), thin black line: RAdiosone OBservation COrrection using REanalyses (RAOBCORE) 1.5, dark grey 
band: Radiosonde Innovation Composite Homogenization (RICH)-obs 1.5 ensemble and light grey: RICH- τ 1.5 ensemble. (Adapted from Lott et al. (2013) but for the more recent 
period from 1979 to 2010.) 

vidual runs. Red represents all-forcings runs, blue shows natural forc-
ings and green is GHG-forced only. The thick black line is HadAT2, thin 
black line is RAOBCORE 1.5, while the dark grey band is the RICH-obs 
1.5 ensemble range and light grey is the RICH-τ 1.5 ensemble range. 
Each band is displayed 25% translucent to better distinguish where 
forcings and observations overlap. 

Trend caluclation shown in Figure 10.8 are for the period 1961–2010. 
Figure 10.SM.1 shows trend calcuations for the satellite period from 
1979 to 2010. 

Figure 10.9 

This figure shows time series of annual mean lower stratosphere 
temperatures from three satellite data sets and CMIP5 experiments. 
It utilizes the same CMIP5 model runs as Figure 10. 8 and individu-
al model runs are shown. Synthetic lower stratosphere temperatures 
were calculated using global Microwave Sounding Unit (MSU) verti-
cal weighting functions for the lower stratosphere. The three observa-
tional data sets are used to address observational consistent: Remote 
Sensing System (RSS) Version 3.3, University of Alabama in Huntsville 
(UAH) version 5.4 and Situation, Task, Action, Result (STAR) version 2.0 
(Santer et al., 2013). 
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Synthetic MSU temperature time series from model data were calcu-
lated as follows: 

1.	 Select area from 82.5°S to 82.5°N of atmosphere temperature 
fields and time period and calculate area weighted averages.

2.	 Select time series from January 1979 to December 2010 and calcu-
late annual averages and anomalies relative to the period 1996–
2010.

3.	 Select pressure levels (hPa): 1000, 925, 850, 700, 600, 500, 400, 
300, 250, 200, 150, 100, 70, 50, 30, 20, 10.

4.	 Apply vertical weighting function for MSU lower stratosphere tem-
perature (channel 4) (Mears and Wentz, 2009).

Figure 10.10

Figure 10.10 is updated from Supplementary Information Figure S1 of 
Balan Sarojini et al. (2012 ). The updates include the use of a 11-year 
smoothing rather than a 5-year smoothing used in Balan Sarojini et 
al. (2012 ) and simulations from additional models for ALL that have 
become available since the publication of the paper and that are listed 
below.

Global and zonal average changes in annual mean precipitation (in 
mm day–1) for the period 1951–2005, with regard to the baseline 
period of 1961–1990, are plotted based on Balan Sarojini et al. (2012 ).

CMIP5 Simulations used are:
Historical (‘All’): HadGEM2-ES, CSIRO-Mk3-6-0, CNRM-CM5, 
NorESM1-M, CanESM2, BCC-CSM1-1, INMCM4_ESM, IPSL-CM5A-
LR, GISS-E2-H, GISS-E2-R, MPI-ESM-LR, GFDL-ESM2G, GFDL-ESM2M, 
CCSM4, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MRI-CGCM3,  
IPSL-CM5A-MR, CESM1-BGC, CESM1-CAM5, CESM1-WACCM,  
CESM1-FASTCHEM, ACCESS1-0, GFDL-CM3, CMCC-CMS, CMCC-
CESM, HadGEM2-CC, NorESM1-ME, MPI-ESM-MR.

HistoricalNat (‘Nat’): HadGEM2-ES, CSIRO-Mk3-6-0, CNRM-CM5, 
NorESM1-M, CanESM2, BCC-CSM1-1, MIROC-ESM, MIROC-ESM-
CHEM, MRI-CGCM3, GFDL-CM3.

There are 30 ‘All’ runs (one each of 30 CMIP5 models forced with both 
anthropogenic and natural forcings) and 10 ‘Nat’ runs (one each of 10 
CMIP5 models forced with natural forcings only)

Observation used is a gridded observational data set based on station 
data extracted from the Global Historical Climatology Network (updat-
ed from Zhang et al. (2007)). Monthly data for the period 1951–2005, 
quality controlled and gridded at 5° × 5°, for all land grid squares 
on the globe for which station data are available, are used. In order 
to avoid artefacts arising from changes in data coverage, a sampling 
criterion of choosing data available for >90% of the analysis period is 
applied (i.e., each spatial grid point is chosen when data over 90% of 
the years (only those years that have data for all months) are present).

Masking of Simulated Data onto the Observational Grid
First, the land area of the simulated data available in different spatial 
resolutions is obtained by choosing a grid point as land when its land 
area fraction is greater than or equal to 70%. Second, the simulated 
land data are interpolated to the 5°× 5° observational grid using bilin-
ear interpolation. Third, the 90% sampling criterion is applied to each 
regridded model data to obtain the consistent temporal and spatial 
data coverage for the simulated and observed data.

Calculation of Spatial and Annual Averages and Anomalies with 
regard to the Baseline Climatology
For each (regridded and sampled) monthly model data, spatial averag-
es are first calculated for the global domain and zonal bands of 60°N 
to 90°N, 30°N to 60°N and 30°S to 30°N. Annual averages, baseline 
climatology (for 1961–1990) and anomalies from the baseline period 
are then calculated.

Calculation of Multi-model Means of ‘All’ and ‘Nat’ Runs
Multi-model averages of 30 All runs and 10 Nat runs are calculated.

Decadal Smoothing for both Observed and Simulated Data 
A smoothing of boxcar average with 11-year width (with edges trun-
cated) is applied to the resulting time series of annual precipitation 
anomalies.

Plotting 
The yearly anomalies are plotted with a y-axis range of 1950–2010. 
Multi-model means are in thick solid lines (All in red and Nat in blue) 
and individual simulations are in thin solid lines.

Statistical Test of Significance for the Changes Between ‘All’ 
and ‘Nat’ Runs
Green stars are plotted when the changes are statistically significant 
at 5% level (p <0.05) between the ensemble of runs with both anthro-
pogenic and natural forcings (red lines) and the ensemble of runs with 
just natural forcings (blue lines) using a two-sample two-tailed t-test 
for the last 30 years of the time series. 

Supplementary Figure to Figure 10.10: Figure 10.SM.2

Global and zonal average changes in annual mean precipitation (in 
mm day–1) for the period 1951–2005, with regard to the baseline 
period of 1961–1990, are plotted.

The details of the simulations and procedure for both simulations and 
observations are same as that for Figure 10.10 except for the observa-
tional data set used and an additional sampling criterion as described 
below (i.e., Steps 2 and 3).

Observation used is a gridded observational dataset based on station 
data extracted from the Climatic Research Unit (updated from CRU 
TS3.1 of Harris et al. (2013) and sampled as in Polson et al. (2013)). 
Monthly data for the period 1951–2005, quality controlled and gridded 
at 0.5° × 0.5°, are used.

This data is first interpolated to the common spatial resolution (as 
to Figure 10.10) of 5°× 5°. In order to avoid artefacts arising from 
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changes in data coverage, two sampling criteria are applied: (1) sta-
tion sampling criterion (Polson et al., 2013) of choosing only those 5° 
× 5° grid boxes that have at least one station (in any 0.5° × 0.5° grid 
box) for the coastal grid boxes and with at least two stations for the 
inland grid boxes. A 5° × 5° grid box is coastal when more than half 
of number of the 0.5° × 0.5° boxes is ocean points. (2) A criterion of 
choosing data available for >95% of the analysis period is applied, 
that is, each spatial grid point is chosen when data over 95% of the 
years (years that have data available for any number of months) are 
present.

Figure 10.SM.2 |  Global and zonal average changes in annual mean precipitation 
(mm day–1) over areas of land where there are observations, expressed relative to the 
baseline period of 1961–1990, simulated by CMIP5 models forced with both anthropo-
genic and natural forcings (red lines) and natural forcings only (blue lines) for the global 
mean and for three latitude bands. Multi-model means are shown in thick solid lines. 
Observations (gridded values derived from Climatic Research Unit (CRU) station data, 
updated from CRU TS3.1 of Harris et al. (2013) and sampled as in Polson et al. (2013) 
are shown as a black solid line. An 11-year smoothing is applied to both simulations and 
observations. Green stars show statistically significant changes at 5% level (p <0.05) 
between the ensemble of runs with both anthropogenic and natural forcings (red lines) 
and the ensemble of runs with just natural forcings (blue lines) using a two-sample two-
tailed t-test for the last 30 years of the time series.
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Masking of Simulated Data onto the Observational Grid
First, the land area of the simulated data available in different spatial 
resolutions is obtained by choosing a grid point as land when its land 
area fraction is greater than or equal to 70%. Second, the simulated 
land data are interpolated to the 5° × 5° observational grid using bilin-
ear interpolation. Third, the mask of station sampling and the 95% 
sampling (described in Step 2) is applied to each regridded model data 
to obtain the consistent temporal and spatial data coverage for the 
simulated and observed data.

