IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group III: Mitigation of Climate Change

2.1.4 The Sustainable Development concept

Sustainable development (SD) has been discussed extensively in the theoretical literature since the concept was adopted as an overarching goal of economic and social development by UN agencies, by the Agenda 21 nations, and by many local governments and private-sector actors. The SD literature largely emerged as a reaction to a growing interest in considering the interactions and potential conflicts between economic development and the environment. SD was defined by the World Commission on Environment and Development in the report Our Common Future as ‘development that meets the needs of the present without compromising the ability of future generations to meet their own needs’ (WCED, 1987).

The literature includes many alternative theoretical and applied definitions of sustainable development. The theoretical work spans hundreds of studies that are based on economic theory, complex systems approaches, ecological science and other approaches that derive conditions for how development paths can meet SD criteria. Furthermore, the SD literature emphasizes a number of key social justice issues including inter- and intra-generational equity. These issues are dealt with in Section 2.6.

Since a comprehensive discussion of the theoretical literature on sustainable development is beyond the scope of this report, a pragmatic approach limits us to consider how development can be made more sustainable.

The debate on sustainability has generated a great deal of research and policy discussion on the meaning, measurability and feasibility of sustainable development. Despite the intrinsic ambiguity in the concept of sustainability, it is now perceived as an irreducible holistic concept where economic, social, and environmental issues are interdependent dimensions that must be approached within a unified framework (Hardi and Barg, 1997; Dresner, 2002; Meadows, 1998). However, the interpretation and valuation of these dimensions have given rise to a diversity of approaches.

A growing body of concepts and models, which explores reality from different angles and in a variety of contexts, has emerged in recent years in response to the inability of normal disciplinary science to deal with complexity and systems – the challenges of sustainability. The outlines of this new framework, known under the loose term of ‘Systems Thinking’, are, by their very nature, transdisciplinary and synthetic (Kay and Foster, 1999). An international group of ecologists, economists, social scientists and mathematicians has laid the principles and basis of an integrative theory of systems change (Holling 2001). This new theory is based on the idea that systems of nature and human systems, as well as combined human and nature systems and social-ecological systems, are interlinked in never-ending adaptive cycles of growth, accumulation, restructuring, and renewal within hierarchical structures (Holling et al., 2002).

A core element in the economic literature on SD is the focus on growth and the use of man-made, natural, and social capital. The fact that there are three different types of capital that can contribute to economic growth has led to a distinction between weak and strong sustainability, as discussed by Pearce and Turner (1990), and Rennings and Wiggering (1997). Weak sustainability describes a situation where it is assumed that the total capital is maintained and that the three different elements of the capital stock can, to some extent, be used to substitute each other in a sustainable solution. On the other hand, strong sustainability requires each of the three types of capital to be maintained in its own right, at least at some minimum level. An example of an application of the strong sustainability concept is Herman Daly’s criteria, which state that renewable resources must be harvested at (or below) some predetermined stock level, and renewable substitutes must be developed to offset the use of exhaustible resources (Daly, 1990). Furthermore, pollution emissions should be limited to the assimilative capacity of the environment.

Arrow et al., 2004, in a joint authorship between leading economists and ecologists, present an approach for evaluating alternative criteria for consumption[1], seen over time in a sustainable development perspective. Inter-temporal consumption and utility are introduced here as measurement points for sustainable development. One of the determinants of consumption and utility is the productive base of society, which consists of capital assets such as manufactured capital, human capital, and natural capital. The productive base also includes the knowledge base of society and institutions.

Although institutions are often understood as part of the capital assets, Arrow et al. (2004) only consider institutions in their capacity as guiding the allocation of resources, including capital assets. Institutions in this context include the legal structure, formal and informal markets, various government agencies, inter-personal networks, and the rules and norms that guide their behaviour. Seen from an SD perspective, the issue is then: how, and to what extent, can policies and institutional frameworks for these influence the productive basis of society and thereby make development patterns more sustainable.

The literature includes other views of capital assets that will consider institutions and sustainable development policies as being part of the social capital element in society’s productive base. Lehtonen (2004) provides an overview of the discussion on social capital and other assets. He concludes that despite capabilities and social capital concepts not yet being at the practical application stage, the concepts can be used as useful metaphors, which can help to structure thoughts across different disciplines. Lehtonen refers to analysis of social-environmental dimensions by the OECD (1998) that addresses aspects such as demography, health, employment, equity, information, training, and a number of governance issues, as an example of a pragmatic approach to including social elements in sustainability studies.

Arrow et al., (2004) summarize the controversy between economists and ecologists by saying that ecologists have deemed current consumption patterns to be excessive or deficient in relation to sustainable development, while economists have focused more on the ability of the economy to maintain living standards. It is concluded here that the sustainability criterion implies that inter-temporal welfare should be optimized in order to ensure that current consumption is not excessive.[2] However, the optimal level of current consumption cannot be determined (i.e. due to various uncertainties). Theoretical considerations therefore focus instead on factors that make current consumption more or less sustainable. These factors include the relationship between market rates of return on investments and social discount rates, and the relationship between market prices of consumption goods (including capital goods) and the social costs of these commodities.

Some basic principles are therefore emerging from the international sustainability literature, which helps to establish commonly held principles of sustainable development. These include, for instance, the welfare of future generations, the maintenance of essential biophysical life support systems, more universal participation in development processes and decision-making, and the achievement of an acceptable standard of human well-being (Swart et al., 2003; Meadowcroft, 1997; WCED, 1987).

In the more specific context of climate change policies, the controversy between different sustainability approaches has shown up in relation to discussions on key vulnerabilities; see Section 2.5.2 for more details.

  1. ^  Consumption should here be understood in a broad sense as including all sorts of goods that are elements in a social welfare function.
  2. ^  Arrow et al. (2004) state that ‘actual consumption today is excessive if lowering it and increasing investment (or reducing disinvestment) in capital assets could raise future utility enough to more than compensate (even after discounting) for the loss in current utility’.