IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group I: The Physical Science Basis

10.3.3.3 Changes in Greenland Ice Sheet Mass Balance

As noted in Section 10.6, modelling studies (e.g., Hanna et al., 2002; Kiilsholm et al., 2003; Wild et al., 2003) as well as satellite observations, airborne altimeter surveys and other studies (Abdalati et al., 2001; Thomas et al., 2001; Krabill et al., 2004; Johannessen et al., 2005; Zwally et al., 2005; Rignot and Kanagaratnam, 2006) suggest a slight inland thickening and strong marginal thinning resulting in an overall negative Greenland Ice Sheet mass balance which has accelerated recently (see Section 4.6.2.2.). A consistent feature of all climate models is that projected 21st-century warming is amplified in northern latitudes. This suggests continued melting of the Greenland Ice Sheet, since increased summer melting dominates over increased winter precipitation in model projections of future climate. Ridley et al. (2005) coupled UKMO-HadCM3 to an ice sheet model to explore the melting of the Greenland Ice Sheet under elevated (four times pre-industrial) levels of atmospheric CO2 (see Section 10.7.4.3, Figure 10.38). While the entire Greenland Ice Sheet eventually completely ablated (after 3 kyr), the peak rate of melting was 0.06 Sv (1 Sv = 106 m3 s–1) corresponding to about 5.5 mm yr–1 global sea level rise (see Sections 10.3.4 and 10.6.6). Toniazzo et al. (2004) further show that in UKMO-HadCM3, the complete melting of the Greenland Ice sheet is an irreversible process even if pre-industrial levels of atmospheric CO2 are re-established after it melts.