East Asia
Simulated temperatures in most MMD models are too low in all seasons over East Asia; the mean cold bias is largest in winter and smallest in summer. Zhou and Yu (2006) show that over China, the models perform reasonably in simulating the dominant variations of the mean temperature over China, but not the spatial distributions. The annual precipitation over East Asia exceeds the observed estimates in almost all models and the rain band in the mid-latitudes is shifted northward in seasons other than summer. This bias in the placement of the rains in central China also occurred in earlier models (e.g., Zhou and Li, 2002; Gao et al., 2004). In winter, the area-mean precipitation is overestimated by more than 50% on average due to strengthening of the rain band associated with extratropical systems over South China. The bias and inter-model differences in precipitation are smallest in summer but the northward shift of this rain band results in large discrepancies in summer rainfall distribution over Korea, Japan and adjacent seas.
Kusunoki et al. (2006) find that the simulation of the Meiyu-Changma-Baiu rains in the East Asian monsoon is improved substantially with increasing horizontal resolution. Confirming the importance of resolution, RCMs simulate more realistic climatic characteristics over East Asia than AOGCMs, whether driven by re-analyses or by AOGCMs (e.g., Ding et al., 2003; Oh et al., 2004; Fu et al., 2005; Zhang et al., 2005a, Ding et al., 2006; Sasaki et al., 2006b). Several studies reproduce the fine-scale climatology of small areas using a multiply nested RCM (Im et al., 2006) and a very-high resolution (5 km) RCM (Yasunaga et al., 2006). Gao et al. (2006b) report that simulated East Asia large-scale precipitation patterns are significantly affected by resolution, particularly during the mid- to late-monsoon months, when smaller-scale convective processes dominate.