IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group III: Mitigation of Climate Change

6.4.4.3 Air conditioners and vapour-compression chillers

Air conditioners used for houses, apartments and small commercial buildings have a nominal COP (cooling power divided by fan and compressor power, a direct measure of efficiency) ranging from 2.2 to 3.8 in North America and Europe, depending on operating conditions. More efficient mini-split systems are available in Japan, ranging from 4.5 to 6.2 COP for a 2.8 kW cooling capacity unit. Chillers are larger cooling devices that produce chilled water (rather than cooled air) for use in larger commercial buildings. COP generally increases with size, with the largest and most efficient centrifugal chillers having a COP of up to 7.9 under full-load operation and even higher under part-load operation. Although additional energy is used in chiller-based systems for ventilation, circulating chilled water and operating a cooling tower, significant energy savings are possible through the choice of the most efficient cooling equipment in combination with efficient auxiliary systems (see Section 6.4.5.1 for principles).

Air conditioners – from small room-sized units to large building chillers – generally employ a halocarbon refrigerant in a vapour-compression cycle. Although the units are designed to exhibit low refrigerant emission rates, leaks do occur and additional emissions associated with the installation, service and disposal of this equipment can be significant. The emissions will vary widely from one installation to the next and depend greatly on the practices employed at the site. In some cases, the GWP-weighted lifetime emissions of the refrigerant will outweigh the CO2 emissions associated with the electricity, highlighting the need to consider refrigerant type and handling as well as energy efficiency when making decisions on the purchase, operation, maintenance and replacement of these systems.

Until recently, the penetration of air conditioning in developing countries has been relatively low, typically only used in large office buildings, hotels and high-income homes. That is quickly changing however, with individual apartment and home air conditioning becoming more common in developing countries, reaching even greater levels in developed countries. This is evident in the production trends of typical room-to-house sized units, which increased 26% (35.8 to 45.4 million units) from 1998 to 2001 (IPCC/TEAP, 2005).