C4.2 Case studies
C4.2.1 Adaptation capacity of the South American highlands’ pre-Colombian communities (Chapter 13, Box 13.2)
The subsistence of indigenous civilisations in the Americas relied on the resources cropped under the prevailing climate conditions around their settlements. In the highlands of today’s Latin America, one of the most critical limitations affecting development was, and currently is, the irregular distribution of water. This situation is the result of the particularities of the atmospheric processes and extremes, the rapid runoff in the deep valleys, and the changing soil conditions. The tropical Andes’ snowmelt was, and still is, a reliable source of water. However, the streams run into the valleys within bounded water courses, bringing water only to certain locations. Moreover, valleys and foothills outside of the Cordillera Blanca glaciers and extent of the snow cover, as well as the Altiplano, receive little or no melt-water at all. Therefore, in large areas, human activities depended on seasonal rainfall. Consequently, the pre-Colombian communities developed different adaptive actions to satisfy their requirements. Today, the problem of achieving the necessary balance between water availability and demand is practically the same, although the scale might be different.
Under such limitations, from today’s Mexico to northern Chile and Argentina, the pre-Colombian civilisations developed the necessary capacity to adapt to the local environmental conditions. Such capacity involved their ability to solve some hydraulic problems and foresee climate variations and seasonal rain periods. On the engineering side, their developments included rainwater cropping, filtration and storage; the construction of surface and underground irrigation channels, including devices to measure the quantity of water stored (Figure C4.1) (Treacy, 1994; Wright and Valencia Zegarra, 2000; Caran and Nelly, 2006). They also were able to interconnect river basins from the Pacific and Atlantic watersheds, in the Cumbe valley and in Cajamarca (Burger, 1992).
Other capacities were developed to foresee climate variations and seasonal rain periods, to organise their sowing schedules and to programme their yields (Orlove et al., 2000). These efforts enabled the subsistence of communities which, at the peak of the Inca civilisation, included some 10 million people in what is today Peru and Ecuador.
Their engineering capacities also enabled the rectification of river courses, as in the case of the Urubamba River, and the building of bridges, either hanging ones or with pillars cast in the river bed. They also used running water for leisure and worship purposes, as seen today in the ‘Baño del Inca’ (the spa of the Incas), fed from geothermal sources, and the ruins of a musical garden at Tampumacchay in the vicinity of Cusco (Cortazar, 1968). The priests of the Chavin culture used running water flowing within tubes bored into the structure of the temples in order to produce a sound like the roar of a jaguar; the jaguar being one of their deities (Burger, 1992). Water was also used to cut stone blocks for construction. As seen in Ollantaytambo, on the way to Machu Picchu, these stones were cut in regular geometric shapes by leaking water into cleverly made interstices and freezing it during the Altiplano night, reaching below zero temperatures. They also acquired the capacity to forecast climate variations, such as those from El Niño (Canziani and Mata, 2004), enabling the most convenient and opportune organisation of their foodstuff production. In short, they developed pioneering efforts to adapt to adverse local conditions and define sustainable development paths.
Today, under the vagaries of weather and climate, exacerbated by the increasing greenhouse effect and the rapid retreat of the glaciers (Carey, 2005; Bradley et al., 2006), it would be extremely useful to revisit and update such adaptation measures. Education and training of present community members on the knowledge and technical abilities of their ancestors would be the way forward. ECLAC’s procedures for the management of sustainable development (Dourojeanni, 2000), when considering the need to manage the extreme climate conditions in the highlands, refer back to the pre-Colombian irrigation strategies.