Figure 10.11

Figure based on Zhang et al. (2007); Min et al. (2008); Min et al. (2011); 
Polson et al. (2013).

Left top panel: (a) Global land-annual results from Zhang et al. (2007) 
(first pair of bars) and Polson et al. (2013) (2nd to 5th pair of bars); 
(b) global land-seasonal results from Polson et al. (2013); (c) Arctic 
results from Min et al. (2008) and (d) extreme results from Min et al. 
(2011). Right top panel: After Zhang et al. (2007), but updated follow-
ing Polson et al. (2013): changes expressed in percent climatology and 
CMIP5 models plotted. Bottom left and right panel: from Polson et al. 
(2013).

Figure 10.12

December to February mean change of southern border of the Hadley 
circulation. Unit is degree in latitude per decade. Reanalysis data sets 
are marked with different colours. Trends are all calculated over the 
period of 1979–2005. According to CMIP5, historicalNAT, historical-
GHG and historical denote historical simulations with natural forcing, 
observed increasing GHG forcing and all forcings, respectively. For each 
reanalysis dataset, the error bars indicate the 95% confidence level of 
the standard t-test. For CMIP5 simulations, trends are first calculated 
for each model, and all ensemble members are used. Then, trends are 
averaged for multi-model ensembles. Trend uncertainty is estimated 
from multi-model ensembles, as twice the standard error. This figure 
is adapted from Hu et al. (2013) with additional trends derived from 
Climate Forecast System Reanalysis (CSFR) and Modern Era Retrospec-
tive-analysis for Research and Applications (MERRA) reanalyses.

Figure 10.13 

Figure 10.13 is adapted from Gillett and Fyfe (2013) (Figure S4), with the 
following changes. Simulations from the following numbers of models 
which cover the 1951–2011 period were used: 106 historical simula-
tions from 34 models, 26 historicalGHG simulations from 7 models, 11 
aerosols-only simulations from 3 models, 15 ozone-only simulations 
from 3 models, and 48 historicalNat simulations from 10 models, and 
control simulations from 43 models. As well as the 5 to 95% range of 
trends simulated in the historical simulations (red boxes), the 5 to 95% 
ranges of trends simulated in the control simulations (grey bars) are 
also shown. These ranges were derived by weighting each simulation 
by the inverse of the product of the number of models and the number 
of simulations from the model concerned, ranking the trends, deriving 
a cumulative distribution function by summing the weights, and then 
interpolating to find the 5th and 95th percentiles, following Jones et 
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al. (2013 ). Mean responses to each forcing were derived by first aver-
aging ensemble members for each model, and then averaging across 
models. Uncertainty bars shown for individual forcings are uncertain-
ties in the mean response to each forcing, calculated by dividing the 
standard deviation across models by the square root of the number of 
models, and multiplying by the Student-t statistic for a cutoff value of 
0.05 and with the number of degrees of freedom equal to one less than 
the number of models. A minor error effecting Gillett and Fyfe (2013) 
Figure S4 only in which the northern reference latitude for the Southern 
Annular Mode (SAM) index was 45°S instead of 40°S following Gong 
and Wang (1999) was corrected.

Figure 10.14

Panel (a) 
This figure is an update of Figure 2 of Domingues et al. (2008). In this 
figure:

CMIP5 simulations are: 
HistoricalNat (can_esm2, ccsm4, cnrm_cm5, csiro_mk3.6, giss_e2_h, 
giss_e2_r, hadgem2-es, miroc_esm, mri_cgcm3, nor_esm1_m) 

Historical (can_esm2, ccsm4, cnrm_cm5, csiro_mk3.6, giss_e2_h, 
giss_e2_r, hadgem2-es, miroc5, miroc4h, miroc_esm, mpi_esm_lr, 
mri_cgcm3, nor_esm1_m)

Annual mean ocean heat content (OHC) values are calculated from 
models by vertically integrating the annual mean temperature anoma-
lies (with respect to a 1960–1980 reference period). Global mean time 
series are calculated by integrating over space.

Observed global OHC changes from Domingues et al. (2008); also with 
a reference period of 1960–1980) are smoothed (three-year running 
means) and plotted.

Stratospheric Aerosol loading (as global mean AOD) from Sato et al. 
(1993); data downloaded from the website http://data.giss.nasa.gov/
modelforce/strataer/#References before their December 2012 update) 
is plotted. A three-year running mean is also calculated and plotted for 
comparison against smoothed data.

Panel (b) 
This figure is based on Figure 5(c) of Gleckler et al. (2012).

Anomalies of volume average temperature DT rather than ocean heat 
content are used.

Observed DT estimates are based on globally gridded (1° × 1° latitude/
longitude) products, not raw measurements. The observed datasets 
used are:

Pre-XBT bias correction data: Levitus et al. (2005) and Ishii et al. 
(2006)

XBT bias corrected data: Levitus et al. (2009), Ishii and Kimoto 
(2009) and Domingues et al. (2008)

Annual means of all model ocean temperature data 700 m of the 
ocean column have been interpolated to the spatial grid and standard 
vertical depth levels of the observational data (Ishii and Kimoto, 2009). 

From the CMIP3, control and 20th century (20CEN) runs are consid-
ered. The models are further classified as:

VOL models (those that included volcanic and other natural forc-
ings) are CCSM3.0, GFDL-CM2.0, GISS-EH, GISS-ER, MIROC-CG-
CM2.3.2, MRI-CGCM2.3.2

NoV models are those that did not include natural forcings. These 
are CCCma-CGCM3.1, CNRM-CM3, CSIRO-Mk3.0, GISS-AOM, 
FGOALS-g1.0 and UKMO-HadCM3.

The observed and model simulated historical anomalies are calculated 
with respect to a 1957–1990 climatology and all control-run anomalies 
are with respect to the overall time mean of each model’s control run. 

Each 20CEN simulation is subsampled in the same manner using the 
1960–1999 (Ishii, 2009).

Basin-scale DT changes in the North Atlantic, South Atlantic, North 
Pacific, South Pacific, North Indian, and South Indian oceans are com-
puted.

Residual drift associated with the incomplete spin-up of model control 
runs is removed from all DT basin-average time series using a quadrat-
ic fit. Quadratic fits are computed for the entire control, yielding a drift 
estimate. This drift is then removed from the original control, yielding 
an estimate of the true model noise. For each 20CEN simulation, there 
is a contemporaneous section of the corresponding control and a con-
temporaneous section of the control-drift estimate. This section of the 
control drift is removed from the 20CEN simulation.

The DT anomalies of each ocean basin are then weighted by its volume. 

CMIP3 20CEN runs (1870–1999) are averaged together to produce 
a Multi-Model Response (MMR). If more than one realization of the 
20CEN experiment is available for an individual model, these realiza-
tions are averaged together before averaging across models. 

The fingerprint is the first Empirical Orthogonal Function (EOF) of the 
MMR of DT in the six ocean basins, calculated over 1960–1999. Fin-
gerprints are computed separately for the simulations that include vol-
canic (V) or exclude volcanic eruptions (NoV) MMRs. 

The multimodel noise estimates are based on concatenating all availa-
ble control data from VOL models. 

The basin-average upper-ocean temperature changes from observa-
tions are projected onto the fingerprint yielding the signal projection 
time series Z(t). 

Trends of increasing length L (least squares fit starting from 1970 and 
with an initial L of 10 years) are fit to this time series to yield the 
“signal”.
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Similarly, the DT from the VOL concatenated control runs are projected 
onto the searched-for fingerprint. The resulting projection time series, 
N(t), provides information about unforced changes in pattern similarity. 

L-year, non-overlapping trends are fitted to N(t), with L varying from 
10, 11, 12,…39 years. For a given value of L, the noise is the standard 
deviation of the sampling distribution of the trends.

With these, the signal-to-noise (S/N) ratio is calculated as a function of 
L. The detection time is defined as the year at which S/N ratio exceeds 
and remains above a stipulated 5% significance threshold.

Figure 10.15

This figure is from three published studies. Panel A is adapted from 
Figure 3 of Helm et al. (2010). The top and bottom panels of Figure 3 
are shown in Panel A of Figure 10.15. Panel B is redrafted and simpli-
fied from the original figure, Figure 2A of Durack et al. (2012). Panel C 
is taken from Figure 11a from Terray et al. (2012).

Figure 10.16

Figure 10.16: September sea ice extent for Arctic (top panel) and Ant-
arctic (bottom panel) adapted from Wang and Overland (2012). Only 
CMIP5 models which simulated seasonal mean and magnitude of sea-
sonal cycle in reasonable agreement with observations are included 
in the plot. 

The grey lines are the runs from the pre-industrial control simulations, 
and the red lines are from Historical simulations patched with RCP8.5 
runs for the period 2005–2012. The black line is based on the sea ice 
extent data are from National Snow and Ice Data Center (NSIDC). 

There are 24 ensemble members from 11 models for the Arctic and 21 
members from 6 models for the Antarctic plot.

The list of simulations that passed the acceptance criteria and plotted 
in the figure is:
Northern Hemisphere: ACCESS1.0, ACCESS1.3, CCSM4, CESM1-
CAM5, EC-EARTH, HadGEM2AO, HadGEM2CC, HadGEM2ES, MIROC-
ESM, MIROC-ESM-C, MPI-ESM-LR.

