4.4.3 Evaluation of costs and potentials for low-carbon, energy-supply technologies
As there are several interactions between the mitigation options that have been described in Section 4.3, the following sections assess the aggregated mitigation potential of the energy sector in three steps based on the literature and using the World Energy Outlook 2004 ‘Reference’ scenario as the baseline (IEA, 2004a):
- The mitigation potentials in excess of the baseline are quantified for a number of technologies individually (Sections 4.4.3.1–4.4.3.6).
- A mix of technologies to meet the projected electricity demand by 2030 is compiled for OECD, EIT and non-OECD/EIT country regions (Section 4.4.4) assuming competition between technologies, improved efficiency of conversion over time and that real-world constraints exist when building new (additional and replacement) plants and infrastructure.
- The interaction of the energy supply sector with end-use power demands from the building and industry sectors is then analysed (Section 11.3). Any savings of electricity and heat resulting from the uptake of energy-efficiency measures will result in some reduction in total demand for energy, and hence lower the mitigation potential of the energy supply sector.
Mitigation in the electricity supply sector can be achieved by optimization of generation plant-conversion efficiencies, fossil-fuel switching, substitution by nuclear power (Section 4.3.2) and/or renewable energy (4.3.3) and by CCS (4.3.6). These low-carbon energy technologies and systems are unlikely to be widely deployed unless they become cheaper than traditional generation or if policies to support their uptake (such as carbon pricing or government subsidies and incentives) are adopted.
The costs (Table 4.7) and mitigation potentials for the major energy-supply technologies are compared and quantified out to 2030 based on assumptions taken from the literature, particularly the recent IEA Energy Technology Perspectives (ETP) report (IEA, 2006a). The assessment of the electricity-supply sector potentials are partly based on the TAR assessment but use more recent data and revised assumptions. Heat and CHP potentials (Section 4.3.5) were difficult to assess as reliable data are unavailable. For this reason the IEA aggregates commercial heat with power (IEA, 2004a, 2005a, 2006b). An estimate of the potential mitigation from increased CHP uptake by industry by 2050 was 0.2–0.4 GtCO2 (IEA, 2006a), but is uncertain so heat is not included here.
Table 4.7: The technical potential energy resource and fluxes available, potential associated carbon and projected costs (US$ 2006) in 2030 for a range of energy resources and carriers.
Energy resources and carriers | Technical potential EJa | Approximate inherent carbon (GtC) | Present energy costsc US$ (2005) | Projected costs in 2030 | Additional references |
---|
Investment US$/Wed | Generation US$/MWh |
---|
Oil | 10,000-35,000e | 200-1300 | ~9/GJ ~50/bbl ~48/MWh | n/a | 50-100 | Wall Street Journal, daily commodity prices |
Natural gas | 18,000-60,000 | 170-860 | ~5-7/GJ ~37/MWh | 0.2-0.8 | 40-60 +CCS 60-90 | EIA/DOE, 2006 IPCC, 2005 |
Coal | 130,000 | 3500 | ~3-4.5/GJ ~20/MWh | 0.4-1.4 | 40-55 +CCS 60-85 | EIA/DOE, 2006 IPCC, 2005 |
Nuclear power | 7400 (220,000)f | *b | 10-120 | 1.5-3.0 | 25-75 | IAEA, 2006 Figures 4.27, 4.28 |
Hydro > 10MW | 1250 | * | 20-100/MWh | 1.0-3.0 | 30-70 | |
Solar PV | 40,000 | * | 250-1600/MWh | 0.6-1.2 | 60-250 | |
Solar CSP | 50 | * | 120-450/MWh | 2.0-4.0 | 50-180 | |
Wind | 15,000 | * | 40-90 MWh | 0.4-1.2 | 30-80 | |
Geothermal | 50 | * | 40-100/MWh | 1.0-2.0 | 30-80 | |
Ocean | large | * | 80-400/MWh | ? | 70-200 | |
Biomass - | Modern 9 | 6000 | 30-120/MWh | 0.4-1.2 | 30-100 | |
heat and power | | | 8-12/GJ | | | |
Biofuels | 1.2 | * | 8-30/GJ | ? | 23-75 c/l | Chapter 5, Figure 5.9 |
Hydrogen carrier | 0.1 | ? | 50/GJ | ? | ? | US NAE, 2004 |
The 2030 electricity sector baseline (Table 4.8; IEA, 2004a) was chosen because the SRES B2 scenario (Figure 4.26) provided insufficient detail and the latest WEO (IEA, 2006b) had not been published at the time. Estimates of the 2030 global demand for power are disaggregated for OECD, EIT, and non-OECD/EIT regions. The WEO 2004 baseline assumed that the 44% of coal in the power-generation primary fuel mix in 2002 would change to 42% by 2030; oil from 8% to 4%; gas 21% to 29%; nuclear 18% to 12%; hydro would remain the same at 6% (using the direct equivalent method); biomass 2% to 4%, and other renewables 1% to 3%.
Table 4.8: Baseline data from the World Energy Outlook 2004 Reference scenario.
| Primary-energy fuel consumed for heat and electricity production in 2030 (EJ/yr) | Primary-energy fuel consumed for electricity in 2030a (EJ /yr) | Final electricity demand in 2030 (TWh/yr) | Increase in new power demand 2002 to 2030 (TWh) | Total emissions from electricity in 2030 (GtCO2-eq/yr) |
---|
OECD | 118.6 | 115.4 | 14,244 | 4,488 | 5.98 |
EIT | 29.3 | 22.1 | 2,468 | 983 | 1.17 |
Non-OECD | 128.5 | 125.3 | 14,944 | 10,111 | 8.62 |
World | 276.4 | 262.8 | 31,656 | 15,582 | 15.77 |
This analysis quantifies the mitigation potential at the high end of the range for each technology by 2030 above the baseline. It assumes each technology will be implemented as much as economically and technically possible, but is limited by the practical constraints of stock turnover, rate of increase of manufacturing capacity, training of specialist expertise, etc. The assumptions used are compared with other analyses reported in the literature. Since, in reality, each technology will be constrained by what will be happening elsewhere in the energy-supply sector, they could never reach this total ‘maximum’ potential collectively, so these individual potentials cannot be directly added together to obtain a projected ‘real’ potential. Further analysis based on a possible future mix of generation technologies is therefore provided in Section 4.4.4 and further in Chapter 11, accounting for energy savings reducing the total demand. Emission factors per GJ primary fuel for CO2, N2O and CH4 (IPCC, 1997) were used in the analysis but the non-CO2 gases accounted for less than 1% of emissions.