Glossary E-O
Ecosystem A system of living organisms interacting with each other and their physical environment. The boundaries of what could be called an ecosystem are somewhat arbitrary, depending on the focus of interest or study. Thus, the extent of an ecosystem may range from very small spatial scales to, ultimately, the entire Earth.
Efficacy A measure of how effective a radiative forcing from a given anthropogenic or natural mechanism is at changing the equilibrium global surface temperature compared to an equivalent radiative forcing from carbon dioxide. A carbon dioxide increase by definition has an efficacy of 1.0.
Ekman pumping Frictional stress at the surface between two fluids (atmosphere and ocean) or between a fluid and the adjacent solid surface (Earth’s surface) forces a circulation. When the resulting mass transport is converging, mass conservation requires a vertical flow away from the surface. This is called Ekman pumping. The opposite effect, in case of divergence, is called Ekman suction. The effect is important in both the atmosphere and the ocean.
Ekman transport The total transport resulting from a balance between the Coriolis force and the frictional stress due to the action of the wind on the ocean surface. See also Ekman pumping.
El Niño-Southern Oscillation (ENSO) The term El Niño was initially used to describe a warm-water current that periodically flows along the coast of Ecuador and Perú, disrupting the local fishery. It has since become identified with a basin-wide warming of the tropical Pacific Ocean east of the dateline. This oceanic event is associated with a fluctuation of a global-scale tropical and subtropical surface pressure pattern called the Southern Oscillation. This coupled atmosphere-ocean phenomenon, with preferred time scales of two to about seven years, is collectively known as the El Niño-Southern Oscillation (ENSO). It is often measured by the surface pressure anomaly difference between Darwin and Tahiti and the sea surface temperatures in the central and eastern equatorial Pacific. During an ENSO event, the prevailing trade winds weaken, reducing upwelling and altering ocean currents such that the sea surface temperatures warm, further weakening the trade winds. This event has a great impact on the wind, sea surface temperature and precipitation patterns in the tropical Pacific. It has climatic effects throughout the Pacific region and in many other parts of the world, through global teleconnections. The cold phase of ENSO is called La Niña.
Emission scenario A plausible representation of the future development of emissions of substances that are potentially radiatively active (e.g., greenhouse gases, aerosols), based on a coherent and internally consistent set of assumptions about driving forces (such as demographic and socioeconomic development, technological change) and their key relationships. Concentration scenarios, derived from emission scenarios, are used as input to a climate model to compute climate projections. In IPCC (1992) a set of emission scenarios was presented which were used as a basis for the climate projections in IPCC (1996). These emission scenarios are referred to as the IS92 scenarios. In the IPCC Special Report on Emission Scenarios (Nakićenović and Swart, 2000) new emission scenarios, the so-called SRES scenarios, were published, some of which were used, among others, as a basis for the climate projections presented in Chapters 9 to 11 of IPCC (2001) and Chapters 10 and 11 of this report. For the meaning of some terms related to these scenarios, see SRES scenarios.
Energy balance The difference between the total incoming and total outgoing energy. If this balance is positive, warming occurs; if it is negative, cooling occurs. Averaged over the globe and over long time periods, this balance must be zero. Because the climate system derives virtually all its energy from the Sun, zero balance implies that, globally, the amount of incoming solar radiation on average must be equal to the sum of the outgoing reflected solar radiation and the outgoing thermal infrared radiation emitted by the climate system. A perturbation of this global radiation balance, be it anthropogenic or natural, is called radiative forcing.
Ensemble A group of parallel model simulations used for climate projections. Variation of the results across the ensemble members gives an estimate of uncertainty. Ensembles made with the same model but different initial conditions only characterise the uncertainty associated with internal climate variability, whereas multi-model ensembles including simulations by several models also include the impact of model differences. Perturbed-parameter ensembles, in which model parameters are varied in a systematic manner, aim to produce a more objective estimate of modelling uncertainty than is possible with traditional multi-model ensembles.
Equilibrium and transient climate experiment An equilibrium climate experiment is an experiment in which a climate model is allowed to fully adjust to a change in radiative forcing. Such experiments provide information on the difference between the initial and final states of the model, but not on the time-dependent response. If the forcing is allowed to evolve gradually according to a prescribed emission scenario, the time-dependent response of a climate model may be analysed. Such an experiment is called a transient climate experiment. See Climate projection.
