F. The Projections of the Earth's Future Climate
The tools of climate models are used with future scenarios of forcing agents
(e.g., greenhouse gases and aerosols) as input to make a suite of projected
future climate changes that illustrates the possibilities that could lie ahead.
Section F.1 provides a description of the future scenarios
of forcing agents given in the IPCC Special Report on Emission Scenarios (SRES)
on which, wherever possible, the future changes presented in this section are
based. Sections F.2 to F.9
present the resulting projections of changes to the future climate. Finally,
Section F.10 presents the results of future projections
based on scenarios of a future where greenhouse gas concentrations are stabilised.
F.1 The IPCC Special Report on Emissions Scenarios (SRES)
In 1996, the IPCC began the development of a new set of emissions scenarios,
effectively to update and replace the well-known IS92 scenarios. The approved
new set of scenarios is described in the IPCC Special Report on Emission Scenarios
(SRES). Four different narrative storylines were developed to describe consistently
the relationships between the forces driving emissions and their evolution and
to add context for the scenario quantification. The resulting set of 40 scenarios
(35 of which contain data on the full range of gases required to force climate
models) cover a wide range of the main demographic, economic and technological
driving forces of future greenhouse gas and sulphur emissions. Each scenario
represents a specific quantification of one of the four storylines. All the
scenarios based on the same storyline constitute a scenario "family"
(See Box 5, which briefly describes the main characteristics
of the four SRES storylines and scenario families). The SRES scenarios do not
include additional climate initiatives, which means that no scenarios are included
that explicitly assume implementation of the United Nations Framework Convention
on Climate Change or the emissions targets of the Kyoto Protocol. However, greenhouse
gas emissions are directly affected by non-climate change policies designed
for a wide range of other purposes (e.g., air quality). Furthermore, government
policies can, to varying degrees, influence the greenhouse gas emission drivers,
such as demographic change, social and economic development, technological change,
resource use, and pollution management. This influence is broadly reflected
in the storylines and resulting scenarios.
Box 5: The Emissions Scenarios of the Special Report on Emissions
Scenarios (SRES)
A1. The A1 storyline and scenario family describes a future world of
very rapid economic growth, global population that peaks in mid-century
and declines thereafter, and the rapid introduction of new and more efficient
technologies. Major underlying themes are convergence among regions, capacity
building and increased cultural and social interactions, with a substantial
reduction in regional differences in per capita income. The A1 scenario
family develops into three groups that describe alternative directions
of technological change in the energy system. The three A1 groups are
distinguished by their technological emphasis: fossil intensive (A1FI),
non-fossil energy sources (A1T), or a balance across all sources (A1B)
(where balanced is defined as not relying too heavily on one particular
energy source, on the assumption that similar improvement rates apply
to all energy supply and end-use technologies).
A2. The A2 storyline and scenario family describes a very heterogeneous
world. The underlying theme is self-reliance and preservation of local
identities. Fertility patterns across regions converge very slowly, which
results in continuously increasing population. Economic development is
primarily regionally oriented and per capita economic growth and technological
change more fragmented and slower than other storylines.
B1. The B1 storyline and scenario family describes a convergent world
with the same global population, that peaks in mid-century and declines
thereafter, as in the A1 storyline, but with rapid change in economic
structures toward a service and information economy, with reductions in
material intensity and the introduction of clean and resource-efficient
technologies. The emphasis is on global solutions to economic, social
and environmental sustainability, including improved equity, but without
additional climate initiatives.
B2. The B2 storyline and scenario family describes a world in which the
emphasis is on local solutions to economic, social and environmental sustainability.
It is a world with continuously increasing global population, at a rate
lower than A2, intermediate levels of economic development, and less rapid
and more diverse technological change than in the A1 and B1 storylines.
While the scenario is also oriented towards environmental protection and
social equity, it focuses on local and regional levels.
|
Figure 17: Anthropogenic emissions of CO2, CH4,
N2O and sulphur dioxide for the six illustrative SRES scenarios,
A1B, A2, B1
and B2, A1FI and A1T.
For comparison the IS92a scenario is also shown. [Based on IPCC Special
Report on Emissions Scenarios.] |
Since the SRES was not approved until 15 March 2000,
it was too late for the modelling community to incorporate the final approved
scenarios in their models and have the results available in time for this Third
Assessment Report. However, draft scenarios were released to climate modellers
earlier to facilitate their input to the Third Assessment Report, in accordance
with a decision of the IPCC Bureau in 1998. At that time, one marker scenario
was chosen from each of four of the scenario groups based directly on the storylines
(A1B, A2, B1,
and B2). The choice of the markers was based on which
of the initial quantifications best reflected the storyline and features of
specific models. Marker scenarios are no more or less likely than any other
scenarios, but are considered illustrative of a particular storyline. Scenarios
were also selected later to illustrate the other two scenario groups (A1FI
and A1T) within the A1 family,
which specifically explore alternative technology developments, holding the
other driving forces constant. Hence there is an illustrative scenario for each
of the six scenario groups, and all are equally plausible. Since the latter
two illustrative scenarios were selected at a late stage in the process, the
AOGCM modelling results presented in this report only use two of the four draft
marker scenarios. At present, only scenarios A2 and B2
have been integrated by more than one AOGCM. The AOGCM results have been augmented
by results from simple climate models that cover all six illustrative scenarios.
The IS92a scenario is also presented in a number of cases to provide direct
comparison with the results presented in the SAR.
The final four marker scenarios contained in the SRES differ in minor ways
from the draft scenarios used for the AOGCM experiments described in this report.
In order to ascertain the likely effect of differences in the draft and final
SRES scenarios, each of the four draft and final marker scenarios were studied
using a simple climate model. For three of the four marker scenarios (A1B,
A2, and B2) temperature change
from the draft and marker scenarios are very similar. The primary difference
is a change to the standardised values for 1990 to 2000, which is common to
all these scenarios. This results in a higher forcing early in the period. There
are further small differences in net forcing, but these decrease until, by 2100,
differences in temperature change in the two versions of these scenarios are
in the range 1 to 2%. For the B1 scenario, however, temperature
change is significantly lower in the final version, leading to a difference
in the temperature change in 2100 of almost 20%, as a result of generally lower
emissions across the full range of greenhouse gases.
Anthropogenic emissions of the three main greenhouse gases, CO2,
CH4 and N2O, together with anthropogenic sulphur dioxide
emissions, are shown for the six illustrative SRES scenarios in Figure
17. It is evident that these scenarios encompass a wide range of emissions.
For comparison, emissions are also shown for IS92a. Particularly noteworthy
are the much lower future sulphur dioxide emissions for the six SRES scenarios,
compared to the IS92 scenarios, due to structural changes in the energy system
as well as concerns about local and regional air pollution.
|