IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability

6.2.1 Natural coastal systems

Coasts are dynamic systems, undergoing adjustments of form and process (termed morphodynamics) at different time and space scales in response to geomorphological and oceanographical factors (Cowell et al., 2003a,b). Human activity exerts additional pressures that may dominate over natural processes. Often models of coastal behaviour are based on palaeoenvironmental reconstructions at millennial scales and/or process studies at sub-annual scales (Rodriguez et al., 2001; Storms et al., 2002; Stolper et al., 2005). Adapting to global climate change, however, requires insight into processes at decadal to century scales, at which understanding is least developed (de Groot, 1999; Donnelly et al., 2004).

Coastal landforms, affected by short-term perturbations such as storms, generally return to their pre-disturbance morphology, implying a simple, morphodynamic equilibrium. Many coasts undergo continual adjustment towards a dynamic equilibrium, often adopting different ‘states’ in response to varying wave energy and sediment supply (Woodroffe, 2003). Coasts respond to altered conditions external to the system, such as storm events, or changes triggered by internal thresholds that cannot be predicted on the basis of external stimuli. This natural variability of coasts can make it difficult to identify the impacts of climate change. For example, most beaches worldwide show evidence of recent erosion but sea-level rise is not necessarily the primary driver. Erosion can result from other factors, such as altered wind patterns (Pirazzoli et al., 2004; Regnauld et al., 2004), offshore bathymetric changes (Cooper and Navas, 2004), or reduced fluvial sediment input (Sections 6.2.4 and 6.4.1.1). A major challenge is determining whether observed changes have resulted from alteration in external factors (such as climate change), exceeding an internal threshold (such as a delta distributary switching to a new location), or short-term disturbance within natural climate variability (such as a storm).

Climate-related ocean-atmosphere oscillations can lead to coastal changes (Viles and Goudie, 2003). One of the most prominent is the El Niño-Southern Oscillation (ENSO) phenomenon, an interaction between pronounced temperature anomalies and sea-level pressure gradients in the equatorial Pacific Ocean, with an average periodicity of 2 to 7 years. Recent research has shown that dominant wind patterns and storminess associated with ENSO may perturb coastal dynamics, influencing (1) beach morphodynamics in eastern Australia (Ranasinghe et al., 2004; Short and Trembanis, 2004), mid-Pacific (Solomon and Forbes, 1999) and Oregon (Allan et al., 2003); (2) cliff retreat in California (Storlazzi and Griggs, 2000); and (3) groundwater levels in mangrove ecosystems in Micronesia (Drexler, 2001) and Australia (Rogers et al., 2005). Coral bleaching and mortality appear related to the frequency and intensity of ENSO events in the Indo-Pacific region, which may alter as a component of climate change (Box 6.1), becoming more widespread because of global warming (Stone et al., 1999). It is likely that coasts also respond to longer term variations; for instance, a relationship with the Pacific Decadal Oscillation (PDO) is indicated by monitoring of a south-east Australian beach for more than 30 years (McLean and Shen, 2006). Correlations between the North Atlantic Oscillation (NAO) and storm frequency imply similar periodic influences on Atlantic coasts (Tsimplis et al., 2005, 2006), and the Indian Ocean Dipole (IOD) may drive similar periodic fluctuations on coasts around the Indian Ocean (Saji et al., 1999).

Box 6.1. Environmental thresholds and observed coral bleaching

Coral bleaching, due to the loss of symbiotic algae and/or their pigments, has been observed on many reefs since the early 1980s. It may have previously occurred, but gone unrecorded. Slight paling occurs naturally in response to seasonal increases in sea surface temperature (SST) and solar radiation. Corals bleach white in response to anomalously high SST (~1°C above average seasonal maxima, often combined with high solar radiation). Whereas some corals recover their natural colour when environmental conditions ameliorate, their growth rate and reproductive ability may be significantly reduced for a substantial period. If bleaching is prolonged, or if SST exceeds 2°C above average seasonal maxima, corals die. Branching species appear more susceptible than massive corals (Douglas, 2003).

Major bleaching events were observed in 1982-83, 1987-88 and 1994-95 (Hoegh-Guldberg, 1999). Particularly severe bleaching occurred in 1998 (Figure 6.2), associated with pronounced El Niño events in one of the hottest years on record (Lough, 2000; Bruno et al., 2001). Since 1998 there have been several extensive bleaching events. For example, in 2002 bleaching occurred on much of the Great Barrier Reef (Berkelmans et al., 2004; see Chapter 11, Section 11.6) and elsewhere. Reefs in the eastern Caribbean experienced a massive bleaching event in late 2005, another of the hottest years on record. On many Caribbean reefs, bleaching exceeded that of 1998 in both extent and mortality (Figure 6.2), and reefs are in decline as a result of the synergistic effects of multiple stresses (Gardner et al., 2005; McWilliams et al., 2005; see Box 16.2). There is considerable variability in coral susceptibility and recovery to elevated SST in both time and space, and in the incidence of mortality (Webster et al., 1999; Wilkinson, 2002; Obura, 2005).

Figure 6.2

Figure 6.2. Maximum monthly mean sea surface temperature for 1998, 2002 and 2005, and locations of reported coral bleaching (data source, NOAA Coral Reef Watch (coralreefwatch.noaa.gov) and Reefbase (www.reefbase.org)).

Global climate model results imply that thermal thresholds will be exceeded more frequently with the consequence that bleaching will recur more often than reefs can sustain (Hoegh-Guldberg, 1999, 2004; Donner et al., 2005), perhaps almost annually on some reefs in the next few decades (Sheppard, 2003; Hoegh-Guldberg, 2005). If the threshold remains unchanged, more frequent bleaching and mortality seems inevitable (see Figure 6.3a), but with local variations due to different susceptibilities to factors such as water depth. Recent preliminary studies lend some support to the adaptive bleaching hypothesis, indicating that the coral host may be able to adapt or acclimatise as a result of expelling one clade1 of symbiotic algae but recovering with a new one (termed shuffling, see Box 4.4), creating ‘new’ ecospecies with different temperature tolerances (Coles and Brown, 2003; Buddemeier et al., 2004; Little et al., 2004; Obura, 2005; Rowan, 2004). Adaptation or acclimatisation might result in an increase in the threshold temperature at which bleaching occurs (Figure 6.3b). The extent to which the thermal threshold could increase with warming of more than a couple of degrees remains very uncertain, as are the effects of additional stresses, such as reduced carbonate supersaturation in surface waters (see Box 4.4) and non-climate stresses (see Box 16.2). Corals and other calcifying organisms (e.g., molluscs, foraminifers) remain extremely susceptible to increases in SST. Bleaching events reported in recent years have already impacted many reefs, and their more frequent recurrence is very likely to further reduce both coral cover and diversity on reefs over the next few decades.

Figure 6.3

Figure 6.3. Alternative hypotheses concerning the threshold SST at which coral bleaching occurs; a) invariant threshold for coral bleaching (red line) which occurs when SST exceeds usual seasonal maximum threshold (by ~1°C) and mortality (dashed red line, threshold of 2°C), with local variation due to different species or water depth; b) elevated threshold for bleaching (green line) and mortality (dashed green line) where corals adapt or acclimatise to increased SST (based on Hughes et al., 2003).