Equilibrium line The boundary between the region on a glacier where there is a net annual loss of ice mass (ablation area) and that where there is a net annual gain (accumulation area). The altitude of this boundary is referred to as equilibrium line altitude.
Equivalent carbon dioxide (CO2) concentration
The concentration of carbon dioxide that would cause the same amount of radiative forcing as a given mixture of carbon dioxide and other greenhouse gases.
Equivalent carbon dioxide (CO2) emission The amount of carbon dioxide emission that would cause the same integrated radiative forcing, over a given time horizon, as an emitted amount of a well mixed greenhouse gas or a mixture of well mixed greenhouse gases. The equivalent carbon dioxide emission is obtained by multiplying the emission of a well mixed greenhouse gas by its Global Warming Potential for the given time horizon. For a mix of greenhouse gases it is obtained by summing the equivalent carbon dioxide emissions of each gas. Equivalent carbon dioxide emission is a standard and useful metric for comparing emissions of different greenhouse gases but does not imply exact equivalence of the corresponding climate change responses (see Section 2.10).
Evapotranspiration The combined process of evaporation from the Earth’s surface and transpiration from vegetation.
External forcing External forcing refers to a forcing agent outside the climate system causing a change in the climate system. Volcanic eruptions, solar variations and anthropogenic changes in the composition of the atmosphere and land use change are external forcings.
Extreme weather event An extreme weather event is an event that is rare at a particular place and time of year. Definitions of rare vary, but an extreme weather event would normally be as rare as or rarer than the 10th or 90th percentile of the observed probability density function. By definition, the characteristics of what is called extreme weather may vary from place to place in an absolute sense. Single extreme events cannot be simply and directly attributed to anthropogenic climate change, as there is always a finite chance the event in question might have occurred naturally. When a pattern of extreme weather persists for some time, such as a season, it may be classed as an extreme climate event, especially if it yields an average or total that is itself extreme (e.g., drought or heavy rainfall over a season).
Faculae Bright patches on the Sun. The area covered by faculae is greater during periods of high solar activity.
Feedback See Climate feedback.
Fingerprint The climate response pattern in space and/or time to a specific forcing is commonly referred to as a fingerprint. Fingerprints are used to detect the presence of this response in observations and are typically estimated using forced climate model simulations.
Flux adjustment To avoid the problem of coupled Atmosphere-Ocean General Circulation Models (AOGCMs) drifting into some unrealistic climate state, adjustment terms can be applied to the atmosphere-ocean fluxes of heat and moisture (and sometimes the surface stresses resulting from the effect of the wind on the ocean surface) before these fluxes are imposed on the model ocean and atmosphere. Because these adjustments are pre-computed and therefore independent of the coupled model integration, they are uncorrelated with the anomalies that develop during the integration. Chapter 8 of this report concludes that most models used in this report (Fourth Assessment Report AOGCMs) do not use flux adjustments, and that in general, fewer models use them.
Forest A vegetation type dominated by trees. Many definitions of the term forest are in use throughout the world, reflecting wide differences in biogeophysical conditions, social structure and economics. For a discussion of the term forest and related terms such as afforestation, reforestation and deforestation see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the Report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).
Fossil fuel emissions Emissions of greenhouse gases (in particular carbon dioxide) resulting from the combustion of fuels from fossil carbon deposits such as oil, gas and coal.
Framework Convention on Climate Change See United Nations Framework Convention on Climate Change (UNFCCC).
Free atmosphere
The atmospheric layer that is negligibly affected by friction against the Earth’s surface, and which is above the atmospheric boundary layer.
Frozen ground Soil or rock in which part or all of the pore water is frozen (Van Everdingen, 1998). Frozen ground includes permafrost. Ground that freezes and thaws annually is called seasonally frozen ground.
General circulation The large-scale motions of the atmosphere and the ocean as a consequence of differential heating on a rotating Earth, which tend to restore the energy balance of the system through transport of heat and momentum.
General Circulation Model (GCM) See Climate model.
