8.2.8 Vector-borne, rodent-borne and other infectious diseases
Vector-borne diseases (VBD) are infections transmitted by the bite of infected arthropod species, such as mosquitoes, ticks, triatomine bugs, sandflies and blackflies. VBDs are among the most well-studied of the diseases associated with climate change, due to their widespread occurrence and sensitivity to climatic factors. There is some evidence of climate-change-related shifts in the distribution of tick vectors of disease, of some (non-malarial) mosquito vectors in Europe and North America, and in the phenology of bird reservoirs of pathogens (see Chapter 1 and Box 8.4).
Box 8.4. Climate change, migratory birds and infectious diseases
Several species of wild birds can act as biological or mechanical carriers of human pathogens as well as of vectors of infectious agents (Olsen et al., 1995; Klich et al., 1996; Gylfe et al., 2000; Friend et al., 2001; Pereira et al., 2001; Broman et al., 2002; Moore et al., 2002; Niskanen et al., 2003; Rappole and Hubalek, 2003; Reed et al., 2003; Fallacara et al., 2004; Hubalek, 2004; Krauss et al., 2004). Many of these birds are migratory species that seasonally fly long distances through different continents (de Graaf and Rappole, 1995; Webster et al., 2002b). Climate change has been implicated in changes in the migratory and reproductive phenology (advancement in breeding and migration dates) of several bird species, their abundance and population dynamics, as well as a northward expansion of their geographical range in Europe (Sillett et al., 2000; Barbraud and Weimerskirch, 2001; Parmesan and Yohe, 2003; Brommer, 2004; Visser et al., 2004; Both and Visser, 2005). Two possible consequences of these phenological changes in birds to the dispersion of pathogens and their vectors are:
1. shifts in the geographical distribution of the vectors and pathogens due to altered distributions or changed migratory patterns of bird populations;
2. changes in the life cycles of bird-associated pathogens due to the mistiming between bird breeding and the breeding of vectors, such as mosquitoes. One example is the transmission of St. Louis encephalitis virus, which depends on meteorological triggers (e.g., precipitation) to bring the pathogen, vector and host (nestlings) cycles into synchrony, allowing an overlap that initiates and facilitates the cycling necessary for virus amplification between mosquitoes and wild birds (Day, 2001).
Northern or altitudinal shifts in tick distribution have been observed in Sweden (Lindgren and Talleklint, 2000; Lindgren and Gustafson, 2001) and Canada (Barker and Lindsay, 2000), and altitudinal shifts have been observed in the Czech Republic (Daniel et al., 2004). Geographical changes in tick-borne infections have been observed in Denmark (Skarphedinsson et al., 2005). Climate change alone is unlikely to explain recent increases in the incidence of tick-borne diseases in Europe or North America. There is considerable spatial heterogeneity in the degree of increase of tick-borne encephalitis, for example, within regions of Europe likely to have experienced similar levels of climate change (Patz, 2002; Randolph, 2004; Sumilo et al., 2006). Other explanations cannot be ruled out, e.g., human impacts on the landscape, increasing both the habitat and wildlife hosts of ticks, and changes in human behaviour that may increase human contact with infected ticks (Randolph, 2001).
In north-eastern North America, there is evidence of recent micro-evolutionary (genetic) responses of the mosquito species Wyeomyia smithii to increased average land surface temperatures and earlier arrival of spring in the past two decades (Bradshaw and Holzapfel, 2001). Although not a vector of human disease, this species is closely related to important arbovirus vector species that may be undergoing similar evolutionary changes.
Cutaneous leishmaniasis has been reported in dogs (reservoir hosts) further north in Europe, although the possibility of previous under-reporting cannot be excluded (Lindgren and Naucke, 2006). Changes in the geographical distribution of the sandfly vector have been reported in southern Europe (Aransay et al., 2004; Afonso et al., 2005). However, no study has investigated the causes of these changes. The re-emergence of kala-azar (visceral leishmaniasis) in cities of the semi-arid Brazilian north-eastern region in the early 1980s and 1990s was caused by rural–urban migration of subsistence farmers who had lost their crops due to prolonged droughts (Franke et al., 2002; Confalonieri, 2003).