6.4.2 Abrupt Climatic Changes in the Glacial-Interglacial Record
6.4.2.1 What Is the Evidence for Past Abrupt Climate Changes?
Abrupt climate changes have been variously defined either simply as large changes within less than 30 years (Clark et al., 2002), or in a physical sense, as a threshold transition or a response that is rapid compared to forcing (Rahmstorf, 2001; Alley et al., 2003). Overpeck and Trenberth (2004) noted that not all abrupt changes need to be externally forced. Numerous terrestrial, ice and oceanic climatic records show that large, widespread, abrupt climate changes have occurred repeatedly throughout the past glacial interval (see review by Rahmstorf, 2002). High-latitude records show that ice age abrupt temperature events were larger and more widespread than were those of the Holocene. The most dramatic of these abrupt climate changes were the Dansgaard-Oeschger (D-O) events, characterised by a warming in Greenland of 8°C to 16°C within a few decades (see Severinghaus and Brook, 1999; Masson-Delmotte et al., 2005a for a review) followed by much slower cooling over centuries. Another type of abrupt change were the Heinrich events; characterised by large discharges of icebergs into the northern Atlantic leaving diagnostic drop-stones in the ocean sediments (Hemming, 2004). In the North Atlantic, Heinrich events were accompanied by a strong reduction in sea surface salinity (Bond et al., 1993), as well as a sea surface cooling on a centennial time scale. Such ice age cold periods lasted hundreds to thousands of years, and the warming that ended them took place within decades (Figure 6.7; Cortijo et al., 1997; Voelker, 2002). At the end of the last glacial, as the climate warmed and ice sheets melted, climate went through a number of abrupt cold phases, notably the Younger Dryas and the 8.2 ka event.
The effects of these abrupt climate changes were global, although out-of-phase responses in the two hemispheres (Blunier et al., 1998; Landais et al., 2006) suggest that they were not primarily changes in global mean temperature. The highest amplitude of the changes, in terms of temperature, appears centred around the North Atlantic. Strong and fast changes are found in the global CH4 concentration (of the order of 100 to 150 ppb within decades), which may point to changes in the extent or productivity of tropical wetlands (see Chappellaz et al., 1993; Brook et al., 2000 for a review; Masson-Delmotte et al., 2005a), and in the Asian monsoon (Wang et al., 2001). The NH cold phases were linked with a reduced northward flow of warm waters in the Nordic Seas (Figure 6.7), southward shift of the Inter-Tropical Convergence Zone (ITCZ) and thus the location of the tropical rainfall belts (Peterson et al., 2000; Lea et al., 2003). Cold, dry and windy conditions with low CH4 and high dust aerosol concentrations generally occurred together in the NH cold events. The accompanying changes in atmospheric CO2 content were relatively small (less than 25 ppm; Figure 6.7) and parallel to the antarctic counterparts of Greenland D-O events. The record in N2O is less complete and shows an increase of about 50 ppb and a decrease of about 30 ppb during warm and cold periods, respectively (Flückiger et al., 2004).
A southward shift of the boreal treeline and other rapid vegetation responses were associated with past cold events (Peteet, 1995; Shuman et al., 2002; Williams et al., 2002). Decadal-scale changes in vegetation have been recorded in annually laminated sequences at the beginning and the end of the Younger Dryas and the 8.2 ka event (Birks and Ammann, 2000; Tinner and Lotter, 2001; Veski et al., 2004). Marine pollen records with a typical sampling resolution of 200 years provide unequivocal evidence of the immediate response of vegetation in Southern Europe to the climate fluctuations during glacial times (Sánchez Goñi et al., 2002; Tzedakis, 2005). The same holds true for the vegetation response in northern South America during the last deglaciation (Hughen et al., 2004).