Southern Hemisphere: ACCESS1.3, CMCC-CM, CanESM2, EC-EARTH, 
MRI-CGCM3, NorESM1-M.

The underlined models are those identified and used by Wang and 
Overland (2012). 

The criteria for choosing acceptable simulations models is as follows. 
The simulated mean and seasonal cycle of the sea ice extent is within 
20% of the observations of the sea ice climatology for the 1981–2005 
period. The 1981–2005 period was chosen because it overlaps with 
satellite observation period and 2005 is the last year of the historical 
simulations. The 20% bound chosen here is used in Wang and Over-
land (2012), and has also been used by Zhang (2010). A total of 36 
models were evaluated against these selection criteria.

Figure 10.17

Figure 10.17: Zwiers et al. (2011).

Figure 10.17: Detection results for changes in intensity and frequency 
of extreme events. Right-hand sides of each panel show scaling fac-
tors and their 90% confidence intervals for changes in the frequency 
of temperature extremes for winter (October to March for Northern 
Hemisphere and April to September for Southern Hemisphere), and 
summer half years. TN10, TX10 are respectively the frequency for daily 
minimum and daily maximum temperatures falling below their 10th 
percentiles for the base period 1961–1990. TN90 and TX90 are the 
frequency of the occurrence of daily minimum and daily maximum 
temperatures above their respective 90th percentiles calculated for the 
1961–1990 base period (Morak et al., 2013), fingerprints are based 
on simulations of Hadley Centre new Global Environmental Model 1 
(HadGEM1) with both anthropogenic and natural forcings). Left side of 
each panel show scaling factors and their 90% confidence intervals for 
intensity of annual extreme temperatures in response to external forc-
ings for the period 1951–2000. TNn and TXn represent annual mini-
mum daily minimum and maximum temperatures, respectively, while 
TNx and TXx represent annual maximum daily minimum and maximum 
temperatures. This is updated from Zwiers et al. (2011) by conducting 
exactly the same type of analysis of Zwiers et al. (2011) using spa-
tial domain defined in Morak et al. (2013), fingerprints are based on 
simulations of climate models with both anthropogenic and natural 
forcings). Detection is claimed at the 10% significance level if the 90% 
confidence interval of a scaling factor is above zero line. 

Figure 10.18 

Figure 10.18 combines three figures which are adapted from three dif-
ferent papers to provide an overview of different results for attribution 
studies using changes in return time as a measure for anthropogenic 
influence.

Figure 10.18a is directly taken from Pall et al. (2011). The figure is iden-
tical to Figure 3d in the paper.

Figure 10.18b is adapted from Kay et al. (2011). The first row of Figure 
5 in the paper shows the return times of 1-day flood peaks in the catch-
ment area 27007 (river Ure, UK) for the period October 2000 to March 
2001 comparing simulations with actual year 2000 climate drivers to 
four (Figure 5 a–d) different sets of counterfactual year 2000 climate 
drivers. The counterfactual ensembles represent four possible sets of 
surface temperatures (SSTs) representative of a ‘world that might have 
been’ without anthropogenic climate forcing. Different SST patterns 
are obtained from four different models (columns a–d) with different 
scaling factors for the SSTs (colours). We adapted this figure as follows. 
Instead of calculating the 6-month period October 2000 to March 2001 
we considered only the period January 2001 to March 2001 to assess 
changes in the return time of 1-day peak floods in spring. In addition, 
the catchment used for this study is not the river Ure but the river 
Don in South Yorkshire, UK. Furthermore we combined the different 
SST patterns from all models in one figure.
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Figure 10.18c is directly taken from Otto et al. (2012). The figure is 
identical to Figure 4 in the paper but without displaying temperature 
equivalents for ERA-interim reanalysis data.

Figure 10.19 

All reconstructions used are the same as in Schurer et al. (2013), with 
the exception of the Mann et al. (2009) reconstruction, which in the top 
panel is for 30°N to 90°N land and sea and in the bottom panel is for 
0° to 60°E 25°N to 65°N land and sea and the Luterbacher et al. (2004) 
reconstruction which is for the region 25°W to 40°E 35°N to 70°N land 
only (bottom panel).

All models used to construct the multi-model ensemble and the control 
simulations used for samples of internal variability are the same as in 
Schurer et al. (2013) (see Table 10.SM.4). To calculate the multi-model 
mean each model set-up contributes equally, that is, the mean of the 
five Max Planck Institute Community Earth Systems Models (MPI-COS-
MOS) simulations counts as one model whereas the GISS-E2-R simu-
lations are treated separately because they contain different forcings. 
The GISS-E2-R simulations included a significant initial model drift 
which was removed from the control simulation by fitting a second 
order polynomial to the control simulation. The bold orange line in the 
figure shows the noise reduced multi-model mean multiplied by the 
best-fit scaling factor. The uncertainty range is calculated by adding in 
quadrature the uncertainty in the scaling range to the uncertainty due 
to internal variability.

The Goosse simulations are taken directly from the simulation described 
in Goosse et al. (2012a, 2012b), constrained by the Mann et al. (2009) 
reconstruction from 30°N to 90°N. 

In the top panel the annual mean of the region 30°N to 90°N land and 
sea is shown and in the bottom panel the annual mean of the region 0° 
to 60°E, 25°N to 65°N. The uncertainty range was estimated from the 
uncertainty given in Goosse et al. (2012a) and Goosse et al. (2012b) 
for the annual data-assimilated results. To account for the smoothing 
used in the figure these calculated annual standard deviations were 
scaled by the ratio between the standard deviation of the smoothed 
and un-smoothed control runs used in Schurer et al. (2013).

The instrumental data is taken from Morice et al. (2012).

All analysis is done on decadally smoothed time-series, using first a 
10-year Butterworth filter and then an 11-year box car filter. The analy-
sis shown in the bottom panel uses the same method and model data 
as used for the top panel, but is performed on the European domain, 
following Hegerl et al. (2011).

Figure 10.20a

The plot contains three different types of reporting on transient climate 
response (TCR) estimation studies: (A) bars indicating estimates of the 
range of possible TCR values (most, but not all, are 5 to 95% confi-
dence interval estimates), (B) these studies are included with both, a 
confidence range represented by a bar and a corresponding probability 
density function (PDF), and (C) some studies from AR4 are included just 
with their PDFs to show the contrast between AR4 and AR5.

Bar-Plot (without Probability Density Functions)
Schwartz (2012) uses a two-time scale formulation of the climate 
system response (e.g., see Gregory, 2000; Held et al., 2010) to obtain 
TCR estimates (more specifically using the notion of transient climate 
sensitivity, more generally defined without reference to a specific rate 
of increase in concentration) ranging from 0.9°C to 1.9°C, the lower 
values corresponding to higher values of net forcing over the 20th cen-
tury. The range in the figure is generated by multiplying the headline 
values from the paper (0.23 ± 0.01 to 0.51 ± 0.04) K (W m–2)–1, with an 
assumed forcing for a doubling of CO2 of 3.7 W m–2 (leading to (0.85 
to 1.89 K)). The given range originates from an ensemble of different 
published forcing estimates, and hence it cannot directly be interpreted 
as a 5 to 95% confidence interval.

Libardoni and Forest (2011) show that the TCR along with other cli-
mate system parameters (see below) can be estimated by comparing 
EMIC simulations with a range of 20th century surface temperature 
atmospheric and ocean temperature data sets. Under a variety of 
assumptions, they obtain 5 to 95% ranges for TCR spanning 0.9 to 2.4 
K. These values are directly taken from the 2011 paper (0.87 to 2.41 
K). Updating this study to include data to 2004 gives results that are 
essentially unchanged.

Model Ensemble
Members

Resolution Forcings

Atmosphere Ocean Volcanic Solar Greenhouse Gas Land Use

CCSM4* 1 288 × 192 × L26 320 × 384 × L60 GRA VK/WLS SJA PEA/Hur

MPI-COSMOS 5 96 × 48 × L19 GR3.0 × L40 CEA JLT Interactive PEA

MPI-ESM-P* 1 196 × 98 × L47 256 × 220 × L40 CEA VK/WLS SJA PEA

HadCM3 1 96 × 73 × L19 288 × 144 × L20 CEA SBF/WLS SJA PEA

GISS-E2-R* 1 144 × 90 × L40 288 × 180 × L32 CEA VK/WLS SJA PEA/Hur

GISS-E2-R* 1 144 × 90 × L40 288 × 180 × L32 GRA VK/WLS SJA KK11/Hur

Bcc-csm1-1* 1 128 × 64 × L40 360 × 232 × L40 GRA VK/WLS SJA X

Table 10.SM.4 |  Details of the models used.

