1.6 The IPCC Assessments of Climate Change and Uncertainties
The WMO and the United Nations Environment Programme (UNEP) established the IPCC in 1988 with the assigned role of assessing the scientific, technical and socioeconomic information relevant for understanding the risk of human-induced climate change. The original 1988 mandate for the IPCC was extensive: ‘(a) Identification of uncertainties and gaps in our present knowledge with regard to climate changes and its potential impacts, and preparation of a plan of action over the short-term in filling these gaps; (b) Identification of information needed to evaluate policy implications of climate change and response strategies; (c) Review of current and planned national/international policies related to the greenhouse gas issue; (d) Scientific and environmental assessments of all aspects of the greenhouse gas issue and the transfer of these assessments and other relevant information to governments and intergovernmental organisations to be taken into account in their policies on social and economic development and environmental programs.’ The IPCC is open to all members of UNEP and WMO. It does not directly support new research or monitor climate-related data. However, the IPCC process of synthesis and assessment has often inspired scientific research leading to new findings.
The IPCC has three Working Groups and a Task Force. Working Group I (WGI) assesses the scientific aspects of the climate system and climate change, while Working Groups II (WGII) and III (WGIII) assess the vulnerability and adaptation of socioeconomic and natural systems to climate change, and the mitigation options for limiting greenhouse gas emissions, respectively. The Task Force is responsible for the IPCC National Greenhouse Gas Inventories Programme. This brief history focuses on WGI and how it has described uncertainty in the quantities presented (See Box 1.1).
A main activity of the IPCC is to provide on a regular basis an assessment of the state of knowledge on climate change, and this volume is the fourth such Assessment Report of WGI. The IPCC also prepares Special Reports and Technical Papers on topics for which independent scientific information and advice is deemed necessary, and it supports the United Nations Framework Convention on Climate Change (UNFCCC) through its work on methodologies for National Greenhouse Gas Inventories. The FAR played an important role in the discussions of the Intergovernmental Negotiating Committee for the UNFCCC. The UNFCCC was adopted in 1992 and entered into force in 1994. It provides the overall policy framework and legal basis for addressing the climate change issue.
The WGI FAR was completed under the leadership of Bert Bolin (IPCC Chair) and John Houghton (WGI Chair) in a plenary at Windsor, UK in May 1990. In a mere 365 pages with eight colour plates, it made a persuasive, but not quantitative, case for anthropogenic interference with the climate system. Most conclusions from the FAR were non-quantitative and remain valid today (see also Section 1.4.4). For example, in terms of the greenhouse gases, ‘emissions resulting from human activities are substantially increasing the atmospheric concentrations of the greenhouse gases: CO2, CH4, CFCs, N2O’ (see Chapters 2 and 3; Section 7.1). On the other hand, the FAR did not foresee the phase-out of CFCs, missed the importance of biomass-burning aerosols and dust to climate and stated that unequivocal detection of the enhanced greenhouse effect was more than a decade away. The latter two areas highlight the advance of climate science and in particular the merging of models and observations in the new field of detection and attribution (see Section 9.1).
The Policymakers Summary of the WGI FAR gave a broad overview of climate change science and its Executive Summary separated key findings into areas of varying levels of confidence ranging from ‘certainty’ to providing an expert ‘judgment’. Much of the summary is not quantitative (e.g., the radiative forcing bar charts do not appear in the summary). Similarly, scientific uncertainty is hardly mentioned; when ranges are given, as in the projected temperature increases of 0.2°C to 0.5°C per decade, no probability or likelihood is assigned to explain the range (see Chapter 10). In discussion of the climate sensitivity to doubled atmospheric CO2 concentration, the combined subjective and objective criteria are explained: the range of model results was 1.9°C to 5.2°C; most were close to 4.0°C; but the newer model results were lower; and hence the best estimate was 2.5°C with a range of 1.5°C to 4.5°C. The likelihood of the value being within this range was not defined. However, the importance of identifying those areas where climate scientists had high confidence was recognised in the Policymakers Summary.
The Supplementary Report (IPCC, 1992) re-evaluated the RF values of the FAR and included the new IPCC scenarios for future emissions, designated IS92a–f. It also included updated chapters on climate observations and modelling (see Chapters 3, 4, 5, 6 and 8). The treatment of scientific uncertainty remained as in the FAR. For example, the calculated increase in global mean surface temperature since the 19th century was given as 0.45°C ± 0.15°C, with no quantitative likelihood for this range (see Section 3.2).