Geoid The equipotential surface (i.e., having the same gravity potential at each point) that best fits the mean sea level (see relative sea level) in the absence of astronomical tides; ocean circulations; hydrological, cryospheric and atmospheric effects; Earth rotation variations and polar motion; nutation and precession; tectonics and other effects such as post-glacial rebound. The geoid is global and extends over continents, oceans and ice sheets, and at present includes the effect of the permanent tides (zero-frequency gravitational effect from the Sun and the Moon). It is the surface of reference for astronomical observations, geodetic levelling, and for ocean, hydrological, glaciological and climate modelling. In practice, there exist various operational definitions of the geoid, depending on the way the time-variable effects mentioned above are modelled.
Geostrophic winds or currents A wind or current that is in balance with the horizontal pressure gradient and the Coriolis force, and thus is outside of the influence of friction. Thus, the wind or current is directly parallel to isobars and its speed is inversely proportional to the spacing of the isobaric contours.
Glacial isostatic adjustment See Post-glacial rebound.
Glacier A mass of land ice that flows downhill under gravity (through internal deformation and/or sliding at the base) and is constrained by internal stress and friction at the base and sides. A glacier is maintained by accumulation of snow at high altitudes, balanced by melting at low altitudes or discharge into the sea. See Equilibrium line; Mass balance.
Global dimming Global dimming refers to perceived widespread reduction of solar radiation received at the surface of the Earth from about the year 1961 to around 1990.
Global surface temperature The global surface temperature is an estimate of the global mean surface air temperature. However, for changes over time, only anomalies, as departures from a climatology, are used, most commonly based on the area-weighted global average of the sea surface temperature anomaly and land surface air temperature anomaly.
Global Warming Potential (GWP) An index, based upon radiative properties of well-mixed greenhouse gases, measuring the radiative forcing of a unit mass of a given well-mixed greenhouse gas in the present-day atmosphere integrated over a chosen time horizon, relative to that of carbon dioxide. The GWP represents the combined effect of the differing times these gases remain in the atmosphere and their relative effectiveness in absorbing outgoing thermal infrared radiation. The Kyoto Protocol is based on GWPs from pulse emissions over a 100-year time frame.
Greenhouse effect Greenhouse gases effectively absorb thermal infrared radiation, emitted by the Earth’s surface, by the atmosphere itself due to the same gases, and by clouds. Atmospheric radiation is emitted to all sides, including downward to the Earth’s surface. Thus, greenhouse gases trap heat within the surface-troposphere system. This is called the greenhouse effect. Thermal infrared radiation in the troposphere is strongly coupled to the temperature of the atmosphere at the altitude at which it is emitted. In the troposphere, the temperature generally decreases with height. Effectively, infrared radiation emitted to space originates from an altitude with a temperature of, on average, –19°C, in balance with the net incoming solar radiation, whereas the Earth’s surface is kept at a much higher temperature of, on average, +14°C. An increase in the concentration of greenhouse gases leads to an increased infrared opacity of the atmosphere, and therefore to an effective radiation into space from a higher altitude at a lower temperature. This causes a radiative forcing that leads to an enhancement of the greenhouse effect, the so-called enhanced greenhouse effect.
Greenhouse gas (GHG) Greenhouse gases are those gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of thermal infrared radiation emitted by the Earth’s surface, the atmosphere itself, and by clouds. This property causes the greenhouse effect. Water vapour (H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4) and ozone (O3) are the primary greenhouse gases in the Earth’s atmosphere. Moreover, there are a number of entirely human-made greenhouse gases in the atmosphere, such as the halocarbons and other chlorine- and bromine-containing substances, dealt with under the Montreal Protocol. Beside CO2, N2O and CH4, the Kyoto Protocol deals with the greenhouse gases sulphur hexafluoride (SF6), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).
Gross Primary Production (GPP) The amount of energy fixed from the atmosphere through photosynthesis.
Ground ice A general term referring to all types of ice contained in freezing and seasonally frozen ground and permafrost (Van Everdingen, 1998).
Ground temperature The temperature of the ground near the surface (often within the first 10 cm). It is often called soil temperature.
Grounding line/zone The junction between a glacier or ice sheet and ice shelf; the place where ice starts to float.
Gyre Basin-scale ocean horizontal circulation pattern with slow flow circulating around the ocean basin, closed by a strong and narrow (100–200 km wide) boundary current on the western side. The subtropical gyres in each ocean are associated with high pressure in the centre of the gyres; the subpolar gyres are associated with low pressure.
