IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability

14.2.3 Coastal regions

The North American coast is long and diverse with a wide range of trends in relative sea level (Figure 14.1d) (Shaw et al., 1998; Dyke and Peltier, 2000; Zervas, 2001). Relative sea level (see glossary) is rising in many areas, yet coastal residents are often unaware of the trends and their impacts on coastal retreat and flooding (O’Reilly et al., 2005). In the Great Lakes, both extremely high and extremely low water levels have been damaging and disruptive (Moulton and Cuthbert, 2000). Demand for waterfront property and building land continues to grow, increasing the value of property at risk (Heinz Center, 2000; Forbes et al., 2002b; Small and Nichols, 2003).

Many coastal areas in North America are potentially exposed to storm-surge flooding (Titus and Richman, 2001; Titus, 2005). Some major urban centres on large deltas are below sea level (e.g., New Orleans on the Mississippi; Richmond and Delta on the Fraser), placing large populations at risk. Breaching of New Orleans floodwalls following Hurricane Katrina in 2005 (see Chapter 6, Section 6.4.1.2 and Box 6.4) and storm-wave breaching of a dike in Delta, British Columbia, in 2006 demonstrate the vulnerability. Under El Niño conditions, high water levels combined with changes in winter storms along the Pacific coast have produced severe coastal flooding and storm impacts (Komar et al., 2000; Walker and Barrie, 2006). At San Francisco, 140 years of tide-gauge data suggest an increase in severe winter storms since 1950 (Bromirski et al., 2003) and some studies have detected accelerated coastal erosion (Bernatchez and Dubois, 2004). Some Alaskan villages are threatened and require protection or relocation at projected costs up to US$54 million (Parson et al., 2001a). Recent severe tropical and extra-tropical storms demonstrate that North American urban centres with assumed high adaptive capacity remain vulnerable to extreme events. Recent winters with less ice in the Great Lakes and Gulf of St. Lawrence have increased coastal exposure to damage from winter storms. Winter ice provides seasonal shore protection, but can also damage shorefront homes and infrastructure (Forbes et al., 2002a).

Impacts on coastal communities and ecosystems can be more severe when major storms occur in short succession, limiting the opportunity to rebuild natural resilience (Forbes et al., 2004). Adaptation to coastal hazards under the present climate is often inadequate, and readiness for increased exposure is poor (Clark et al., 1998; Leatherman, 2001; West et al., 2001). Extreme events can add to other stresses on ecological integrity (Scavia et al., 2002; Burkett et al., 2005), including shoreline development and nitrogen eutrophication[2] (Bertness et al., 2002). Already, more than 50% of the original salt marsh habitat in the U.S. has been lost (Kennish, 2001). Impacts from sea-level rise can be amplified by ‘coastal squeeze’ (see Glossary) and submergence where landward migration is impeded and vertical growth is slower than sea-level rise (see Section 14.4.3) (Kennish, 2001; Scavia et al., 2002; Chmura and Hung, 2004).

  1. ^  Eutrophication is a process whereby water bodies, such as lakes, estuaries, or slow-moving streams receive excess nutrients that stimulate excessive plant growth (e.g., algal blooms and nuisance plants weeds).