10.2.1.1 The Special Report on Emission Scenarios and Constant-Concentration Commitment Scenarios
The future projections discussed in this chapter are based upon the standard A2, A1B and B2 SRES scenarios (Nakićenović and Swart, 2000). The emissions of CO2, methane (CH4) and SO2, the concentrations of CO2, CH4 and nitrous oxide (N2O) and the total radiative forcing for the SRES scenarios are illustrated in Figure 10.26 and summarised for the A1B scenario in Figure 10.1. The models have been integrated to year 2100 using the projected concentrations of LLGHGs and emissions of SO2 specified by the A1B, B1 and A2 emissions scenarios. Some of the AOGCMs do not include sulphur chemistry, and the simulations from these models are based upon concentrations of sulphate aerosols from Boucher and Pham (2002; see Section 10.2.1.2). The simulations for the three scenarios were continued for another 100 to 200 years with all anthropogenic forcing agents held fixed at values applicable to the year 2100. There is also a new constant-concentration commitment scenario that assumes concentrations are held fixed at year 2000 levels (Section 10.7.1). In this idealised scenario, models are initialised from the end of the simulations for the 20th century, the concentrations of radiatively active species are held constant at year 2000 values from these simulations, and the models are integrated to 2100.
For comparison with this constant composition case, it is useful to note that constant emissions would lead to much larger radiative forcing. For example, constant CO2 emissions at year 2000 values would lead to concentrations reaching about 520 ppm by 2100, close to the B1 case (Friedlingstein and Solomon, 2005; Hare and Munschausen, 2006; see also FAQ 10.3).