Notes:

Further details can be found in the references for the model and the forcings used; the references for the models are: CCSM4 – Landrum et al. (2013); MPI-COSMOS – Jungclaus et al. (2010); 
HadCM3 – Schurer et al. (2013); Bcc-csm1-1 – Wu (2012). The references for the forcings are: CEA –Crowley et al. (2008), GRA –Gao et al. (2008), VSK –Vieira et al. (2011), SBF –Steinhilber et al. 
(2009) , WLS –Wang et al. (2005), SJA –Schmidt et al. (2012), PEA –Pongratz et al. (2008), Hur- Hurtt et al. (2009), KK11 –Kaplan et al. (2009), JLT –Jungclaus et al. (2010), MM - MacFarling Meure 
et al. (2006). An X indicates that the forcing is not included. The models indicated by asterisks have been made available as part of the CMIP5 project. 
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Padilla et al. (2011) use a simple two-time scale model (see the entry 
on Schwartz above) to derive an observationally constrained estimate 
of the TCR of 1.3°C to 2.6°C. The range is directly taken from the head-
line results of the cited paper, with a best estimate of 1.6 K, and includ-
ing an estimate how the 90% confidence range will change in the 
future (reduction of 45% by 2030).

Gregory and Forster (2008) estimate real world TCR as 1.3 to 2.3 K (5 
to 95% uncertainty range) from the data of 1970–2006, assuming a 
linear relationship between radiative forcing and GMST change and 
disregarding any trend caused by natural forcing. The numbers are 
directly taken from the cited paper (abstract).

Stott and Forest (2007) used the observed 20th century temperature 
change to constrain three models (HadCM3, GFDL-R30 and PCM) and 
then applied these models to the calculation of TCR for the future. The 
calculated TCR is around 2.1 K and the 5 to 95% probability range is 
1.5 to 2.8 K. The numbers are directly taken from the description of 
Figure 8 of the cited paper.

Gillett et al. (2013 ) base their methodology on Gillett et al. (2012) 
and Stott and Jones (2012), but including a broader range of model 
and observational uncertainties, in particular addressing the efficacy of 
non-CO2 gases, and find a TCR range of 0.9°C to 2.3°C. This confidence 
range is directly taken from Figure 7a of the cited paper.

Tung et al. (2008) examined the response to the 11-year solar cycle 
using discriminant analysis, and found a high range for TCR: >2.5°C to 
3.6°C. These numbers are directly taken from Equation 7 of the cited 
paper. However, this estimate may be affected by different mechanisms 
by which solar forcing affects climate and possible aliasing with the 
response to other forcing in the 20th century and with internal climate 
variability, despite attempts to minimize these effects—see discussion 
in North and Stevens (1998). 

Bars and Probability Density Functions
Otto et al. (2013) update the analysis of Gregory et al. (2002) and 
Gregory and Forster (2008) using forcing estimates from Forster et al. 
(2013) to obtain a 5 to 95% range for TCR of 0.9 to 2.0°C comparing 
the decade 2000–2009 with the period 1860–1879. They note, howev-
er, the danger of overinterpreting a single, possibly anomalous, decade, 
and report a larger TCR range of 0.7°C to 2.5°C replacing the 2000s 
with the 40 years 1970–2009. These PDFs are directly taken from Otto 
et al. (2013), renormalized to a (0.1 to 10) °C support. 

Rogelj et al. (2012): This PDF is a TCR distribution implied by a 600-
member parameter set ensemble drawn from an 82-dimensional 
parameter space in a way such that the posterior climate sensitivity 
distribution matches closely the distribution presented by Rogelj et al. 
(2012). The methodology for drawing the 600-member parameter sets 
is described in Meinshausen et al. (2009).

The PDF for the TCR predicted by the Bayesian methodology of Harris 
et al. (2013). The distribution is based upon a large sample of emulated 
General Circulation Model (GCM) equilibrium responses, constrained 
by multiannual mean observations of recent climate and adjusted to 
account for additional uncertainty associated with model structural 

deficiencies Sexton et al. (2012). The equilibrium responses are scaled 
by global temperature changes associated with the sampled model 
variants, reweighting the projections based on the likelihood that they 
correctly replicate observed historical changes in surface temperature, 
to predict the TCR distribution.

Meinshausen et al. (2009) compiled a large set of published marginal 
PDFs for equilibrium climate sensitivity (ECS) and TCR. In the absence 
of a formal method for combining all of them they chose an illustrative 
default, choosing a uniform TCR prior PDF from Frame et al. (2006) and 
constrained the their model parameter with observations. The TCR PDF 
is reproduced as shown in Figure 1b of the cited paper from supple-
mentary data. 

Knutti and Tomassini (2008) compare Earth System Model of Interme-
diate Complexity (EMIC) simulations with 20th century surface and 
ocean temperatures to derive a probability density function for TCR 
skewed slightly towards lower values with a 5 to 95% percent range 
of 1.1°C to 2.3°C. The PDFs for the expert ECS prior and the uniform 
ECS prior are reproduced as shown in Figure 1b of Meinshausen et al. 
(2009) from its supplementary data. The 5 to 95% confidence intervals 
are calculated from these numeric PDFs.

Dashed Probability Density Functions without Legend Entries 
(AR4 Studies)
The TCR PDFs for the GFDL, the HadCM3, and the PCM model as pro-
duced by Stott et al. (2006) and the TCR PDF from Frame et al. (2006) 
are reproduced in Figure 10.19 as shown in Figure 1b of Meinshausen 
et al. (2009) from its supplementary data.

Figure 10.20b

References for labelled plots: 20th Century: violet: Aldrin et al. 
(2012), solid: uniform prior in ECS, dashed: uniform prior in 1/ECS, and 
dash-dotted is an update using data to 2010 (see below); gold: Bender 
et al. (2010); light red: Lewis (2013), dashed: using Forest et al. diagnos-
tic and an objective Bayesian prior, solid using revised diagnostic; cyan: 
Lin et al. (2010); brown: Lindzen and Choi (2011); olive: Murphy et al., 
(2009); dark red: Olson et al. (2012); indigo: Otto et al. (2013), solid 
is an estimate using change to 1979–2009, dashed on the change to 
2000–2009; lime: Schwartz (2012); blue: Tomassini et al. (2007) using 
a prior uniform in ECS (solid) and a density ratio prior based on expert 
elicitations (dashed). Repeated from AR4: green: Frame et al. (2005); 
result using uniform prior in ECS); orange: Gregory et al. (2002); purple: 
Knutti et al. (2002); Fuchsia: Forster and Gregory (2006) (solid: uniform 
prior in feedbacks; dashed transformed to uniform prior in ECS as used 
in AR4). Palaeoclimate: brown: (Chylek and Lohmann, 2008); orange: 
Hargreaves et al. (2012), solid, dashed showing an update based on 
PMIP3 simulations; turquoise: Holden et al. (2010); light red: Koehler et 
al. (2010); green: Paleosens Members (2012); purple: Schmittner et al. 
(2011), solid is land-and-ocean, dashed land-only, and dash-dotted is 
ocean-only diagnostic. Repeated from AR4: blue: Schneider von Deim-
ling et al. (2006). lime: Annan et al. (2005); Combination of evidence: 
violet: Aldrin et al. (2012); turquoise: Libardoni and Forest (2013) with 
dashed being the average value, and solid an update using data to 
2004; dark red: Olson et al. (2012) and repeated from AR4: lime: Annan 
and Hargreaves (2006); blue: Hegerl et al. (2006).



10SM-13

10SM

Detection and Attribution of Climate Change: from Global to Regional	 Chapter 10 Supplementary Material

Processing details: All PDFs were scaled to integrate to 1.0 between 0 
and 10.0; information only where further processing is used. 

Instrumental
Aldrin et al. (2012) Solid: Main result from the paper, that is, with data 
up to 2007 and with radiative forcing (RF)-prior consistent with the 
IPCC AR4; result from their Figure 6a; dashed Figure 6f; and in bottom 
panel Figure 6k. The dash-dotted is as the first, but updated including 
2010 and with updated RF prior based on Skeie et al. (2011).

Lewis (2013) – two sets of data are used, based on their Figure 3, a 
and b.

Murphy (2009) – the 5th, 50th and 95th percentile are shown, based 
on published range for feedbacks in paper.

Olson et al. (2012) use a uniform and an informed prior. Here we plot 
the result of using a uniform prior, the informed prior is shown in the 
‘combination’ panel.

Otto et al. (2013) – Two sets of data are used: in solid is the 1979–
2009 average, and in dashed is the 2000–2009 average. Distributions 
are shown with percentiles coinciding with corresponding confidence 
intervals from the likelihood profile reported in the paper.

Schwartz (2012) – sampling range from their paper.

Frame et al. (2005) as in AR4.

Forster and Gregory (2006) – two sets of data are shown: in solid is 
data produced using a prior that is uniform in feedback parameter 
space, whilst in dashed is a prior that is uniform in ECS space. Data for 
the dashed curve was based on AR4; for the solid curve based on the 
feedback range given in the paper. 

Knutti et al. (2002) – data was provided as cumulative distribution fre-
quency, so binned to get probability distribution, applied a two-stage 
boxcar average (three-box window followed by two-box window), and 
rescaled to ensure integral of PDF equaled 1.0

Palaeoclimate
Chylek and Lohmann (2008) (note range given is a 95% range).

Hargreaves et al. (2012) (solid: published estimate, dashed: updated). 

Holden et al. (2010) – sampling range from their paper.

