1.3 Examples of Progress in Detecting and Attributing Recent Climate Change
1.3.1 The Human Fingerprint on Greenhouse Gases
The high-accuracy measurements of atmospheric CO2 concentration, initiated by Charles David Keeling in 1958, constitute the master time series documenting the changing composition of the atmosphere (Keeling, 1961, 1998). These data have iconic status in climate change science as evidence of the effect of human activities on the chemical composition of the global atmosphere (see FAQ 7.1). Keeling’s measurements on Mauna Loa in Hawaii provide a true measure of the global carbon cycle, an effectively continuous record of the burning of fossil fuel. They also maintain an accuracy and precision that allow scientists to separate fossil fuel emissions from those due to the natural annual cycle of the biosphere, demonstrating a long-term change in the seasonal exchange of CO2 between the atmosphere, biosphere and ocean. Later observations of parallel trends in the atmospheric abundances of the 13CO2 isotope (Francey and Farquhar, 1982) and molecular oxygen (O2) (Keeling and Shertz, 1992; Bender et al., 1996) uniquely identified this rise in CO2 with fossil fuel burning (Sections 2.3, 7.1 and 7.3).
To place the increase in CO2 abundance since the late 1950s in perspective, and to compare the magnitude of the anthropogenic increase with natural cycles in the past, a longer-term record of CO2 and other natural greenhouse gases is needed. These data came from analysis of the composition of air enclosed in bubbles in ice cores from Greenland and Antarctica. The initial measurements demonstrated that CO2 abundances were significantly lower during the last ice age than over the last 10 kyr of the Holocene (Delmas et al., 1980; Berner et al., 1980; Neftel et al., 1982). From 10 kyr before present up to the year 1750, CO2 abundances stayed within the range 280 ± 20 ppm (Indermühle et al., 1999). During the industrial era, CO2 abundance rose roughly exponentially to 367 ppm in 1999 (Neftel et al., 1985; Etheridge et al., 1996; IPCC, 2001a) and to 379 ppm in 2005 (Section 2.3.1; see also Section 6.4).
Direct atmospheric measurements since 1970 (Steele et al., 1996) have also detected the increasing atmospheric abundances of two other major greenhouse gases, methane (CH4) and nitrous oxide (N2O). Methane abundances were initially increasing at a rate of about 1% yr–1 (Graedel and McRae, 1980; Fraser et al., 1981; Blake et al., 1982) but then slowed to an average increase of 0.4% yr–1 over the 1990s (Dlugokencky et al., 1998) with the possible stabilisation of CH4 abundance (Section 2.3.2). The increase in N2O abundance is smaller, about 0.25% yr–1, and more difficult to detect (Weiss, 1981; Khalil and Rasmussen, 1988). To go back in time, measurements were made from firn air trapped in snowpack dating back over 200 years, and these data show an accelerating rise in both CH4 and N2O into the 20th century (Machida et al., 1995; Battle et al., 1996). When ice core measurements extended the CH4 abundance back 1 kyr, they showed a stable, relatively constant abundance of 700 ppb until the 19th century when a steady increase brought CH4 abundances to 1,745 ppb in 1998 (IPCC, 2001a) and 1,774 ppb in 2005 (Section 2.3.2). This peak abundance is much higher than the range of 400 to 700 ppb seen over the last half-million years of glacial-interglacial cycles, and the increase can be readily explained by anthropogenic emissions. For N2O the results are similar: the relative increase over the industrial era is smaller (15%), yet the 1998 abundance of 314 ppb (IPCC, 2001a), rising to 319 ppb in 2005 (Section 2.3.3), is also well above the 180-to-260 ppb range of glacial-interglacial cycles (Flückiger et al., 1999; see Sections 2.3, 6.2, 6.3, 6.4, 7.1 and 7.4)
Several synthetic halocarbons (chlorofluorocarbons (CFCs), hydrofluorocarbons, perfluorocarbons, halons and sulphur hexafluoride) are greenhouse gases with large global warming potentials (GWPs; Section 2.10). The chemical industry has been producing these gases and they have been leaking into the atmosphere since about 1930. Lovelock (1971) first measured CFC-11 (CFCl3) in the atmosphere, noting that it could serve as an artificial tracer, with its north-south gradient reflecting the latitudinal distribution of anthropogenic emissions. Atmospheric abundances of all the synthetic halocarbons were increasing until the 1990s, when the abundance of halocarbons phased out under the Montreal Protocol began to fall (Montzka et al., 1999; Prinn et al., 2000). In the case of synthetic halocarbons (except perfluoromethane), ice core research has shown that these compounds did not exist in ancient air (Langenfelds et al., 1996) and thus confirms their industrial human origin (see Sections 2.3 and 7.1).
At the time of the TAR scientists could say that the abundances of all the well-mixed greenhouse gases during the 1990s were greater than at any time during the last half-million years (Petit et al, 1999), and this record now extends back nearly one million years (Section 6.3). Given this daunting picture of increasing greenhouse gas abundances in the atmosphere, it is noteworthy that, for simpler challenges but still on a hemispheric or even global scale, humans have shown the ability to undo what they have done. Sulphate pollution in Greenland was reversed in the 1980s with the control of acid rain in North America and Europe (IPCC, 2001b), and CFC abundances are declining globally because of their phase-out undertaken to protect the ozone layer.