3.8.5 Regional Differences
3.8.5.1 Privatization and Deregulation of the Electricity Sector
In many countries, state owned or state regulated electricity supply monopolies
have been privatized and broken up to deregulate markets such that companies
compete to generate electricity and to supply customers. These moves affect
the types of power station favoured. Traditional, large power stations (>
600MW) have had high capital costs and construction periods of 4-7 years, which
have led to high interest payments during construction and the need for higher
planning margins. Under the new circumstances, the new power generators use
higher discount rates, seek lower overall costs, and try to minimize project
risks by preferring plants of smaller unit size. They thus favour projects with
low capital costs, rapid construction times, use of proven technology, high
plant reliability/availability, and low operating costs. CCGTs meet all of these
new criteria, and are favoured by generators where gas is available at acceptable
costs. This could point the way for the development of new designs for other
types of power station, which need to be smaller with modular designs that are
largely factory built rather than site built. Economies of scale then come from
replication on an assembly line rather than through size (see also Section
6.2.1.3).
Community ownership of distributed renewable energy projects, particularly
wind turbines and biogas plants, is becoming common in Denmark (Tranaes, 1997)
and more recently in the UK (UK DTI, 1999). The trend towards privately owned
distributed power supply systems, either independent or grid connected, is likely
to continue as a result of growing public interest in sustainability and technical
improvements in controls and asynchronous grid connections.
In countries where privatization of transmission line companies is occurring,
there is no longer any commercial rationale to construct and maintain lines
only to service a small demand. This has historically often been a social investment
by governments and aid agencies. Where grid connections are already in place,
it is possible that disconnections may occur in the future where the lines are
uneconomic. Then existing residents will have to choose between installing independent
domestic-scale systems or establishing community-owned co-operative schemes.
State owned utilities have been able to cross-subsidize otherwise non-competitive
projects including nuclear and renewable technologies. Privatization of these
utilities requires new methods of supporting technology implementation objectives.
In some cases, electricity tariffs and regulatory systems may need to be amended
to include the benefits and costs of embedded generation. This would enable
renewable energy projects to be sited on the distribution network at nodes where
they would bring most benefit to quality of supply (see Mitchell, 1998, 1999;
and Chapter 6). One detrimental impact could be an
increase of fossil fuel electricity generation caused by the increased need
to operate in load-following mode.
3.8.5.2 Developing Country Issues
In the past there has been little incentive to explore for gas in developing
countries unless there was an existing infrastructure to utilize it. The development
of CCGT technology now means that, if electricity generation is required, an
initial market for the gas can be developed quite rapidly and this market extended
to other sectors as the infrastructure is built.
Developing countries have a large need for capital to meet the development
of hospitals, schools, and transport and not just for energy in general or electricity
in particular. In such circumstances, cheaper power stations are often built
at lower efficiency than might otherwise be the case, for example 30%-35% efficiency
for an old coal-fired design rather than 40%+ for a modern
design. The low price of fuel in some of these countries can also make a cheaper,
less efficient design economically more attractive. In India, coal-fired power
station design has been standardized at 37.5% efficiency and capacity of 250
and 500MW. Capital costs are US$884/kW whereas a 40% efficiency station would
cost around US$977/kW. The coal price is US$25 - US$37/t, depending on location.
Even at the higher price, the increased capital costs for the higher efficiency
power station outweigh the economic benefits from its lower fuel demand and
hence lower emissions.
Technology transfer of advanced power generation technologies including CCGT,
nuclear, clean coal, and renewable energy would lead to emission reduction and
could be encouraged through the Kyoto mechanisms (see Chapter 6). In addition
to limited capital resources that can make advanced technologies unaffordable,
many developing countries face skill shortages that can impede the construction
and operation of such technology. This is discussed more fully in Chapter 5.
Electricity plants and boilers are sometimes not operated as efficiently as
possible in developing countries. In some cases, incremental investment in such
a plant will yield benefits but, more often, it is investment in training the
operators that is lacking and that will yield substantial gains. The extension
of grids in regions such as India and Africa could allow better use to be made
of efficient power stations in order to displace less efficient local units.
In India, one trading scheme by three electricity companies resulted in an emissions
reduction of 2MtC (Zhou, 1998), and there are similar possibilities in southern
and east Africa (Batidzirai and Zhou, 1998). The same study shows that there
is a large scope in the subregion for exploiting hydropower, sharing of natural
gas resources for power generation, and utilization of wind power along the
coastal areas. These measures can displace coal-based generation which currently
emits 3040MtC in southern Africa alone.
An alternative to the extension of grids in developing countries is to increase
development of efficiently distributed power generation. This is discussed further
in the section below.
3.8.5.3 Distributed Systems
Distributed power comprises small power generation or storage systems located
close to the point of use and/or controllable load. Worldwide, these include
more than 100MW of existing compressed ignition and natural gas-fired spark
ignition engines, small combustion turbines, smaller steam turbines, and renewables.
Emerging distributed power technologies include cleaner natural gas or biodiesel
engines, microturbines, Stirling engines and fuel cells, small modular biopower
and geopower packaged as cogeneration units, and wind, photovoltaics and solar
dish engine renewable generation. Increased integration of distributed power
with other distributed energy resources could further enhance technology improvement
in this sector.
Interest is growing in generating power at point of use using independent or
grid-connected systems, often based on renewable energy. These could be developed,
owned, and operated by small communities. The European Campaign for Take-off
target for 100 communities to be supplied by 100% renewable energy and become
independent of the grid by 2010 will require a hybrid mix of technologies to
be used depending on local resources (Egger, 1999). Local employment opportunities
should result and the experience should aid uptake in developing countries.
For small grid-connected embedded generation systems, power supply companies
could benefit from improved power quality where the distributed sites are located
towards the end of long and inefficient transmission lines (Ackermann et al.,
1999). Expensive storage would be avoided where a grid system can provide back-up
generation.
|