Schneider von Deimling et al. (2006) – sampling range from their paper.

Combination
Aldrin et al. (2012) – result from their panel Figure 6k.

Libardoni and Forest (2013) (solid: published; dashed update using 
data to 2004).

Olson et al. (2012) – this is the main result of their paper, using an 
informed prior in ECS.

The average distribution given for Libardoni and Forest (2013) are cal-
culated from an average of the PDFs based on different observational 
data sets; namely HadCRUT3, NCDC and GISTEMP250. The average 
distributions were derived by drawing Latin Hypercube samples from 
the posteriors derived using the different data sets. Three 1000-member 

samples were drawn from each, merged together, and the resulting 
histogram used to obtain an estimate of the average posterior; which 
was then smoothed and plotted.

Additional Information to Version of Figure in Chapter 12

Climatological Constraints
Red: Sexton et al. (2012) – purple: Knutti et al. (2006) – no processing 
was required. Gold: Piani et al. (2005). 

Raw Model Range: The bars show the results from five perturbed 
physics ensembles. Each ensemble provided its histogram, computed 
using 0.5° bins. For ease of viewing, the individual bar widths have 
been shrunk by 7 (i.e., each bar appears as 0.071° of ECS in width, 
with a 0.14° gap between bins). The bar height has not been rescaled. 
The individual dots below the curve represent data from models in 
the CMIP3 and CMIP5 database. Not all models had completed the 
necessary simulations, so this is a subset of the full models available 
based on Table 9.5. 

The CMIP5 models shown are:
ACCESS1-0, BCC-CSM1-1, BCC-CSM1-1-M, BNU-ESM, CanESM2, 
CCSM4,CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-ESM2G, 
GFDL-ESM2M,GISS-E2-H, GISS-E2-R, HadGEM2-ES, INM-CM4, IPSL-
CM5A-LR, IPSL-CM5B-LR,MIROC5, MIROC-ESM, MPI-ESM-LR, MPI-
ESM-P, MRI-CGCM3, NorESM1-M.

Data for the AR4 AOGCMs was provided by Chapter 9, Table 9.5.

Figure 10.21

This material documents the provenance of the data and plotting pro-
cedures that were used to create Figure 10.21 in the IPCC WG1 Fifth 
Assessment Report.

Continental Temperatures

Models and ensemble members used are listed in Table 10.SM.5. 

Data
All of the data used were provided as monthly Netcdf files, from the 
CMIP3 and CMIP5 archives, and Daithi Stone (providing data used in 
the AR4 figures that were not in the CMIP3 archive). CMIP3 20C3M 
experiments were extended to 2012 by using A1B scenario simula-
tions. CMIP5 historical experiments were extended to 2012 by using 
historicalExt and rcp45 experiments.

Observational Data
The observed surface temperature data is from HadCRUT4 (Morice et 
al., 2012).

Regridding
All data are re-gridded onto the HadCRUT4 spatial grid (5° × 5°) since 
HadCRUT4 generally has the most restricted spatial coverage of the 
datasets considered here. There is no infilling into grid boxes with no 
observations. The re-gridding is done by area averaging any part of the 
old grid that lies within the new grid to produce a new gridpoint value. 
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historical 
(20C3M) historicalExt rcp45 (A1B) Overall period historicalNat Overall period

Model Realisation Realisation Realisation Start 
Year End Year CMIP3/5 Realisation Start 

Year
End 
Year CMIP3/5

GFDL-CM2.0 r1   r1 1861 2012 3

GFDL-CM2.0 r2     1861 2000 3

GFDL-CM2.0 r3     1861 2000 3

GFDL-CM2.1 r1   r3a 1861 2012 3

GFDL-CM2.1 r2   r1 1861 2012 3

GFDL-CM2.1 r3   r2a 1861 2012 3

GFDL-CM2.1 r4   1861 2000 3

GFDL-CM2.1 r5     1861 2000 3

GISS-E-H r1   r1 1880 2012 3

GISS-E-H r2   r2 1880 2012 3

GISS-E-H r3   r3 1880 2012 3

GISS-E-H r4     1880 1999 3

GISS-E-H r5     1880 1999 3

GISS-E-R r1     1880 2003 3

GISS-E-R r2     1880 2003 3

GISS-E-R r3   r1 1880 2012 3

GISS-E-R r4     1880 2003 3

GISS-E-R r5     1880 2003 3

GISS-E-R r6   r2 1880 2012 3

GISS-E-R r7   r3 1880 2012 3

GISS-E-R r8   r4 1880 2012 3

GISS-E-R r9   r5 1880 2012 3

INM-CM3.0 r1   r1 1871 2012 3

MIROC3.2(hires) r1   r1 1900 2012 3

MIROC3.2(medres) r1   r1 1850 2012 3 r1 1850 2000 3

MIROC3.2(medres) r2   r2 1850 2012 3 r2 1850 2000 3

MIROC3.2(medres) r3   r3 1850 2012 3 r3 1850 2000 3

MIROC3.2(medres) r4a     1850 2010 3 r4 1850 2000 3

MIROC3.2(medres) r5a     1850 2010 3 r5 1850 2000 3

MIROC3.2(medres) r6a     1850 2010 3 r6 1850 2000 3

MIROC3.2(medres) r7 a     1850 2010 3 r7 1850 2000 3

MIROC3.2(medres) r8a     1850 2010 3 r8 1850 2000 3

MIROC3.2(medres) r9a     1850 2010 3 r9 1850 2000 3

MIROC3.2(medres) r10a     1850 2010 3 r10 1850 2000 3

MIUB-ECHO-G r1   r1 1860 2012 3 r1 1860 2000 3

MIUB-ECHO-G r2   r2 1860 2012 3 r2 1860 2000 3

MIUB-ECHO-G r3   r3 1860 2012 3 r3 1860 2000 3

MIUB-ECHO-G r4     1860 2000 3

MRI-CGCM2.3.2 r1     1851 2000 3 r1 1850 1999 3

MRI-CGCM2.3.2 r2     1851 2000 3 r2 1850 1999 3

MRI-CGCM2.3.2 r3     1851 2000 3 r3 1850 1999 3

MRI-CGCM2.3.2 r4     1851 2000 3 r4 1850 2000 3

MRI-CGCM2.3.2 r5     1851 2000 3

CCSM3 r1   r1 1870 2012 3 r1 1870 1999 3

CCSM3 r2   r2 1870 2012 3 r2 1870 1999 3

Table 10.SM.5 |  Models and ensemble members used for continental temperatures. ‘20C2M’ and ‘A1B’ are the names from CMIP3 for the quasi-equivalent experiments ‘histori-
cal’ and ‘rcp45’ in CMIP5.

(continued on next page)



10SM-15

10SM

Detection and Attribution of Climate Change: from Global to Regional	 Chapter 10 Supplementary Material

historical 
(20C3M) historicalExt rcp45 (A1B) Overall period historicalNat Overall period

Model Realisation Realisation Realisation Start 
Year End Year CMIP3/5 Realisation Start 

