IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability

20.9 Uncertainties, unknowns and priorities for research

Uncertainties, unknowns and priorities for research illuminate the confidence statements that modify scientific conclusions delivered to members of the policy community. For the research community, however, they can be translated into tasks designed to improve understanding and elaborate sources confidence. This section is therefore organised as a series of tasks.

Expand understanding of the synergies in and/or obstacles to simultaneous progress in promoting enhanced adaptive capacity and sustainable development. The current state of knowledge in casting adaptive capacity and vulnerability into the future is primitive. More thorough understandings of the process by which adaptive capacity and vulnerability evolve over time along specific development pathways are required. Commonalities exist across the determinants of adaptive capacity, mitigative capacity and the factors that support sustainable development, but current understanding of how they can be recognised and exploited is minimal.

Integrate more closely current work in the development and climate-change communities. Synergies exist between practitioners and researchers in the sustainable development and climate-change communities, but there is a need to develop means by which these communities can integrate their efforts more productively. The relative efficacies of dialogue processes and new tools required to promote this integration, and the various participatory and/or model-based approaches required to support their efforts must be refined or developed from scratch. Opportunities for shared learning should be identified, explored and exploited.

Search for common ground between spatially explicit analyses of vulnerability and aggregate integrated assessment models. Geographical and temporal scales of development and climate initiatives vary widely. The interaction and intersection between spatially explicit and aggregate integrated assessment models has yet to be explored rigorously. For example, representations of adaptive capacities and resulting vulnerabilities in aggregate integrated assessment models are still rudimentary. As progress is encouraged in improving their abilities to depict reality, research initiatives must also recognise and work to overcome difficulties in matching the scales at which models are constructed and exercised with the scales at which decisions are made. New tools are required to handle these differences, particularly between the local and national, short-to-medium-term scales of adaptation and development programmes and projects and the global, medium-to-long-term scale of mitigation.

Recognise that uncertainties will continue to be pervasive and persistent, and develop or refine new decision-support mechanisms that can identify robust coping strategies even in the face of this uncertainty. Significant uncertainties in estimating the social cost of greenhouse gases exist, and many of their sources have been identified; indeed many of their sources reside in the research needs listed above. Reducing these uncertainties would certainly be productive, but it cannot be guaranteed that future research will make much progress in this regard. It follows that concurrent improvement in our ability to use existing decision-support tools and to design new approaches to cope with uncertainties and associated risks that will be required over the foreseeable future is even more essential. In short, identify appropriate decision-support tools and clarify the criteria that they can inform in an uncertain world.

Characterise the full range of possible climate futures and the paths that might bring them forward. The research communities in both climate and development must, along with practitioners and decision-makers, be informed not only about the central tendencies of climate change and its ramifications, but also about the outlier possibilities about which the natural-science community is less sanguine. It is simply impossible to comprehend the risks associated with high-consequence outcomes with low probabilities if neither their character nor their likelihood has been described.

This chapter has offered a glimpse into where to turn for guidance in confronting and managing the risks associated with climate change and climate variability. Indeed, the climate problem is a classic risk management problem of the sort with which decision-makers are already familiar. It is critical to see risk as the product of likelihood and consequence, to recognise that the likelihood of a climate impact is dependent on natural and human systems, and to understand that the consequence of that impact can be measured in terms of a multitude of numeraires (currency, millions at risk, species extinction, abrupt physical changes and so on). These expressions of risk are determined fundamentally by location in time and space.

This chapter also points to synergies that exist at the nexus of sustainable development and adaptive capacity, primarily by noting for the first time that many of the goals of sustainable development match the determinants of adaptive capacity (and, for that matter, mitigative capacity). Planners in the decision-intensive ministries around the world are therefore already familiar with the generic mechanisms by which including climate change into their risk assessments of development programmes can complicate their decisions. Adding climate to the list of multiple stresses which can impede progress in meeting their goals in their specific context is thus not a new problem. Climate change, even when its impacts are amplified by the effects of other stresses, is just one more thing: one more problem to confront, but also one more reason to act in ways that promote progress along multiple fronts. Exploitation of the synergies is not automatic, so care must be taken to avoid development activities that can exacerbate climate change or impacts just as care must be taken to take explicit account of climate risks.

The United Nations Framework Convention on Climate Change commits governments to avoiding “dangerous anthropogenic interference with the climate system”, but governments will be informed in their deliberations of what is or is not ‘dangerous’ only by an approach that explicitly reflects the rich diversity of climate risk across the globe and into the coming decades instead of burying this diversity into incomplete aggregate indices of damages. Risk management techniques have been designed for such tasks; but it is important to note that risk-based approaches require exploration of the implications of not only the central tendencies of climate change that are the focus of consensus-driven assessments of the literature, but also the uncomfortable (or more benign) futures that reside in the ‘tails’ of current understanding. Viewing the climate issue from a risk perspective can offer climate policy deliberations and negotiations new insight into the synergies by which governments can promote sustainable development, reduce the risk of climate-related damages and take advantage of climate-related opportunities.