IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group I: The Physical Science Basis

10.5.4.4 Observational Constraints

A range of observables has been used since the TAR to explore methods for constraining uncertainties in future climate change in studies using simple climate models, EMICs and AOGCMs. Probabilistic estimates of global climate sensitivity have been obtained from the historical transient evolution of surface temperature, upper-air temperature, ocean temperature, estimates of the radiative forcing, satellite data, proxy data over the last millennium, or a subset thereof (Wigley et al., 1997a; Tol and De Vos, 1998; Andronova and Schlesinger, 2001; Forest et al., 2002; Gregory et al., 2002a; Knutti et al., 2002, 2003; Frame et al., 2005; Forest et al., 2006; Forster and Gregory, 2006; Hegerl et al., 2006; see Section 9.6). Some of these studies also constrain the transient response to projected future emissions (see section 10.5.4.5). For climate sensitivity, further probabilistic estimates have been obtained using statistical measures of the correspondence between simulated and observed fields of present-day climate (Murphy et al., 2004; Piani et al., 2005), the climatological seasonal cycle of surface temperature (Knutti et al., 2006) and the response to palaeoclimatic forcings (Annan et al., 2005b; Schneider von Deimling et al., 2006). For the purpose of constraining regional climate projections, spatial averages or fields of time-averaged regional climate have been used (Giorgi and Mearns, 2003; Tebaldi et al., 2004, 2005; Laurent and Cai, 2007), as have past regional- or continental-scale trends in surface temperature (Greene et al., 2006; Stott et al., 2006a).

Further observables have been suggested as potential constraints on future changes, but are not yet used in formal probabilistic estimates. These include measures of climate variability related to cloud feedbacks (Bony et al., 2004; Bony and Dufresne, 2005; Williams et al., 2005), radiative damping of the seasonal cycle (Tsushima et al., 2005), the relative entropy of simulated and observed surface temperature variations (Shukla et al., 2006), major volcanic eruptions (Wigley et al., 2005; Yokohata et al., 2005; see Section 9.6) and trends in multiple variables derived from reanalysis data sets (Lucarini and Russell, 2002).

Additional constraints could also be found, for example, from evaluation of ensemble climate prediction systems on shorter time scales for which verification data exist. These could include assessment of the reliability of seasonal to interannual probabilistic forecasts (Palmer et al., 2004; Hagedorn et al., 2005) and the evaluation of model parametrizations in short-range weather predictions (Phillips et al., 2004; Palmer, 2005). Annan and Hargreaves (2006) point out the potential for narrowing uncertainty by combining multiple lines of evidence. This will require objective quantification of the impact of different constraints and their degree of independence, estimation of the effects of structural modelling errors and the development of comprehensive probabilistic frameworks in which to combine these elements (e.g., Rougier, 2007).