Year
End 
Year CMIP3/5

CCSM3 r3   r3 1870 2012 3 r3 1870 1999 3

CCSM3 r4     1870 1999 3 r4 1870 1999 3

CCSM3 r5   r5 1870 2012 3 r5 1870 1999 3

CCSM3 r6 r6 1870 2012 3

CCSM3 r7   r7 1870 2012 3

CCSM3 r8   r8 1870 2011 3

CCSM3 r9   r9 1870 2012 3

PCM r1     1890 1999 3 r1 1890 1999 3

PCM r2     1890 1999 3 r2 1890 1999 3

PCM r3     1890 1999 3 r3 1890 1999 3

PCM r4     1890 1999 3 r4 1890 1999 3

UKMO_HadCM3 r1a     1860 2006 3 r1 1860 1998 3

UKMO_HadCM3 r2 1860 1998 3

UKMO_HadCM3 r3a     1860 2002 3 r3 1860 1998 3

UKMO_HadCM3 r4a     1860 2002 3 r4 1860 1998 3

UKMO_HadGEM1 r1a     1860 2009 3

UKMO_HadGEM1 r2a     1860 2009 3

UKMO_HadGEM1 r3a     1860 2009 3

UKMO_HadGEM1 r4a     1860 2009 3

ACCESS1.0 r1i1p1   r1i1p1 1850 2012 5

ACCESS1.3 r1i1p1   r1i1p1 1850 2012 5

ACCESS1.3 r2i1p1     1850 2005 5

ACCESS1.3 r3i1p1     1850 2005 5

BNU-ESM r1i1p1   r1i1p1 1850 2012 5 r1i1p1 1850 2005 5

CCSM4 r1i1p1   r1i1p1 1850 2012 5 r1i1p1 1850 2005 5

CCSM4 r2i1p1   r2i1p1 1850 2012 5 r2i1p1 1850 2005 5

CCSM4 r3i1p1   r3i1p1 1850 2012 5

CCSM4 r4i1p1   r4i1p1 1850 2012 5 r4i1p1 1850 2005 5

CCSM4 r5i1p1   r5i1p1 1850 2012 5

CCSM4 r6i1p1   r6i1p1 1850 2012 5 r6i1p1 1850 2005 5

CESM1(BGC) r1i1p1   r1i1p1 1850 2012 5

CESM1(CAM5) r1i1p1   r1i1p1 1850 2012 5

CESM1(CAM5)  r2i1p1   r2i1p1 1850 2012 5

CESM1(CAM5)  r3i1p1   r3i1p1 1850 2012 5

CESM1(FASTCHEM) r1i1p1     1850 2005 5

CESM1(FASTCHEM) r2i1p1     1850 2005 5

CESM1(FASTCHEM) r3i1p1     1850 2005 5

CESM1(WACCM) r1i1p1     1850 2005 5

CMCC-CESM r1i1p1     1850 2005 5

CMCC-CMS r1i1p1   r1i1p1 1850 2012 5

CMCC-CM r1i1p1   r1i1p1 1850 2012 5

CNRM-CM5 r1i1p1 r1i1p1   1850 2012 5 r1i1p1 1850 2012 5

CNRM-CM5 r2i1p1 r2i1p1   1850 2012 5 r2i1p1 1850 2012 5

CNRM-CM5 r3i1p1 r3i1p1   1850 2012 5 r3i1p1 1850 2012 5

CNRM-CM5 r4i1p1 r4i1p1   1850 2012 5 r4i1p1 1850 2012 5

CNRM-CM5 r5i1p1 r5i1p1   1850 2012 5 r5i1p1 1850 2012 5

(continued on next page)

Table 10.SM.5 (continued)
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historical 
(20C3M) historicalExt rcp45 (A1B) Overall period historicalNat Overall period

Model Realisation Realisation Realisation Start 
Year End Year CMIP3/5 Realisation Start 

Year
End 
Year CMIP3/5

CNRM-CM5 r6i1p1 r6i1p1   1850 2012 5

CNRM-CM5 r7i1p1 r7i1p1   1850 2012 5

CNRM-CM5 r8i1p1 r8i1p1   1850 2012 5 r8i1p1 1850 2012 5

CNRM-CM5 r9i1p1 r9i1p1   1850 2012 5

CNRM-CM5 r10i1p1 r10i1p1   1850 2012 5

CSIRO-Mk3.6.0 r1i1p1 r1i1p1 1850 2012 2012 r1i1p1 1850 2012 5

CSIRO-Mk3.6.0 r2i1p1   r2i1p1 1850 2012 5 r2i1p1 1850 2012 5

CSIRO-Mk3.6.0 r3i1p1   r3i1p1 1850 2012 5 r3i1p1 1850 2012 5

CSIRO-Mk3.6.0 r4i1p1   r4i1p1 1850 2012 5 r4i1p1 1850 2012 5

CSIRO-Mk3.6.0 r5i1p1   r5i1p1 1850 2012 5 r5i1p1 1850 2012 5

CSIRO-Mk3.6.0 r6i1p1   r6i1p1 1850 2012 5

CSIRO-Mk3.6.0 r7i1p1   r7i1p1 1850 2012 5

CSIRO-Mk3.6.0 r8i1p1   r8i1p1 1850 2012 5

CSIRO-Mk3.6.0 r9i1p1   r9i1p1 1850 2012 5

CSIRO-Mk3.6.0 r10i1p1   r10i1p1 1850 2012 5

CanESM2 r1i1p1 r1i1p1   1850 2012 5 r1i1p1 1850 2012 5

CanESM2 r2i1p1 r2i1p1   1850 2012 5 r2i1p1 1850 2012 5

CanESM2 r3i1p1 r3i1p1   1850 2012 5 r3i1p1 1850 2012 5

CanESM2 r4i1p1 r4i1p1   1850 2012 5 r4i1p1 1850 2012 5

CanESM2 r5i1p1 r5i1p1   1850 2012 5 r5i1p1 1850 2012 5

EC-EARTH r1i1p1   r1i1p1 1850 2012 5

EC-EARTH r2i1p1   r2i1p1 1850 2012 5

EC-EARTH r6i1p1   r6i1p1 1850 2012 5

EC-EARTH r8i1p1   r8i1p1 1850 2012 5

EC-EARTH r9i1p1   r9i1p1 1850 2012 5

EC-EARTH r11i1p1     1850 2012 5

EC-EARTH r12i1p1   r12i1p1 1850 2012 5

FIO-ESM r1i1p1   r1i1p1 1850 2012 5

FIO-ESM r2i1p1   r2i1p1 1850 2012 5

FIO-ESM r3i1p1   r3i1p1 1850 2012 5

GFDL-CM2p1 r1i1p1     1861 2012 5

GFDL-CM2p1 r2i1p1     1861 2012 5

GFDL-CM2p1 r3i1p1     1861 2012 5

GFDL-CM2p1 r4i1p1     1861 2012 5

GFDL-CM2p1 r5i1p1     1861 2012 5

GFDL-CM2p1 r6i1p1     1861 2012 5

GFDL-CM2p1 r7i1p1     1861 2012 5

GFDL-CM2p1 r8i1p1     1861 2012 5

GFDL-CM2p1 r9i1p1     1861 2012 5

GFDL-CM2p1 r10i1p1     1861 2012 5

GFDL-CM3 r1i1p1   r1i1p1 1860 2012 5 r1i1p1 1860 2005 5

GFDL-CM3 r2i1p1     1860 2005 5

GFDL-CM3 r3i1p1     1860 2005 5 r3i1p1 1860 2005 5

GFDL-CM3 r4i1p1     1860 2005 5

GFDL-CM3 r5i1p1     1860 2005 5 r5i1p1 1860 2005 5

GFDL-ESM2G r1i1p1   r1i1p1 1861 2012 5

GFDL-ESM2M r1i1p1   r1i1p1 1861 2012 5 r1i1p1 1861 2005 5

(continued on next page)

Table 10.SM.5 (continued)
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historical 
(20C3M) historicalExt rcp45 (A1B) Overall period historicalNat Overall period

Model Realisation Realisation Realisation Start 
Year End Year CMIP3/5 Realisation Start 

Year
End 
Year CMIP3/5

GISS-E2-H-CC r1i1p1   r1i1p1 1850 2012 5

GISS-E2-H r1i1p1 r1i1p1   1850 2012 5 r1i1p1 1850 2012 5

GISS-E2-H r2i1p1 r2i1p1   1850 2012 5 r2i1p1 1850 2012 5

GISS-E2-H r3i1p1 r3i1p1   1850 2012 5 r3i1p1 1850 2012 5

GISS-E2-H r4i1p1 r4i1p1   1850 2012 5 r4i1p1 1850 2012 5

GISS-E2-H r5i1p1 r5i1p1   1850 2012 5 r5i1p1 1850 2012 5

GISS-E2-H r6i1p1     1850 2012 5

GISS-E2-R-CC r1i1p1   r1i1p1 1850 2012 5

GISS-E2-R r1i1p1 r1i1p1   1850 2012 5 r1i1p1 1850 2012 5

GISS-E2-R r2i1p1 r2i1p1   1850 2012 5 r2i1p1 1850 2012 5

GISS-E2-R r3i1p1 r3i1p1   1850 2012 5 r3i1p1 1850 2012 5

GISS-E2-R r4i1p1 r4i1p1   1850 2012 5 r4i1p1 1850 2012 5

GISS-E2-R r5i1p1 r5i1p1   1850 2012 5 r5i1p1 1850 2012 5

GISS-E2-R r6i1p1   r6i1p1 1850 2012 5

HadCM3 r1i1p1   r1i1p1 1860 2012 5

HadCM3 r2i1p1   r2i1p1 1860 2012 5

HadCM3 r3i1p1   r3i1p1 1860 2012 5

HadCM3 r4i1p1   r4i1p1 1860 2012 5

HadCM3 r5i1p1   r5i1p1 1860 2012 5

HadCM3 r6i1p1   r6i1p1 1860 2012 5

HadCM3 r7i1p1   r7i1p1 1860 2012 5

HadCM3 r8i1p1   r8i1p1 1860 2012 5

HadCM3 r9i1p1   r9i1p1 1860 2012 5

HadCM3 r10i1p1   r10i1p1 1860 2012 5

HadGEM2-AO r1i1p1   r1i1p1 1860 2012 5

HadGEM2-CC r1i1p1   r1i1p1 1860 2012 5

HadGEM2-ES r1i1p1   r1i1p1 1860 2012 5 r1i1p1 1860 2012 5

HadGEM2-ES r2i1p1 r2i1p1   1860 2012 5 r2i1p1 1860 2012 5

HadGEM2-ES r3i1p1 r3i1p1   1860 2012 5 r3i1p1 1860 2012 5

HadGEM2-ES r4i1p1 r4i1p1   1860 2012 5 r4i1p1 1860 2012 5

HadGEM2-ES r5i1p1     1860 2005 5

IPSL-CM5A-LR r1i1p1   r1i1p1 1850 2012 5 r1i1p1 1850 2012 5

IPSL-CM5A-LR r2i1p1   r2i1p1 1850 2012 5 r2i1p1 1850 2012 5

IPSL-CM5A-LR r3i1p1   r3i1p1 1850 2012 5 r3i1p1 1850 2012 5

IPSL-CM5A-LR r4i1p1   r4i1p1 1850 2012 5

IPSL-CM5A-LR r5i1p1     1850 2005 5

IPSL-CM5A-LR r6i1p1     1850 2005 5

IPSL-CM5A-MR r1i1p1   r1i1p1 1850 2012 5 r1i1p1 1850 2012 5

IPSL-CM5A-MR r2i1p1     1850 2005 5 r2i1p1 1850 2012 5

IPSL-CM5A-MR r3i1p1     1850 2005 5 r3i1p1 1850 2012 5

IPSL-CM5B-LR r1i1p1   r1i1p1 1850 2012 5

MIROC-ESM-CHEM r1i1p1   r1i1p1 1850 2012 5 r1i1p1 1850 2005 5

MIROC-ESM r1i1p1   r1i1p1 1850 2012 5 r1i1p1 1850 2005 5

MIROC-ESM r2i1p1     1850 2005 5 r2i1p1 1850 2005 5

MIROC-ESM r3i1p1     1850 2005 5 r3i1p1 1850 2005 5

MIROC5 r1i1p1   r1i1p1 1850 2012 5

MIROC5 r2i1p1   r2i1p1 1850 2012 5

(continued on next page)

