IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability

14.4.7 Tourism and recreation

Although coastal zones are among the most important recreation resources in North America, the vulnerability of key tourism areas to sea-level rise has not been comprehensively assessed. The cost to protect Florida beaches from a 0.5 m rise in sea level, with sand replenishment, was estimated at US$1.7 billion to 8.8 billion (EPA, 1999).

Nature-based tourism is a major market segment, with over 900 million visitor-days in national/provincial/state parks in 2001. Visits to Canada’s national parks system are projected to increase by 9 to 25% (2050s) and 10 to 40% (2080s) as a result of a lengthened warm-weather tourism season (based on the PCM GCM and the SRES B2 emissions scenario, and the CCSR GCM with A1) (Jones and Scott, 2006). This would have economic benefits for park agencies and nearby communities, but could exacerbate visitor-related ecological pressures in some parks. Climate-induced environmental changes (e.g., loss of glaciers, altered biodiversity, fire- or insect-impacted forests) would also affect park tourism, although uncertainty is higher regarding the regional specifics and magnitude of these impacts (Richardson and Loomis, 2004; Scott et al., 2007a).

Early studies of the impact of climate change on the ski industry did not account for snowmaking, which substantially lowers the vulnerability of ski areas in eastern North America for modest (B2 emissions scenario) but not severe (A1) warming (based on 5 GCMs for the 2050s) (Scott et al., 2003; Scott et al., 2007b). Without snowmaking, the ski season in western North America will likely shorten substantially, with projected losses of 3 to 6 weeks (by the 2050s) and 7 to 15 weeks (2080s) in the Sierra Nevada of California (based on PCM and HadCM3 GCMs for the B1 and A1FI scenarios), and 7 to 10 weeks at lower elevations and 2 to 14 weeks at higher elevations at Banff, Alberta (based on the PCM GCM with the B2 emissions scenario, and the CCSR GCM with A1, for the 2050s) (Hayhoe et al., 2004; Scott and Jones, 2005). With advanced snowmaking, the ski season in Banff shortens at low but not at high altitudes. The North American snowmobiling industry (valued at US$27 billion) (ISMA, 2006) is more vulnerable to climate change because it relies on natural snowfall. By the 2050s, a reliable snowmobile season disappears from most regions of eastern North America that currently have developed trail networks (based on the CGCM1 and HadCM3 GCMs with IS92a emissions, the PCM GCM with B2 emissions and the CCSR GCM with A1 emissions) (Scott, 2006; Scott and Jones, 2006).