IPCC Scoping meeting for the Special Report on the Impacts of Global Warming of 1.5°C *above Pre-industrial Levels and related Global Greenhouse Gas Emission Pathways,* 15 to 18 August 2016, Geneva.

Contributing on Ecosystems and human systems: Attributing risks, avoided risks

Opha Pauline Dube Associate Professor University of Botswana

Humans have a major role in all the risks – for both ecosystems and human systems

- i.e. Human role is so intertwined with climate change
- A holistic approach to assessing risks is required hence we have all WGs engaged here.
- But also consider E.g. the concept of Socio-Ecological Systems:
 - multi-scale pattern of resource use around which humans have organized themselves (within an ecological system) in a particular social structure i.e. distribution of people, resource management, consumption patterns, and associated norms and rules).
- **Resilience** capacity to absorb disturbance and reorganize while undergoing change but retaining essentially the same function, structure, identity etc.
- Transformability -Where ecological, economic, or social structures of a socio-ecological system cannot bounce back to its original equilibrium

(Walker et al. 2004)

• This brings us to the Concept of the Anthropocene

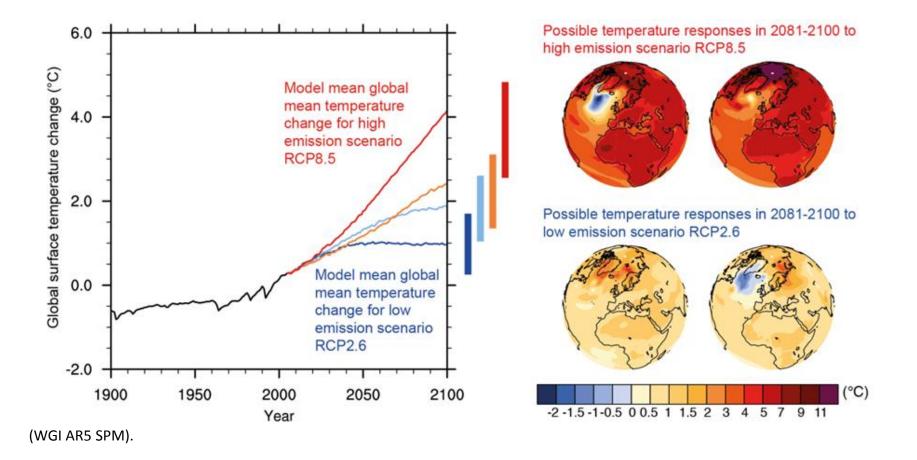
We have moved from the geological Holocene:

- A period of stability under which human civilizations evolved and thrived
- Into the Anthropocene

Where natural and human forces became intertwined requiring new approaches across board

(Steffen et al 2007)

 Anthropocene is represented by: extinction of species, climate change accumulated sediments, human insecurity etc.


The Anthropocene

- a holistic view -puts human systems at center stage of global changes including climate –
- Demands transdisciplinarity in assessments

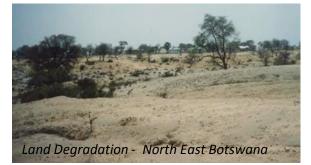
• Is it about climate Change or living in the anthropocene?

Ecosystems and human systems: Attributing risks, avoided risks (Main source: AR5 Report)

- Focusing on the following
- Water
- Terrestrial Ecosystems
- Food security
- Urban systems
- In the highest Representative Concentration Pathway (RCP8.5) by 2100:
 - some of the world's land area will be experiencing 4°C to 7°C higher temperatures due to anthropogenic climate change (WGI AR5 SPM).
- Climate related risks increase and become difficult to avoid from 2050/80-2100.

FAQ 12.1, Figure 1. Global mean temperature change averaged across all Coupled Model Intercomparison Project Phase 5 (CMIP5) models (relative to 1986–2005) for the four Representative Concentration Pathway (RCP) scenarios: RCP2.6 (dark blue), RCP4.5 (light blue), RCP6.0 (orange) and RCP8.5 (red); 32, 42, 25 and 39 models were used respectively for these 4 scenarios. Likely ranges for global temperature change by the end of the 21st century are indicated by vertical bars. Note that these ranges apply to the difference between two 20-year means, 2081–2100 relative to 1986–2005, which accounts for the bars being centred at a smaller

High risk of elevated stress on water resources linked to multiple interactive factors e.g.

