14.4.8 Energy, industry and transportation
Energy demand
Recent North American studies generally confirm earlier work showing a small net change (increase or decrease, depending on methods, scenarios and location) in the net demand for energy in buildings but a significant increase in demand for electricity for space cooling, with further increases caused by additional market penetration of air conditioning (high confidence) (Sailor and Muñoz, 1997; Mendelsohn and Schlesinger, 1999; Morrison and Mendelsohn, 1999; Mendelsohn, 2001; Sailor, 2001; Sailor and Pavlova, 2003; Scott et al., 2005; Hadley et al., 2006). Ruth and Amato (2002) projected a 6.6% decline in annual heating fuel consumption for Massachusetts in 2020 (linked to an 8.7% decrease in heating degree-days) and a 1.9% increase in summer electricity consumption (12% increase in annual cooling degree-days). In Québec, net energy demand for heating and air conditioning across all sectors could fall by 9.4% of 2001 levels by 2100 (based on the CGCM1 GCM and the IS92a emissions scenario), with residential heating falling by 10 to 15% and air conditioning increasing two- to four-fold. Peak electricity demand is likely to decline in the winter peaking system of Quebec, while summer peak demand is likely to increase 7 to 17% in the New York metropolitan region (Ouranos, 2004).
Energy supply
Since the TAR, there have been regional but not national-level assessments of the effects of climate change on future hydropower resources in North America. For a 2 to 3°C warming in the Columbia River Basin and British Columbia Hydro service areas, the hydroelectric supply under worst-case water conditions for winter peak demand will likely increase (high confidence). However, generating power in summer will likely conflict with summer instream flow targets and salmon restoration goals established under the Endangered Species Act (Payne et al., 2004). This conclusion is supported by accumulating evidence of a changing hydrologic regime in the western U.S. and Canada (see Sections 14.2.1, 14.4.1, Box 14.2). Similarly, Colorado River hydropower yields will likely decrease significantly (medium confidence) (Christensen et al., 2004), as will Great Lakes hydropower (Moulton and Cuthbert, 2000; Lofgren et al., 2002; Mirza, 2004). James Bay hydropower will likely increase (Mercier, 1998; Filion, 2000). Lower Great Lake water levels could lead to large economic losses (Canadian $437 million to 660 million/yr), with increased water levels leading to small gains (Canadian $28 million to 42 million/yr) (Buttle et al., 2004; Ouranos, 2004). Northern Québec hydropower production would likely benefit from greater precipitation and more open-water conditions, but hydro plants in southern Québec would likely be affected by lower water levels. Consequences of changes in seasonal distribution of flows and in the timing of ice formation are uncertain (Ouranos, 2004).
Wind and solar resources are about as likely as not to increase (medium confidence). The viability of wind resources depends on both wind speed and reliability. Studies to date project wind resources that are unchanged by climate change (based on the HadGCM2 CGSa4 experiment) or reduced by 0 to 40% (based on CGCM1 and the SRES A1 scenario, and HadCM2 and RegCM2 and a 1%/yr CO2 increase) (Segal et al., 2001; Breslow and Sailor, 2002). Future changes in cloudiness could slightly increase the potential for solar energy in North America south of 60°N (using many models, the A1B scenario and for 2080 to 2099 vs. 1980 to 1999) (Meehl et al., 2007: Figure 10.10). However, Pan et al. (2004) projected the opposite: that increased cloudiness will likely decrease the potential output of photovoltaics by 0 to 20% (based on HadCM2 and RegCM2 and a 1%/yr CO2 increase for the 2040s).
Bioenergy potential is climate-sensitive through direct impacts on crop growth and availability of irrigation water. Bioenergy crops are projected to compete successfully for agricultural acreage at a price of US$33/Mg, or about US$1.83/10 joules (Walsh et al., 2003). Warming and precipitation increases are expected to allow the bioenergy crop switchgrass to compete effectively with traditional crops in the central U.S. (based on RegCM2 and a 2*CO2 scenario) (Brown et al., 2000).
Construction
As projected in the TAR, the construction season in Canada and the northern U.S. will likely lengthen with warming (see Section 14.3.1 and Christensen et al., 2007 Section 11.5.3). In permafrost areas in Canada and Alaska, increasing depth of the ‘active layer’ or loss of permafrost can lead to substantial decreases in soil strength (ACIA, 2004). In areas currently underlain by permafrost, construction methods are likely to require changes (Cole et al., 1998), potentially increasing construction and maintenance costs (high confidence) (see Chapter 15 Section 15.7.1) (ACIA, 2005).
Transportation
Warmer or less snowy winters will likely reduce delays, improve ground and air transportation reliability, and decrease the need for winter road maintenance (Pisano et al., 2002). More intense winter storms could, however, increase risks for traveller safety (Andrey and Mills, 2003) and require increased snow removal. Continuation of the declining fog trend in at least some parts of North America (Muraca et al., 2001; Hanesiak and Wang, 2005) should benefit transport. Improvements in technology and information systems will likely modulate vulnerability to climate change (Andrey and Mills, 2004).
Negative impacts of climate change on transportation will very likely result from coastal and riverine flooding and landslides (Burkett, 2002). Although offset to some degree by fewer ice threats to navigation, reduced water depth in the Great Lakes would lead to the need for ‘light loading’ and, hence, adverse economic impacts (see Section 14.4.1) (du Vair et al., 2002; Quinn, 2002; Millerd, 2005). Adaptive measures, such as deepening channels for navigation, would need to address both institutional and environmental challenges (Lemmen and Warren, 2004).
Warming will likely adversely affect infrastructure for surface transport at high northern latitudes (Nelson et al., 2002). Permafrost degradation reduces surface load-bearing capacity and potentially triggers landslides (Smith and Levasseur, 2002; Beaulac and Doré, 2005). While the season for transport by barge is likely to be extended, the season for ice roads will likely be compressed (Lonergan et al., 1993; Lemmen and Warren, 2004; Welch, 2006). Other types of roads are likely to incur costly improvements in design and construction (Stiger, 2001; McBeath, 2003; Greening, 2004) (see Chapter 15 Section 15.7.1).
An increase in the frequency, intensity or duration of heat spells could cause railroad track to buckle or kink (Rosetti, 2002), and affect roads through softening and traffic-related rutting (Zimmerman, 2002). Some problems associated with warming can be ameliorated with altered road design, construction and management, including changes in the asphalt mix and the timing of spring load restrictions (Clayton et al., 2005; Mills et al., 2006).