Hadley Circulation A direct, thermally driven overturning cell in the atmosphere consisting of poleward flow in the upper troposphere, subsiding air into the subtropical anticyclones, return flow as part of the trade winds near the surface, and with rising air near the equator in the so-called Inter-Tropical Convergence Zone.
Halocarbons A collective term for the group of partially halogenated organic species, including the chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), halons, methyl chloride, methyl bromide, etc. Many of the halocarbons have large Global Warming Potentials. The chlorine- and bromine-containing halocarbons are also involved in the depletion of the ozone layer.
Halosteric See Sea level change.
HCFC See Halocarbons.
HFC See Halocarbons.
Heterotrophic respiration The conversion of organic matter to carbon dioxide by organisms other than plants.
Holocene The Holocene geological epoch is the latter of two Quaternary epochs, extending from about 11.6 ka to and including the present.
Hydrosphere The component of the climate system comprising liquid surface and subterranean water, such as oceans, seas, rivers, fresh water lakes, underground water, etc.
Ice age An ice age or glacial period is characterised by a long-term reduction in the temperature of the Earth’s climate, resulting in growth of continental ice sheets and mountain glaciers (glaciation).
Ice cap A dome shaped ice mass, usually covering a highland area, which is considerably smaller in extent than an ice sheet.
Ice core A cylinder of ice drilled out of a glacier or ice sheet.
Ice sheet A mass of land ice that is sufficiently deep to cover most of the underlying bedrock topography, so that its shape is mainly determined by its dynamics (the flow of the ice as it deforms internally and/or slides at its base). An ice sheet flows outward from a high central ice plateau with a small average surface slope. The margins usually slope more steeply, and most ice is discharged through fast-flowing ice streams or outlet glaciers, in some cases into the sea or into ice shelves floating on the sea. There are only three large ice sheets in the modern world, one on Greenland and two on Antarctica, the East and West Antarctic Ice Sheets, divided by the Transantarctic Mountains. During glacial periods there were others.
Ice shelf A floating slab of ice of considerable thickness extending from the coast (usually of great horizontal extent with a level or gently sloping surface), often filling embayments in the coastline of the ice sheets. Nearly all ice shelves are in Antarctica, where most of the ice discharged seaward flows into ice shelves.
Ice stream A stream of ice flowing faster than the surrounding ice sheet. It can be thought of as a glacier flowing between walls of slower-moving ice instead of rock.
Indirect aerosol effect Aerosols may lead to an indirect radiative forcing of the climate system through acting as cloud condensation nuclei or modifying the optical properties and lifetime of clouds. Two indirect effects are distinguished:
Cloud albedo effect A radiative forcing induced by an increase in anthropogenic aerosols that cause an initial increase in droplet concentration and a decrease in droplet size for fixed liquid water content, leading to an increase in cloud albedo. This effect is also known as the first indirect effect or Twomey effect.
Cloud lifetime effect A forcing induced by an increase in anthropogenic aerosols that cause a decrease in droplet size, reducing the precipitation efficiency, thereby modifying the liquid water content, cloud thickness and cloud life time. This effect is also known as the second indirect effect or Albrecht effect.
Apart from these indirect effects, aerosols may have a semi-direct effect. This refers to the absorption of solar radiation by absorbing aerosol, which heats the air and tends to increase the static stability relative to the surface. It may also cause evaporation of cloud droplets.
Industrial revolution A period of rapid industrial growth with far-reaching social and economic consequences, beginning in Britain during the second half of the eighteenth century and spreading to Europe and later to other countries including the United States. The invention of the steam engine was an important trigger of this development. The industrial revolution marks the beginning of a strong increase in the use of fossil fuels and emission of, in particular, fossil carbon dioxide. In this report the terms pre-industrial and industrial refer, somewhat arbitrarily, to the periods before and after 1750, respectively.
Infrared radiation See Thermal infrared radiation.
Insolation The amount of solar radiation reaching the Earth by latitude and by season. Usually insolation refers to the radiation arriving at the top of the atmosphere. Sometimes it is specified as referring to the radiation arriving at the Earth’s surface. See also: Total Solar Irradiance.