The SAR, under Bert Bolin (IPCC Chair) and John Houghton and Gylvan Meira Filho (WGI Co-chairs), was planned with and coupled to a preliminary Special Report (IPCC, 1995) that contained intensive chapters on the carbon cycle, atmospheric chemistry, aerosols and radiative forcing. The WGI SAR culminated in the government plenary in Madrid in November 1995. The most cited finding from that plenary, on attribution of climate change, has been consistently reaffirmed by subsequent research: ‘The balance of evidence suggests a discernible human influence on global climate’ (see Chapter 9). The SAR provided key input to the negotiations that led to the adoption in 1997 of the Kyoto Protocol to the UNFCCC.
Uncertainty in the WGI SAR was defined in a number of ways. The carbon cycle budgets used symmetric plus/minus ranges explicitly defined as 90% confidence intervals, whereas the RF bar chart reported a ‘mid-range’ bar along with a plus/minus range that was estimated largely on the spread of published values. The likelihood, or confidence interval, of the spread of published results was not given. These uncertainties were additionally modified by a declaration that the confidence of the RF being within the specified range was indicated by a stated confidence level that ranged from ‘high’ (greenhouse gases) to ‘very low’ (aerosols). Due to the difficulty in approving such a long draft in plenary, the Summary for Policy Makers (SPM) became a short document with no figures and few numbers. The use of scientific uncertainty in the SPM was thus limited and similar to the FAR: a range in the mean surface temperature increase since 1900 was given as 0.3°C to 0.6°C with no explanation as to likelihood of this range. While the underlying report showed projected future warming for a range of different climate models, the Technical Summary focused on a central estimate.
The IPCC Special Report on Aviation and the Global Atmosphere (IPCC, 1999) was a major interim assessment involving both WGI and WGIII and the Scientific Assessment Panel to the Montreal Protocol on Substances that Deplete the Ozone Layer. It assessed the impacts of civil aviation in terms of climate change and global air quality as well as looking at the effect of technology options for the future fleet. It was the first complete assessment of an industrial sub-sector. The summary related aviation’s role relative to all human influence on the climate system: ‘The best estimate of the radiative forcing in 1992 by aircraft is 0.05 W m–2 or about 3.5% of the total radiative forcing by all anthropogenic activities.’ The authors took a uniform approach to assigning and propagating uncertainty in these RF values based on mixed objective and subjective criteria. In addition to a best value, a two-thirds likelihood (67% confidence) interval is given. This interval is similar to a one-sigma (i.e., one standard deviation) normal error distribution, but it was explicitly noted that the probability distribution outside this interval was not evaluated and might not have a normal distribution. A bar chart with ‘whiskers’ (two-thirds likelihood range) showing the components and total (without cirrus effects) RF for aviation in 1992 appeared in the SPM (see Sections 2.6 and 10.2).
The TAR, under Robert Watson (IPCC Chair) and John Houghton and Ding YiHui (WGI Co-chairs), was approved at the government plenary in Shanghai in January 2001. The predominant summary statements from the TAR WGI strengthened the SAR’s attribution statement: ‘An increasing body of observations gives a collective picture of a warming world and other changes in the climate system’, and ‘There is new and stronger evidence that most of the warming observed over the last 50 years is attributable to human activities.’ The TAR Synthesis Report (IPCC, 2001b) combined the assessment reports from the three Working Groups. By combining data on global (WGI) and regional (WGII) climate change, the Synthesis Report was able to strengthen the conclusion regarding human influence: ‘The Earth’s climate system has demonstrably changed on both global and regional scales since the pre-industrial era, with some of these changes attributable to human activities’ (see Chapter 9).
In an effort to promote consistency, a guidance paper on uncertainty (Moss and Schneider, 2000) was distributed to all Working Group authors during the drafting of the TAR. The WGI TAR made some effort at consistency, noting in the SPM that when ranges were given they generally denoted 95% confidence intervals, although the carbon budget uncertainties were specified as ±1 standard deviation (68% likelihood). The range of 1.5°C to 4.5°C for climate sensitivity to atmospheric CO2 doubling was reiterated but with no confidence assigned; however, it was clear that the level of scientific understanding had increased since that same range was first given in the Charney et al. (1979) report. The RF bar chart noted that the RF components could not be summed (except for the long-lived greenhouse gases) and that the ‘whiskers’ on the RF bars each meant something different (e.g., some were the range of models, some were uncertainties). Another failure in dealing with uncertainty was the projection of 21st-century warming: it was reported as a range covering (i) six Special Report on Emission Scenarios (SRES) emissions scenarios and (ii) nine atmosphere-ocean climate models using two grey envelopes without estimates of likelihood levels. The full range (i.e., scenario plus climate model range) of 1.4°C to 5.8°C is a much-cited finding of the WGI TAR but the lack of discussion of associated likelihood in the report makes the interpretation and useful application of this result difficult.
