11.8.1.3 Co-benefits for agricultural production
While a strong body of literature demonstrates that there are important co-benefits from GHG mitigation and health benefits from improved air quality, there has been less research addressing co-benefits from improved agricultural production. The potential positive, long-term, effect of higher CO2 concentrations on plants can be counteracted by short-term damage from increased air pollution. The effects of tropospheric ozone exposure on plant tissues and crop yields are well established, and the scientific literature has already been reviewed in US EPA (1996) and EC (1999). Chameides et al. (1994) estimate that 10–35% of the world’s grain production is in locations where ozone exposure may reduce crop yields. Surface ozone levels are sensitive to, inter alia, NOx and VOC emissions from fossil-fuel-burning power plants, industrial boilers, motor vehicle exhaust, gasoline retail outlets, and N-fertilizer-induced soil emissions of NOx.
Using an atmospheric ozone formation model and an economic general-equilibrium model, O’Connor et al. (2003) find, for a CO2 mitigation strategy in China, that the monetary benefits from increased agricultural productivity due to lower ground-level ozone are comparable to the health benefits. Together, these benefits would allow China a 15–20% CO2 reduction without suffering a welfare loss. Agricultural benefits have important distributional implications. When agricultural effects are not taken into consideration, poor rural households experience welfare losses from carbon mitigation even at low levels of abatement. Once agricultural effects are considered, rural households in this study enjoy welfare gains up to a ten percent abatement rate. So while a purely health-based measure of ancillary benefits tends to show benefits from a climate commitment to be urban-biased, a broader definition of benefits alters the picture considerably.