IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group III: Mitigation of Climate Change

8.4.1.3 Management of organic/peaty soils

Organic or peaty soils contain high densities of carbon accumulated over many centuries because decomposition is suppressed by absence of oxygen under flooded conditions. To be used for agriculture, these soils are drained, which aerates the soil, favouring decomposition and therefore, high CO2 and N2O fluxes. Methane emissions are usually suppressed after draining, but this effect is far outweighed by pronounced increases in N2O and CO2 (Kasimir-Klemedtsson et al., 1997). Emissions from drained organic soils can be reduced to some extent by practices such as avoiding row crops and tubers, avoiding deep ploughing, and maintaining a shallower water table. But the most important mitigation practice is avoiding the drainage of these soils in the first place or re-establishing a high water table (Freibauer et al., 2004).

8.4.1.4 Restoration of degraded lands

A large proportion of agricultural lands has been degraded by excessive disturbance, erosion, organic matter loss, salinization, acidification, or other processes that curtail productivity (Batjes, 1999; Foley et al., 2005; Lal, 2001a, 2003, 2004b). Often, carbon storage in these soils can be partly restored by practices that reclaim productivity including: re-vegetation (e.g., planting grasses); improving fertility by nutrient amendments; applying organic substrates such as manures, biosolids, and composts; reducing tillage and retaining crop residues; and conserving water (Lal, 2001b; 2004b; Bruce et al., 1999; Olsson and Ardö, 2002; Paustian et al., 2004). Where these practices involve higher nitrogen amendments, the benefits of carbon sequestration may be partly offset by higher N2O emissions.