IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group III: Mitigation of Climate Change

11.8.1.8 Biomass

Particularly relevant trade-offs have been identified for GHG mitigation strategies that enhance the use of biofuels and diesel. Biofuels from sustainably-grown biomass are considered to be carbon-neutral. They have therefore been proposed as an important element in decarbonization strategies. However, their combustion in household devices under uncontrolled conditions releases large amounts of fine particulate matter and volatile organic compounds, which cause significant negative health impacts. For instance, Streets and Aunan (2005) estimate that the combustion of coal and biofuels in Chinese households has contributed to about 10–15% of the total global emissions of black carbon during the past two decades. Emissions from these sources have been identified as the major source of health effects from air pollution in developing countries, adding the highest burden of disease (Smith et al., 2004). In addition to the negative health impacts of traditional biomass combustion, there are concerns about the effectiveness of the combustion of biomass in stoves as a climate change mitigation measure due to the loss of efficiency compared to stoves using fossil fuels (Edwards et al., 2004).

However, the controlled combustion of biomass with stringent air quality measures would prevent a substantial proportion of any toxic emissions. This would sometimes be accompanied by increases in efficiency. Furthermore, ethanol and biodiesel can be produced from biomass in medium-to-large industrial installations with air quality control measures that prevent negative health impacts.

11.8.1.9 Diesel

Similar concerns apply to attempts to reduce CO2 emissions through the replacement of gasoline vehicles by more energy-efficient diesel vehicles. Without the most advanced particle filters, that require very-low-sulphur fuel which is not available everywhere, diesel vehicles are a major contributor to population exposure to fine particulate matter, especially of PM2.5 and finer. Diesel particles have been shown to be more aggressive than other types of particles, and are also associated with cancer (HEI, 1999). Mitigation strategies that increase the use of diesel vehicles without appropriate emission control devices counteract efforts to manage air quality. At the same time, concern has been expressed in the literature about the radiative effects of the emissions of black carbon and organic matter from diesel vehicles, which might offset the gains from lower CO2 emissions (Jacobson, 2002). Although both the US and the EU are moving towards very stringent emission standards for diesel engines, their adoption by the rest of the world may be delayed by years.