Interglacials The warm periods between ice age glaciations. The previous interglacial, dated approximately from 129 to 116 ka, is referred to as the Last Interglacial (AMS, 2000)
Internal variability See Climate variability.
Inter-Tropical Convergence Zone (ITCZ) The Inter-Tropical Convergence Zone is an equatorial zonal belt of low pressure near the equator where the northeast trade winds meet the southeast trade winds. As these winds converge, moist air is forced upward, resulting in a band of heavy precipitation. This band moves seasonally.
Isostatic or Isostasy Isostasy refers to the way in which the lithosphere and mantle respond visco-elastically to changes in surface loads. When the loading of the lithosphere and/or the mantle is changed by alterations in land ice mass, ocean mass, sedimentation, erosion or mountain building, vertical isostatic adjustment results, in order to balance the new load.
Kyoto Protocol The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) was adopted in 1997 in Kyoto, Japan, at the Third Session of the Conference of the Parties (COP) to the UNFCCC. It contains legally binding commitments, in addition to those included in the UNFCCC. Countries included in Annex B of the Protocol (most Organisation for Economic Cooperation and Development countries and countries with economies in transition) agreed to reduce their anthropogenic greenhouse gas emissions (carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulphur hexafluoride) by at least 5% below 1990 levels in the commitment period 2008 to 2012. The Kyoto Protocol entered into force on 16 February 2005.
Land use and Land use change Land use refers to the total of arrangements, activities and inputs undertaken in a certain land cover type (a set of human actions). The term land use is also used in the sense of the social and economic purposes for which land is managed (e.g., grazing, timber extraction and conservation). Land use change refers to a change in the use or management of land by humans, which may lead to a change in land cover. Land cover and land use change may have an impact on the surface albedo, evapotranspiration, sources and sinks of greenhouse gases, or other properties of the climate system and may thus have a radiative forcing and/or other impacts on climate, locally or globally. See also the IPCC Report on Land Use, Land-Use Change, and Forestry (IPCC, 2000).
La Niña See El Niño-Southern Oscillation.
Land surface air temperature The surface air temperature as measured in well-ventilated screens over land at 1.5 m above the ground.
Lapse rate The rate of change of an atmospheric variable, usually temperature, with height. The lapse rate is considered positive when the variable decreases with height.
Last Glacial Maximum (LGM) The Last Glacial Maximum refers to the time of maximum extent of the ice sheets during the last glaciation, approximately 21 ka. This period has been widely studied because the radiative forcings and boundary conditions are relatively well known and because the global cooling during that period is comparable with the projected warming over the 21st century.
Last Interglacial (LIG) See Interglacial.
Latent heat flux The flux of heat from the Earth’s surface to the atmosphere that is associated with evaporation or condensation of water vapour at the surface; a component of the surface energy budget.
Level of Scientific Understanding (LOSU) This is an index on a 5-step scale (high, medium, medium-low, low and very low) designed to characterise the degree of scientific understanding of the radiative forcing agents that affect climate change. For each agent, the index represents a subjective judgement about the evidence for the physical/chemical mechanisms determining the forcing and the consensus surrounding the quantitative estimate and its uncertainty.
Lifetime Lifetime is a general term used for various time scales characterising the rate of processes affecting the concentration of trace gases. The following lifetimes may be distinguished:
Turnover time (T) (also called global atmospheric lifetime) is the ratio of the mass M of a reservoir (e.g., a gaseous compound in the atmosphere) and the total rate of removal S from the reservoir: T = M / S. For each removal process, separate turnover times can be defined. In soil carbon biology, this is referred to as Mean Residence Time.
Adjustment time or response time (Ta) is the time scale characterising the decay of an instantaneous pulse input into the reservoir. The term adjustment time is also used to characterise the adjustment of the mass of a reservoir following a step change in the source strength. Half-life or decay constant is used to quantify a first-order exponential decay process. See response time for a different definition pertinent to climate variations.
The term lifetime is sometimes used, for simplicity, as a surrogate for adjustment time.