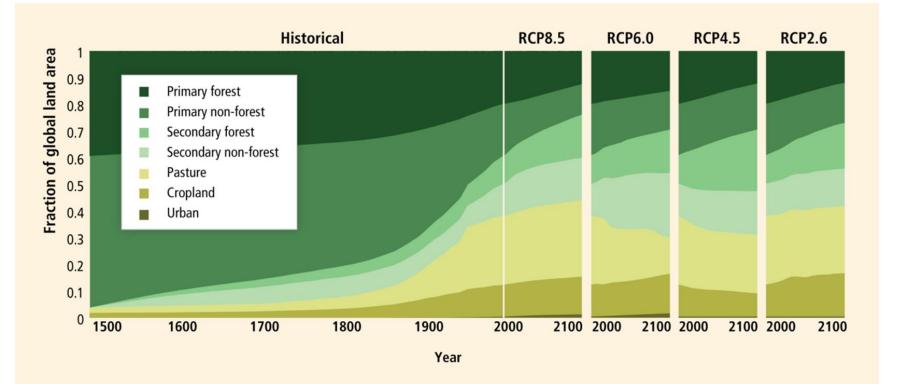

- 1. Direct human pressure –increasing water demand, high extraction and failed water resource management degradation of water catchment areas
- **2. Climate:** High evaporation, frequent drought- Increases in evapotranspiration are projected in southern Europe, Central America, southern Africa, and Siberia
 - Though uncertain -an increase in potential evapotranspiration has been associated with global warming (Kingston et al., 2009).
- For each degree of global warming, ~ 7% of the global population is projected to be exposed to water shortages of at least 20% (multi-model mean).
- Dry subtropical regions projected to become drier and face water shortagese.g. northern Africa and parts of southern Africa.
- Droughts: projected to become longer and more frequent in the Mediterranean, central Europe, central North America, and southern Africa
- Water quality will also suffer affecting fresh water supply

(WGII AR5 Chapters 3 and 4)

Terrestrial systems (AR5-Chapter 4)

Firewood

Shifts in geographic ranges, seasonal activities, migration patterns, etc. in several terrestrial systems in response to ongoing climate change have been observed.


- But only a few recent species extinctions have been attributed as yet to climate change
- Other stressors, e.g. habitat modification, overexploitation, pollution, and invasive species have a role.
- The net transfer of CO₂ from the atmosphere to the land is projected to weaken during the 21st century (medium confidence):
 - Natural carbon sink provided by terrestrial systems is partially offset at the decadal time scale by carbon released through the conversion to farm and grazing land and degradation (high confidence).

AR5-Chapter 4

Table 4-1 Biome shifts of the 20th century from published field research that examined trends over periods >30 years for biomes in areas where climate (rather than land use change or other factors) predominantly influenced vegetation, derived from a systematic analysis of published studies (Gonzalez et al., 2010). Pre-AR4 publications are included to provide a comprehensive review. Shift type: elevational (E), latitudinal (L), examined but not detected (N). The biome abbreviations match those in Figure 4-1. Rate of change in temperature (Temp.) and fractional rate of change in precipitation (Precip.) are derived from linear least squares regression of 1901–2002 data (Mitchell and Jones, 2005; Gonzalez et al., 2010). The table provides general regional climate trends at 50 km spatial resolution because the references do not give uniform site-specific climate data to compare across locations. The regional trends are consistent with local trends reported in each reference. *Rate significant at P \leq 0.05.

