IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group III: Mitigation of Climate Change

6.4.7.2 Solar thermal energy for heating and hot water

Most solar thermal collectors used in buildings are either flat-plate or evacuated-tube collectors.[6] Integrated PV/thermal collectors (in which the PV panel serves as the outer part of a thermal solar collector) are also commercially available (Bazilian et al., 2001; IEA, 2002). ‘Combisystems’ are solar systems that provide both space and water heating. Depending on the size of panels and storage tanks, and the building thermal envelope performance, 10 to 60% of the combined hot water and heating demand can be met by solar thermal systems at central and northern European locations. Costs of solar heat have been 0.09–0.13 €/kWh for large domestic hot water systems and 0.40–0.50 €/kWh for combisystems with diurnal storage (Peuser et al., 2002).

Worldwide, over 132 million m2 of solar collector surface for space heating and hot water were in place by the end of 2003. China accounts for almost 40% of the total (51.4 million m2), followed by Japan (12.7 million m2) and Turkey (9.5 million m2) (Weiss et al., 2005).

  1. ^  See Peuser et al. (2002) and Andén (2003) for technical information.