In simple cases, where the global removal of the compound is directly proportional to the total mass of the reservoir, the adjustment time equals the turnover time: T = Ta. An example is CFC-11, which is removed from the atmosphere only by photochemical processes in the stratosphere. In more complicated cases, where several reservoirs are involved or where the removal is not proportional to the total mass, the equality T = Ta no longer holds. Carbon dioxide (CO2) is an extreme example. Its turnover time is only about four years because of the rapid exchange between the atmosphere and the ocean and terrestrial biota. However, a large part of that CO2 is returned to the atmosphere within a few years. Thus, the adjustment time of CO2 in the atmosphere is actually determined by the rate of removal of carbon from the surface layer of the oceans into its deeper layers. Although an approximate value of 100 years may be given for the adjustment time of CO2 in the atmosphere, the actual adjustment is faster initially and slower later on. In the case of methane (CH4), the adjustment time is different from the turnover time because the removal is mainly through a chemical reaction with the hydroxyl radical OH, the concentration of which itself depends on the CH4 concentration. Therefore, the CH4 removal rate S is not proportional to its total mass M.
Likelihood The likelihood of an occurrence, an outcome or a result, where this can be estimated probabilistically, is expressed in this report using a standard terminology, defined in Box 1.1. See also Uncertainty; Confidence.
Lithosphere The upper layer of the solid Earth, both continental and oceanic, which comprises all crustal rocks and the cold, mainly elastic part of the uppermost mantle. Volcanic activity, although part of the lithosphere, is not considered as part of the climate system, but acts as an external forcing factor. See Isostatic.
Little Ice Age (LIA) An interval between approximately AD 1400 and 1900 when temperatures in the Northern Hemisphere were generally colder than today’s, especially in Europe.
Mass balance (of glaciers, ice caps or ice sheets) The balance between the mass input to the ice body (accumulation) and the mass loss (ablation, iceberg calving). Mass balance terms include the following:
Specific mass balance: net mass loss or gain over a hydrological cycle at a point on the surface of a glacier.
Total mass balance (of the glacier): The specific mass balance spatially integrated over the entire glacier area; the total mass a glacier gains or loses over a hydrological cycle.
Mean specific mass balance: The total mass balance per unit area of the glacier. If surface is specified (specific surface mass balance, etc.) then ice flow contributions are not considered; otherwise, mass balance includes contributions from ice flow and iceberg calving. The specific surface mass balance is positive in the accumulation area and negative in the ablation area.
Mean sea level See Relative sea level.
Medieval Warm Period (MWP) An interval between AD 1000 and 1300 in which some Northern Hemisphere regions were warmer than during the Little Ice Age that followed.
Meridional Overturning Circulation (MOC) Meridional (north-south) overturning circulation in the ocean quantified by zonal (east-west) sums of mass transports in depth or density layers. In the North Atlantic, away from the subpolar regions, the MOC (which is in principle an observable quantity) is often identified with the Thermohaline Circulation (THC), which is a conceptual interpretation. However, it must be borne in mind that the MOC can also include shallower, wind-driven overturning cells such as occur in the upper ocean in the tropics and subtropics, in which warm (light) waters moving poleward are transformed to slightly denser waters and subducted equatorward at deeper levels.
Metadata Information about meteorological and climatological data concerning how and when they were measured, their quality, known problems and other characteristics.
Metric A consistent measurement of a characteristic of an object or activity that is otherwise difficult to quantify.
Mitigation A human intervention to reduce the sources or enhance the sinks of greenhouse gases.
Mixing ratio See Mole fraction.
Model hierarchy See Climate model (spectrum or hierarchy).
Modes of climate variability Natural variability of the climate system, in particular on seasonal and longer time scales, predominantly occurs with preferred spatial patterns and time scales, through the dynamical characteristics of the atmospheric circulation and through interactions with the land and ocean surfaces. Such patterns are often called regimes, modes or teleconnections. Examples are the North Atlantic Oscillation (NAO), the Pacific-North American pattern (PNA), the El Niño-Southern Oscillation (ENSO), the Northern Annular Mode (NAM; previously called Arctic Oscillation, AO) and the Southern Annular Mode (SAM; previously called the Antarctic Oscillation, AAO). Many of the prominent modes of climate variability are discussed in section 3.6. See also Patterns of climate variability.
Mole fraction Mole fraction, or mixing ratio, is the ratio of the number of moles of a constituent in a given volume to the total number of moles of all constituents in that volume. It is usually reported for dry air. Typical values for long-lived greenhouse gases are in the order of µmol mol–1 (parts per million: ppm), nmol mol–1 (parts per billion: ppb), and fmol mol–1 (parts per trillion: ppt). Mole fraction differs from volume mixing ratio, often expressed in ppmv etc., by the corrections for non-ideality of gases. This correction is significant relative to measurement precision for many greenhouse gases. (Schwartz and Warneck, 1995).