Box 1.1: Treatment of Uncertainties in the Working Group I Assessment
The importance of consistent and transparent treatment of uncertainties is clearly recognised by the IPCC in preparing its assessments of climate change. The increasing attention given to formal treatments of uncertainty in previous assessments is addressed in Section 1.6. To promote consistency in the general treatment of uncertainty across all three Working Groups, authors of the Fourth Assessment Report have been asked to follow a brief set of guidance notes on determining and describing uncertainties in the context of an assessment . This box summarises the way that Working Group I has applied those guidelines and covers some aspects of the treatment of uncertainty specific to material assessed here.
Uncertainties can be classified in several different ways according to their origin. Two primary types are ‘value uncertainties’ and ‘structural uncertainties’. Value uncertainties arise from the incomplete determination of particular values or results, for example, when data are inaccurate or not fully representative of the phenomenon of interest. Structural uncertainties arise from an incomplete understanding of the processes that control particular values or results, for example, when the conceptual framework or model used for analysis does not include all the relevant processes or relationships. Value uncertainties are generally estimated using statistical techniques and expressed probabilistically. Structural uncertainties are generally described by giving the authors’ collective judgment of their confidence in the correctness of a result. In both cases, estimating uncertainties is intrinsically about describing the limits to knowledge and for this reason involves expert judgment about the state of that knowledge. A different type of uncertainty arises in systems that are either chaotic or not fully deterministic in nature and this also limits our ability to project all aspects of climate change.
The scientific literature assessed here uses a variety of other generic ways of categorising uncertainties. Uncertainties associated with ‘random errors’ have the characteristic of decreasing as additional measurements are accumulated, whereas those associated with ‘systematic errors’ do not. In dealing with climate records, considerable attention has been given to the identification of systematic errors or unintended biases arising from data sampling issues and methods of analysing and combining data. Specialised statistical methods based on quantitative analysis have been developed for the detection and attribution of climate change and for producing probabilistic projections of future climate parameters. These are summarised in the relevant chapters.
The uncertainty guidance provided for the Fourth Assessment Report draws, for the first time, a careful distinction between levels of confidence in scientific understanding and the likelihoods of specific results. This allows authors to express high confidence that an event is extremely unlikely (e.g., rolling a dice twice and getting a six both times), as well as high confidence that an event is about as likely as not (e.g., a tossed coin coming up heads). Confidence and likelihood as used here are distinct concepts but are often linked in practice.
The standard terms used to define levels of confidence in this report are as given in the IPCC Uncertainty Guidance Note, namely:
Confidence Terminology | Degree of confidence in being correct |
---|
Very high confidence | At least 9 out of 10 chance |
High confidence | About 8 out of 10 chance |
Medium confidence | About 5 out of 10 chance |
Low confidence | About 2 out of 10 chance |
Very low confidence | Less than 1 out of 10 chance |
Note that ‘low confidence’ and ‘very low confidence’ are only used for areas of major concern and where a risk-based perspective is justified.
Chapter 2 of this report uses a related term ‘level of scientific understanding’ when describing uncertainties in different contributions to radiative forcing. This terminology is used for consistency with the Third Assessment Report, and the basis on which the authors have determined particular levels of scientific understanding uses a combination of approaches consistent with the uncertainty guidance note as explained in detail in Section 2.9.2 and Table 2.11.
The standard terms used in this report to define the likelihood of an outcome or result where this can be estimated probabilistically are:
Likelihood Terminology | Likelihood of the occurrence/ outcome |
---|
Virtually certain | > 99% probability |
Extremely likely | > 95% probability |
Very likely | > 90% probability |
Likely | > 66% probability |
More likely than not | > 50% probability |
About as likely as not | 33 to 66% probability |
Unlikely | < 33% probability |
Very unlikely | < 10% probability |
Extremely unlikely | < 5% probability |
Exceptionally unlikely | < 1% probability |
The terms ‘extremely likely’, ‘extremely unlikely’ and ‘more likely than not’ as defined above have been added to those given in the IPCC Uncertainty Guidance Note in order to provide a more specific assessment of aspects including attribution and radiative forcing.
Unless noted otherwise, values given in this report are assessed best estimates and their uncertainty ranges are 90% confidence intervals (i.e., there is an estimated 5% likelihood of the value being below the lower end of the range or above the upper end of the range). Note that in some cases the nature of the constraints on a value, or other information available, may indicate an asymmetric distribution of the uncertainty range around a best estimate.