Location	Reference	Plots	Time period	Shift type	Retracting biome	Expanding biome	Temp. change (°C century ⁻¹)	Precip. change (% century ⁻¹)
1. Alaska Range, Alaska, USA	Lloyd and Fastie (2003)	18	1800–2000	L	UA	BC	1.1*	3
2. Baltic Coast, Sweden	Walther et al. (2005)	7	1944–2003	L	TC	TB	0.6*	8
3. Becca di Viou, Italy	Leonelli et al. (2011)	1	1700–2008	E	UA	BC	0.9*	-6
4. Garibaldi, British Columbia, Canada	Brink (1959)	1	1860–1959	E	UA	BC	0.7*	16*
5. Goulet Sector, Québec, Canada	Payette and Filion (1985)	2	1880–1980	E	UA	BC	1.4*	19*
6. Green Mountains, Vermont, USA	Beckage et al. (2008)	33	1962-2005	E	BC	ТВ	1.6*	6
7. Jasper, Alberta, Canada	Luckman and Kavanagh (2000)	1	1700–1994	E	UA	BC	0.6	21*
8. Kenai Mountains, Alaska, USA	Dial et al. (2007)	3	1951–1996	E	UA	BC	0.7	6
9. Kluane Range, Yukon, Canada	Danby and Hik (2007)	2	1800–2000	E	UA	BC	0.7	5
10. Low Peninsula, Québec, Canada	Payette and Filion (1985)	1	1750–1980	N	_	_	1.4*	19*
11. Mackenzie Mountains, Northwest Territories, Canada	Szeicz and Macdonald (1995)	13	1700–1990	N	—	—	1.4*	3
12. Montseny Mountains, Catalonia, Spain	Peñuelas and Boada (2003)	50	1945–2001	E	UA	TB	1.2*	-3
13. Napaktok Bay, Labrador, Canada	Payette (2007)	2	1750–2000	L	UA	BC	1.1*	5
14. Noatak, Alaska, USA	Suarez et al. (1999)	18	1700–1990	L	UA	BC	0.6	19*
15. Putorana Mountains, Russian Federation	Kirdyanov et al. (2012)	10	1500–2000	E	UA	BC	0.3	10
16. Rahu Saddle, New Zealand	Cullen et al. (2001)	7	1700-2000	N	—	_	0.6*	3
17. Rai-Iz, Urals, Russian Federation	Devi et al. (2008)	144	1700–2002	E	UA	BC	0.3	35*
18. Sahel, Sudan, Guinea zones; Senegal	Gonzalez (2001)	135	1945–1993	L	RW	RG	0.4*	-48*
19. Sahel, Burkina Faso, Chad, Mali, Mauritania, Niger	Gonzalez et al. (2012)	14	1960–2000	L	RW	RG	-0.01* to 0.8*	-31* to 9
20. Scandes, Sweden	Kullman and Öberg (2009)	123	1915-2007	E	UA	BC	0.8*	25*

AR5-Chapter 4

Increased tree mortality and associated forest dieback are projected to occur in many regions over the 21st century

- Due to increased temperatures and drought (medium confidence) - posing risks for carbon storage, biodiversity, wood production, water quality etc.
- High temperatures, rising ozone concentrations, and in some places drought decrease plant productivity by amounts comparable in magnitude to the enhancement by rising CO₂. (*Medium confidence*)

climate change affects all aspects of **Food security** e.g.: production, access, utilization, and price stability

Temperature trends are important for determining past and future crop yields at sub-continental to global scales.

- Global temperature of ~4°C or more above late-20th-century levels, combined with increasing food demand, would pose large risks to food security globally and regionally (*high confidence*).
- Risks to food security are generally greater in low-latitude areas.
- Local temperature increases of e.g. 2°C or more above late-20thcentury levels will negatively impact production in major crops i.e. wheat, rice, and maize, in tropical and temperate regions despite regional variations
 - In Africa Maize reduction: 18% for southern Africa to 22% aggregated across sub-Saharan Africa : Wheat: 35% by 2050 while minimum reductions for sorghum and millet as temperature increases they too will be affected
- (WGII AR5 Chapters 7 and Regional Africa Chapter, 22)

Estimated losses of roughly 10% for wheat and soybean and 3 to 5% for maize and rice *Linked to suppressed global production of major crops due to Ozone-O3 increases* (Van Dingenen et al., 2009)

- Impacts most severe over India and China. Also USA for soybeans .
- Work on the interactive effects of O3 with other environmental factors such as CO2, temperature, moisture, and light on crop yields is needed
- Changes in temperature and precipitation, without considering effects of CO2, will contribute to increased global food prices by 2050, with estimated increases ranging from 3 to 84%

Urban Systems:

Rapid urbanisation - in mega-deltas and coastal areas (where land management is overpowered by complex cross-scale socio-economic factors including population growth)

- Occurring with rising climate change driven flood risks, increasing sea level rise, coastal erosion etc. increase the risk of economic losses and human mortality
- E.g. about 1 billion poor people are in coastal area,
- Asia exhibits the greatest exposure in terms of population and assets
- Sub-Saharan Africa will continue to have the largest increases in exposure

(WGII AR5, Chapter 8)

Flood risk generally found closely linked to exceptionally high rainfall in areas of high exposure

- Annual maxima of daily precipitation that are observed to have 20-year return periods in 1986–2005 are projected to have shorter return periods in 2081–2100:
 - about 14 years for RCP2.6, 11 years for RCP4.5, and 6 years for RCP8.5

More than 95% flood-related deaths are in developing countries

Flood Risks have been reduced by:

- Applying flood protection technologies, shelters, and Early warning
- Cities e.g. Tokyo and Shanghai have protected themselves against local sea level rise of several meters during the 20th century
- But this is too costly for low income countries acting on their own and not feasible for islands states
- Progressive warming may deem most flood risk measures less effective even for the most developed countries