Monsoon A monsoon is a tropical and subtropical seasonal reversal in both the surface winds and associated precipitation, caused by differential heating between a continental-scale land mass and the adjacent ocean. Monsoon rains occur mainly over land in summer.
Montreal Protocol The Montreal Protocol on Substances that Deplete the Ozone Layer was adopted in Montreal in 1987, and subsequently adjusted and amended in London (1990), Copenhagen (1992), Vienna (1995), Montreal (1997) and Beijing (1999). It controls the consumption and production of chlorine- and bromine-containing chemicals that destroy stratospheric ozone, such as chlorofluorocarbons, methyl chloroform, carbon tetrachloride and many others.
Microwave Sounding Unit (MSU) A satellite-borne microwave sounder that estimates the temperature of thick layers of the atmosphere by measuring the thermal emission of oxygen molecules from a complex of emission lines near 60 GHz. A series of nine MSUs began making this kind of measurement in late 1978. Beginning in mid 1998, a follow-on series of instruments, the Advanced Microwave Sounding Units (AMSUs), began operation.
MSU See Microwave Sounding Unit.
Nonlinearity A process is called nonlinear when there is no simple proportional relation between cause and effect. The climate system contains many such nonlinear processes, resulting in a system with a potentially very complex behaviour. Such complexity may lead to abrupt climate change. See also Chaos; Predictability.
North Atlantic Oscillation (NAO) The North Atlantic Oscillation consists of opposing variations of barometric pressure near Iceland and near the Azores. It therefore corresponds to fluctuations in the strength of the main westerly winds across the Atlantic into Europe, and thus to fluctuations in the embedded cyclones with their associated frontal systems. See NAO Index, Box 3.4.
Northern Annular Mode (NAM) A winter fluctuation in the amplitude of a pattern characterised by low surface pressure in the Arctic and strong mid-latitude westerlies. The NAM has links with the northern polar vortex into the stratosphere. Its pattern has a bias to the North Atlantic and has a large correlation with the North Atlantic Oscillation. See NAM Index, Box 3.4.
Ocean acidification A decrease in the pH of sea water due to the uptake of anthropogenic carbon dioxide.
Ocean heat uptake efficiency This is a measure (W m–2 °C–1) of the rate at which heat storage by the global ocean increases as global surface temperature rises. It is a useful parameter for climate change experiments in which the radiative forcing is changing monotonically, when it can be compared with the climate sensitivity parameter to gauge the relative importance of climate response and ocean heat uptake in determining the rate of climate change. It can be estimated from a 1% yr–1 atmospheric carbon dioxide increase experiment as the ratio of the global average top-of-atmosphere net downward radiative flux to the transient climate response (see climate sensitivity).
Organic aerosol Aerosol particles consisting predominantly of organic compounds, mainly carbon, hydrogen, oxygen and lesser amounts of other elements. (Charlson and Heintzenberg, 1995, p. 405). See Carbonaceous aerosol.
Ozone Ozone, the triatomic form of oxygen (O3), is a gaseous atmospheric constituent. In the troposphere, it is created both naturally and by photochemical reactions involving gases resulting from human activities (smog). Tropospheric ozone acts as a greenhouse gas. In the stratosphere, it is created by the interaction between solar ultraviolet radiation and molecular oxygen (O2). Stratospheric ozone plays a dominant role in the stratospheric radiative balance. Its concentration is highest in the ozone layer.
Ozone hole See Ozone layer.
Ozone layer The stratosphere contains a layer in which the concentration of ozone is greatest, the so-called ozone layer. The layer extends from about 12 to 40 km above the Earth’s surface. The ozone concentration reaches a maximum between about 20 and 25 km. This layer is being depleted by human emissions of chlorine and bromine compounds. Every year, during the Southern Hemisphere spring, a very strong depletion of the ozone layer takes place over the antarctic region, caused by anthropogenic chlorine and bromine compounds in combination with the specific meteorological conditions of that region. This phenomenon is called the ozone hole. See Montreal Protocol.