10.7.3 Long-Term Integrations: Idealised Overshoot Experiments
The concept of mitigation related to overshoot scenarios has implications for IPCC Working Groups II and III and was addressed in the Second Assessment Report. A new suite of mitigation scenarios is currently being assessed for the AR4. Working Group I does not have the expertise to assess such scenarios, so this section assesses the processes and response of the physical climate system in a very idealised overshoot experiment. Plausible new mitigation and overshoot scenarios will be run subsequently by modelling groups and assessed in the next IPCC report.
An idealised overshoot scenario has been run in an AOGCM where the CO2 concentration decreases from the A1B stabilised level to the B1 stabilised level between 2150 and 2250, followed by 200 years of integration with that constant B1 level (Figure 10.36a). This reduction in CO2 concentration would require large reductions in emissions, but such an idealised experiment illustrates the processes involved in how the climate system would respond to such a large change in emissions and concentrations. Yoshida et al. (2005) and Tsutsui et al. (2007) show that there is a relatively fast response in the surface and upper ocean, which start to recover to temperatures at the B1 level after several decades, but a much more sluggish response with more commitment in the deep ocean. As shown in Figure 10.36b and c, the overshoot scenario temperatures only slowly decrease to approach the lower temperatures of the B1 experiment, and continue a slow convergence that has still not cooled to the B1 level at the year 2350, or 100 years after the CO2 concentration in the overshoot experiment was reduced to equal the concentration in the B1 experiment. However, Dai et al. (2001a) show that reducing emissions to achieve a stabilised CO2 concentration in the 21st century reduces warming moderately (less than 0.5°C) by the end of the 21st century in comparison to a business-as-usual scenario, but the warming reduction is about 1.5°C by the end of the 22nd century in that experiment. Other climate system responses include the North Atlantic MOC and sea ice volume that almost recover to the B1 level in the overshoot scenario experiment, except for a significant hysteresis effect that is shown in the sea level change due to thermal expansion (Yoshida et al., 2005; Nakashiki et al., 2006).
Such stabilisation and overshoot scenarios have implications for risk assessment as suggested by Yoshida et al. (2005) and others. For example, in a probabilistic study using an SCM and multi-gas scenarios, Meinshausen (2006) estimated that the probability of exceeding a 2°C warming is between 68 and 99% for a stabilisation of equivalent CO2 at 550 ppm. They also considered scenarios with peaking CO2 and subsequent stabilisation at lower levels as an alternative pathway and found that if the risk of exceeding a warming of 2°C is not to be greater than 30%, it is necessary to peak equivalent CO2 concentrations around 475 ppm before returning to lower concentrations of about 400 ppm. These overshoot and targeted climate change estimations take into account the climate change commitment in the system that must be overcome on the time scale of any overshoot or emissions target calculation. The probabilistic studies also show that when certain thresholds of climate change are to be avoided, emission pathways depend on the certainty requested of not exceeding the threshold.
Earth System Models of Intermediate Complexity have been used to calculate the long-term climate response to stabilisation of atmospheric CO2, although EMICs have not been adjusted to take into account the full range of AOGCM sensitivities. The newly developed stabilisation profiles were constructed following Enting et al. (1994) and Wigley et al. (1996) using the most recent atmospheric CO2 observations, CO2 projections with the BERN-CC model (Joos et al., 2001) for the A1T scenario over the next few decades, and a ratio of two polynomials (Enting et al., 1994) leading to stabilisation at levels of 450, 550, 650, 750 and 1,000 ppm atmospheric CO2 equivalent. Other forcings are not considered. Supplementary Material, Figure S10.4a shows the equilibrium surface warming for seven different EMICs and six stabilisation levels. Model differences arise mainly from the models having different climate sensitivities.
Knutti et al. (2005) explore this further with an EMIC using several published PDFs of climate sensitivity and different ocean heat uptake parametrizations and calculate probabilities of not overshooting a certain temperature threshold given an equivalent CO2 stabilisation level (Supplementary Material, Figure S10.4b). This plot illustrates, for example, that for low values of stabilised CO2, the range of response of possible warming is smaller than for high values of stabilised CO2. This is because with greater CO2 forcing, there is a greater spread of outcomes as illustrated in Figure 10.26. Figure S10.4b also shows that for any given temperature threshold, the smaller the desired probability of exceeding the target is, the lower the stabilisation level that must be chosen. Stabilisation of atmospheric greenhouse gases below about 400 ppm CO2 equivalent is required to keep the global temperature increase likely less than 2°C above pre-industrial temperature (Knutti et al., 2005).