14.2 Current sensitivity/vulnerability
Annual mean air temperature, on the whole, increased in North America for the period 1955 to 2005, with the greatest warming in Alaska and north-western Canada, substantial warming in the continental interior and modest warming in the south-eastern U.S. and eastern Canada (Figure 14.1). Spring and winter show the greatest changes in temperature (Karl et al., 1996; Hengeveld et al., 2005) and daily minimum (night-time) temperatures have warmed more than daily maximum (daytime) temperatures (Karl et al., 2005; Vincent and Mekis, 2006). The length of the vegetation growing season has increased an average of 2 days/decade since 1950 in Canada and the conterminous U.S., with most of the increase resulting from earlier spring warming (Bonsal et al., 2001; Easterling, 2002; Bonsal and Prowse, 2003; Feng and Hu, 2004). The warming signal in North America during the latter half of the 20th century reflects the combined influence of greenhouse gases, sulphate aerosols and natural external forcing (Karoly et al., 2003; Stott, 2003; Zwiers and Zhang, 2003).
Annual precipitation has increased for most of North America with large increases in northern Canada, but with decreases in the south-west U.S., the Canadian Prairies and the eastern Arctic (see Working Group I Fourth Assessment (WGI AR4) Trenberth et al., 2007 Section 3.3.2.2, Figures 3.13 and 3.14) (Hengeveld et al., 2005; Shein, 2006). Heavy precipitation frequencies in the U.S. were at a minimum in the 1920s and 1930s, and increased to the 1990s (1895 to 2000) (Kunkel, 2003; Groisman et al., 2004). In Canada there is no consistent trend in extreme precipitation (Vincent and Mekis, 2006).