Table 10.SM.5 (continued)
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historical 
(20C3M) historicalExt rcp45 (A1B) Overall period historicalNat Overall period

Model Realisation Realisation Realisation Start 
Year End Year CMIP3/5 Realisation Start 

Year
End 
Year CMIP3/5

MIROC5 r3i1p1   r3i1p1 1850 2012 5

MIROC5 r4i1p1     1850 2012 5

MIROC5 r5i1p1     1850 2012 5

MPI-ESM-LR r1i1p1   r1i1p1 1850 2012 5

MPI-ESM-LR r2i1p1   r2i1p1 1850 2012 5

MPI-ESM-LR r3i1p1   r3i1p1 1850 2012 5

MPI-ESM-MR r1i1p1   r1i1p1 1850 2012 5

MPI-ESM-MR r2i1p1   r2i1p1 1850 2012 5

MPI-ESM-MR r3i1p1   r3i1p1 1850 2012 5

MPI-ESM-P r1i1p1     1850 2005 5

MPI-ESM-P r2i1p1     1850 2005 5

MRI-CGCM3 r1i1p1 r1i1p1   1850 2012 5 r1i1p1 1850 2005 5

MRI-CGCM3 r2i1p1 r2i1p1   1850 2012 5

MRI-CGCM3 r3i1p1 r3i1p1   1850 2012 5

MRI-ESM1 r1i1p1     1851 2005 5

NorESM1-ME r1i1p1   r1i1p1 1850 2012 5 r1i1p1 1850 2012 5

NorESM1-M r1i1p1 r1i1p1   1850 2012 5

NorESM1-M r2i1p1 r2i1p1   1850 2012 5

NorESM1-M r3i1p1 r3i1p1   1850 2012 5

BCC-CSM1.1(m) r1i1p1   r1i1p1 1850 2012 5

BCC-CSM1.1(m) r2i1p1     1850 2012 5

BCC-CSM1.1(m) r3i1p1     1850 2012 5

BCC-CSM1.1 r1i1p1   r1i1p1 1850 2012 5 r1i1p1 1850 2012 5

BCC-CSM1.1 r2i1p1     1850 2012 5

BCC-CSM1.1 r3i1p1     1850 2012 5

INM-CM4 r1i1p1   r1i1p1 1850 2012 5

Notes:
a Simulation not in CMIP3 archive. Obtained from model institution or Daithi Stone (as used in figures in IPCC WG1 2007)

Table 10.SM.5 (continued)

Masking
The data coverage is limited to where data exists in the equivalent 
month/gridpoint of HadCRUT4. Note that this shortens some model 
time series (e.g., Antarctica).

Multi-Model Mean
All ensemble members of a specific simulation of a specific model are 
averaged into an ensemble mean for a specific simulation and model 
before the models are averaged into a multi-model mean (details in 
supplementary material to Jones et al., 2013). Therewith, models with 
more ensemble members are not weighted disproportional to models 
with less ensemble members.

Creation of Annual Means
Anomalies are calculated for each month/gridpoint relative to the 
1880–1919 average (except Antarctica where anomalies are relative 
to 1950–2010), where at least 50% of the data in the reference period 
are needed to calculate the average. Annual means are calculated from 
monthly data for each calendar year, where at least 2 months are non-
missing. Shadings are the 5 and 95 percentile among the models.

Global Means
Global and regional mean anomalies are calculated by area averaging 
all available gridpoint data for each year.

Regions
Continental land areas are based on the SREX defined regions (IPCC, 
2012) shown pictorially in the bottom right most panel of Figure 10.7.

Precipitation

Models and ensemble members used are listed in Table 10.SM.6.

Data and Region
50°N–90°N average changes in annual mean precipitation (in mm 
day–1) for the period 1951–2005, with regard to the baseline period of 
1961–1990, are plotted based on Balan Sarojini et al. (2012).

Observational Data
The first observational dataset used (black solid line) is a gridded ob-
servational dataset based on station data extracted from the Global 
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Table 10.SM.6 |  Models and ensemble members used for precipitation.

historicalNat Overall period historical Overall period

Model Realisation Start Year End Year Realisation Start Year End Year CMIP3/5

ACCESS1.0 r1i1p1 1951 2005 5

BCC-CSM1.1 r1i1p1 1951 2005 r1i1p1 1951 2005 5

CanESM2 r1i1p1 1951 2005 r1i1p1 1951 2005 5

CCSM4 r1i1p1 1951 2005 5

CESM1(BGC) r1i1p1 1951 2005 5

CESM1(CAM5) r1i1p1 1951 2005 5

CESM1 
(FASTCHEM)

r1i1p1 1951 2005 5

CESM1(WACCM) r1i1p1 1951 2005 5

CMCC-CESM r1i1p1 1951 2005 5

CMCC-CMS r1i1p1 1951 2005 5

CNRM-CM5 r1i1p1 1951 2005 r1i1p1 1951 2005 5

CSIRO-Mk3.6.0 r1i1p1 1951 2005 r1i1p1 1951 2005 5

GFDL-CM3 r1i1p1 1951 2005 r1i1p1 1951 2005 5

GFDL-ESM2G r1i1p1 1951 2005 5

GFDL-ESM2M r1i1p1 1951 2005 5

GISS-E2-H r1i1p1 1951 2005 5

GISS-E2-R r1i1p1 1951 2005 5

HadGEM2-CC r1i1p1 1951 2005 5

HadGEM2-ES r1i1p1 1850 2005 r1i1p1 1850 2005 5

INMCM4_ESM r1i1p1 1850 2005 5

IPSL-CM5A-LR r1i1p1 1850 2005 5

IPSL-CM5A-MR r1i1p1 1951 2005 5

MIROC5 r1i1p1 1951 2005 5

MIROC-ESM r1i1p1 1951 2005 r1i1p1 1951 2005 5

MIROC-ESM-
CHEM

r1i1p1 1951 2005 r1i1p1 1951 2005 5

MPI-ESM-LR r1i1p1 1951 2005 5

MPI-ESM-MR r1i1p1 1951 2005 5

MRI-CGCM3 r1i1p1 1951 2005 r1i1p1 1951 2005 5

NorESM1-M r1i1p1 1951 2005 r1i1p1 1951 2005 5

NorESM1-ME r1i1p1 1951 2005 5

Historical Climatology Network (updated from Zhang et al., 2007). 
Monthly data for the period 1951–2005, quality controlled and gridded 
at 5° × 5°, for all land grid squares on the globe for which station data 
are available, are used. In order to avoid artefacts arising from changes 
in data coverage, a sampling criterion of choosing data available for 
>90% of the analysis period is applied (i.e., each spatial grid point is 
chosen when data over 90% of the years (only those years which have 
data for all months) are present).

The second observational dataset (grey solid line) used is a grid-
ded observational dataset based on station data extracted from the 
Climatic Research Unit, (updated from CRU TS3.1 of Harris et al., 2013) 
and sampled as in Polson et al. (2013). Monthly data for the period 

1951–2005, quality controlled and gridded at 0.5° × 0.5°, are used. 
This data is first interpolated to the common spatial resolution of 5° × 
5°. In order to avoid artefacts arising from changes in data coverage, 
two sampling criteria are applied: 1) station sampling criterion (Polson 
et al., 2013) of choosing only those 5° × 5° grid boxes that have at 
least 1 station (in any 0.5° × 0.5° grid box) for the coastal grid boxes 
and with at least 2 stations for the inland grid boxes. A 5° × 5° grid 
box is coastal when over half of number of the 0.5° × 0.5° boxes is 
ocean points. 2) a criterion of choosing data available for >95% of the 
analysis period is applied. i.e., each spatial grid point is chosen when 
data over 95% of the years (years which have data available for any 
no of months) are present.
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Masking of Simulated Data onto the Observational Grid
First, the land area of the simulated data available in different spatial 
resolutions is obtained by choosing a grid point as land when its land-
area fraction is greater than or equal to 70%. Second, the simulated 
land data are interpolated to the 5° × 5° observational grid using bi-
linear interpolation. Third, the 90% sampling criterion derived from the 
observations is applied to each regridded model data to obtain the 
consistent temporal and spatial data coverage for the simulated and 
observed data.

