Southeast Asia
In the MMD-A1B simulations, the median warming for the region is 2.5°C by the end of the 21st century, with little seasonal variation (Table 11.1). Simulations by the CSIRO Division of Atmospheric Research Limited Area Model (DARLAM; McGregor et al., 1998) and more recently by the CSIRO stretched-grid model (McGregor and Dix, 2001) centred on the Indochina Peninsula (AIACC, 2004) at a resolution of 14 km have demonstrated the potential for significant local variation in warming, particularly the tendency for warming to be significantly stronger over the interior of the landmasses than over the surrounding coastal regions. A tendency for the warming to be stronger over Indochina and the larger landmasses of the archipelago is also visible in the MMD models (Figures 10.8 and 11.9). As in other regions, the magnitude of the warming depends on the forcing scenario.
Central Asia and Tibet
In the MMD-A1B simulations, central Asia warms by a median of 3.7°C, and Tibet by 3.8°C (Table 11.1) by the end of the 21st century. The seasonal variation in the simulated warming is modest. Findings from earlier multi-model studies (Zhao et al., 2002; Xu et al., 2003a,b; Meleshko et al., 2004; Y. Xu et al., 2005) are consistent with the MMD models’ results.
An RCM study by Gao et al. (2003b) indicates greater warming over the Plateau compared to surrounding areas, with the largest warming at highest altitudes, for example, over the Himalayas (see also Box 11.3). The higher temperature increase over high-altitude areas can be explained by the decrease in surface albedo associated with the melting of snow and ice (Giorgi et al., 1997). This phenomenon is found to different extents in some, although not all, of the MMD models, and it is visible in the multi-model mean changes, particularly in the winter (Figure 11.9).