Calculation of Spatial and Annual Averages and Anomalies with 
regard to the Baseline Climatology
For each (regridded and sampled) monthly model data, spatial aver-
ages are first calculated for the zonal band of 50°N–90°N. Annual av-
erages, baseline climatology (for 1961–1990) and anomalies from the 
baseline period are then calculated.

Plotting 
The yearly anomalies are plotted with a y-axis range of 1950–2010. 
Multi-model means are in thick solid lines (historical in red and his-
toricalNat in blue).

The 5-95% confidence interval of the models is in pink shading for 
historical runs and in blue shading for historicalNat runs.

Ocean Heat Content

Models and ensemble members used are listed in Table 10.SM.7.

Observational Data 
Three observational data sets are updated from Domingues et al. 
(2008), Levitus et al. (2012) and sourced from http://www.nodc.noaa.
gov/OC5/3M_HEAT_CONTENT/index.html and Ishii and Kimoto (2009) 
and sourced from http://www.data.kishou.go.jp/kaiyou/english/ohc/
ohc_data_en.html (version August 2012).

Table 10.SM.7 | Models and ensemble members used for ocean heat content.

historicalNat Overall period historical Overall period

Model Realisation Start Year End Year Realisation Start Year End Year CMIP3/5

CanESM2 r1i1p1 1950 2012 r1i1p1 1950 2005 5

CCSM4 r1i1p1 1950 2005 r1i1p1 1950 2005 5

CNRM-CM5 r1i1p1 1950 2012 r1i1p1 1950 2005 5

CSIRO-MK3.6.0 r1i1p1 1950 2012 r1i1p1 1950 2005 5

GISS-E2-H r1i1p1 1950 2012 r1i1p1 1950 2005 5

GISS-E2-R r1i1p1 1950 2012 r1i1p1 1950 2005 5

HADGEM2-ES r1i1p1 1950 2012 r1i1p1 1950 2003 5

MIROC5 r1i1p1 1950 2005 5

MIROC-ESM r1i1p1 1950 2005 r1i1p1 1950 2005 5

MPI-ESM-LR r1i1p1 1950 2005 5

MRI-CGCM3 r1i1p1 1950 2005 r1i1p1 1950 2005 5

NorESM1-M r1i1p1 1950 2005 r1i1p1 1950 2005 5

Data Treatment 
Before computing the ocean heat content the model output has been 
treated as in Pierce et al. (2012), i.e., horizontal regridding to a 10° x 
10° latitude/longitude grid between 60°S and 60°N over the top 700 
m; masking the grid boxes that lack observations; fields are de-drifted 
using second order polynomials fit to the pre-industrial control runs 
(‘piControl’).

Annual mean OHC values are calculated from models by vertically inte-
grating the annual mean temperature anomalies (with respect to a 
1960–1980 reference period). Global mean time series are calculated 
by integrating over space.

All OHC time series are relative to the reference period of 1960–1980. 
Only Domingues et al. (2008) OHC data are smoothed with a three-
year running means. 

Regions 
Ocean basin definition (Latitudes) are:
•	 Southern Ocean: south of 50°S
•	 South Pacific: 50°S to Equator
•	 South Atlantic : 50°S to Equator; up to 20°E;
•	 Indian Ocean: 50°S to 30°N; 20°E to Australia  (Tasmania)
•	 North Pacific, North Atlantic: Equator to 70°N

Sea Ice

September sea ice extent (concentration >15%) anomalies for the 
Northern Hemisphere (Arctic) and Southern Hemisphere (Antarctic), 
relative to 1979–1999. Models and ensemble members used for the 
final figure are listed in Table 10.SM.8. Observational data is from 
NSIDC bootstrap algorithm (SBA; Cavalieri and Parkinson, 2012; Par-
kinson and Cavalieri, 2012).

The historical simulations are extended with rcp85 to the year 2012. 
For both the historicalNat and historical extended with rcp85 the multi-
model mean and 5–95% confidence interval for each year are calcu-
lated from all models available for that year.
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historicalNat Overall period historical rcp85 Overall period

Model Realisation Start Year End Year Realisation Realisation Start Year End Year CMIP3/5

BCC-CSM1.1 r1i1p1 1950 2012 r1i1p1 r1i1p1 1950 2012 5

BNU-ESM r1i1p1 1950 2005 r1i1p1 r1i1p1 1950 2012 5

CanESM2 r1i1p1 1950 2012 r1i1p1 r1i1p1 1950 2012 5

CCSM4 r1i1p1 1950 2005 r1i1p1 r1i1p1 1950 2012 5

CNRM-CM5 r1i1p1 1950 2012 r1i1p1 r1i1p1 1950 2012 5

CSIRO-MK3.6.0 r1i1p1 1950 2012 r1i1p1 r1i1p1 1950 2012 5

FGOALS-g2 r1i1p1 1950 2009 r1i1p1 r1i1p1 1950 2012 5

GFDL-ESM2M r1i1p1 1950 2005 r1i1p1 r1i1p1 1950 2012 5

GISS-E2-H r1i1p1 1950 2012 r1i1p1 r1i1p1 1950 2012 5

GISS-E2-R r1i1p1 1950 2012 r1i1p1 r1i1p1 1950 2012 5

HADGEM2-ES r1i1p1 1950 2012 r1i1p1 r1i1p1 1950 2012 5

IPSL-CM5A-LR r1i1p1 1950 2012 r1i1p1 r1i1p1 1950 2012 5

IPSL-CM5A-MR r1i1p1 1950 2012 r1i1p1 r1i1p1 1950 2012 5

MIROC-ESM r1i1p1 1950 2005 r1i1p1 r1i1p1 1950 2012 5

MIROC-ESM-CHEM r1i1p1 1950 2005 r1i1p1 r1i1p1 1950 2012 5

MRI-CGCM3 r1i1p1 1950 2005 r1i1p1 r1i1p1 1950 2012 5

NorESM1-M r1i1p1 1950 2012 r1i1p1 r1i1p1 1950 2012 5

Table 10.SM.8 |  Models and ensemble members used for sea ice.

The simulations have been plotted as anomalies from the mean for the 
reference period (1979–1999) with 5-95% confidence interval of the 
models as shading. The observations are the September sea ice extent 
anomalies relative to 1979–1999 period mean from the NSIDC sea-ice 
data set. 

Data Quality

For land and ocean surface temperatures and precipitation panels, solid 
green lines at bottom of panels indicate where data spatial coverage, 

of areas being examined, is above 50% coverage and dashed green 
lines where coverage is below 50%. For example, data coverage of 
Antarctica never goes above 50% of the land area of the continent. 
For ocean heat content and sea-ice panels the solid line is where the 
coverage of data is good and higher in quality, and the dashed line 
is where the data coverage is only adequate, based on a qualitative 
expert assessment. See the Table 10.SM.9 for the years of change from 
adequate to higher quality data.

Table 10.SM.9 |  Years of change from adequate to higher quality data, i.e., when dashed lines change to solid lines.

Element of climate system Region Year of change from dashed to solid line

Continental temperatures Global Land+Ocean 1880

Global Land 1930

Global Ocean 1880

North America 1910

South America 1930

Europe 1860

Africa 1950

Asia 1925

Australia 1910

Antarctica 1944

Ocean Heat Content All basins 1970

Sea Ice Arctic and Antarctica 1979

Precipitation Precipitation 1985
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FAQ 10.1, Figure 1 

This figure is a condensed version of Figures 10.1 and 10.2, so the sup-
plemental information for those figures applies to this set of panels too.

FAQ 10.2, Figure 1

Data
One run each of the historical and RCP8.5 simulations is used from 
24 CMIP5 models. The models are ACCESS1.0, CCSM4, CNRM CM5, 
CSIRO Mk3.6.0, CanESM2, EC EARTH, FGOALS g2, FGOALS s2, GFDL 
CM3, GFDL ESM2G, GFDL ESM2M, GISS E2 R, HadGEM2 CC, HadGEM2 
ES, IPSL CM5A LR, IPSL CM5A MR, MIROC ESM CHEM, MIROC ESM, 
MIROC5, MPI ESM LR, MRI CGCM3, NorESM1 M, bcc csm1.1, inmcm4.

Method
The primary test on summer surface temperature is applied using 30-
year moving windows at 10-year steps, starting with 1900–1929 as 
a baseline and ending in 2070–2099 for the RCP8.5 model runs. This 
procedure is applied to each model and grid cell. The local warming is 
considered statistically significant when a Kolmogorov–Smirnov test 
rejects with 95% significance that the samples of the two 30-year win-
dows are drawn from the same distribution. The last year of the mov-
ing window is taken as the year of emergence in one model. Changes 
are considered significant in the year when the signal is detected in 
80% of the models. This procedure is done for each grid point. The year 
is then used to estimate the corresponding global temperature change 
based on the historical and RCP8.5 simulation in each model.
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