Working Group I: The Scientific Basis |
|
|
Other reports in this collection |
13.1 Introduction
13.1.1 Definition and Nature of Scenarios
For the purposes of this report, a climate scenario refers to a plausible future climate that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change. Such climate scenarios should represent future conditions that account for both human-induced climate change and natural climate variability. We distinguish a climate scenario from a climate projection (discussed in Chapters 9 and 10), which refers to a description of the response of the climate system to a scenario of greenhouse gas and aerosol emissions, as simulated by a climate model. Climate projections alone rarely provide sufficient information to estimate future impacts of climate change; model outputs commonly have to be manipulated and combined with observed climate data to be usable, for example, as inputs to impact models. To further illustrate this point, Box 13.1 presents a simple example of climate scenario construction based on climate projections. The example also illustrates some other common considerations in performing an impact assessment that touch on issues discussed later in this chapter.
We also distinguish between a climate scenario and a climate change scenario. The latter term is sometimes used in the scientific literature to denote a plausible future climate. However, this term should strictly refer to a representation of the difference between some plausible future climate and the current or control climate (usually as represented in a climate model) (see Box 13.1, Figure 13.1a). A climate change scenario can be viewed as an interim step toward constructing a climate scenario. Usually a climate scenario requires combining the climate change scenario with a description of the current climate as represented by climate observations (Figure 13.1b). In a climate impacts context, it is the contrasting effects of these two climates – one current (the observed “baseline” climate), one future (the climate scenario) on the exposure unit1 that determines the impact of the climate change (Figure 13.1c). A treatment of climate scenario development, in this specific sense, has been largely absent in the earlier IPCC Assessment Reports. The subject has been presented in independent IPCC Technical Guidelines documents (IPCC, 1992, 1994), which were briefly summarised in the Second Assessment Report of Working Group II (Carter et al., 1996b). These documents, while serving a useful purpose in providing guidelines for scenario use, did not fully address the science of climate scenario development. This may be, in part, because the field has been slow to develop and because only recently has a critical mass of important research issues coalesced and matured such that a full chapter is now warranted. The chapter also serves as a bridge between this Report of Working Group I and the IPCC Third Assessment Report of Working Group II (IPCC, 2001) (hereafter TAR WG II) of climate change impacts, adaptation and vulnerability. As such it also embodies the maturation in the IPCC assessment process – that is, a recognition of the interconnections among the different segments of the assessment process and a desire to further integrate these segments. Chapter 3 performs a similar role in the TAR WG II (Carter and La Rovere, 2001) also discussing climate scenarios, but treating, in addition, all other scenarios (socio-economic, land use, environmental, etc.) needed for undertaking policy-relevant impact assessment. Chapter 3 serves in part as the other half of the bridge between the two Working Group Reports. Scenarios are neither predictions nor forecasts of future conditions. Rather they describe alternative plausible futures that conform to sets of circumstances or constraints within which they occur (Hammond, 1996). The true purpose of scenarios is to illuminate uncertainty, as they help in determining the possible ramifications of an issue (in this case, climate change) along one or more plausible (but indeterminate) paths (Fisher, 1996). Not all possibly imaginable futures can be considered viable scenarios of future climate. For example, most climate scenarios include the characteristic of increased lower tropospheric temperature (except in some isolated regions and physical circumstances), since most climatologists have very high confidence in that characteristic (Schneider et al., 1990; Mahlman, 1997). Given our present state of knowledge, a scenario that portrayed global tropospheric cooling for the 21st century would not be viable. We shall see in this chapter that what constitutes a viable scenario of future climate has evolved along with our understanding of the climate system and how this understanding might develop in the future. It is worth noting that the development of climate scenarios predates the issue of global warming. In the mid-1970s, for example, when a concern emerged regarding global cooling due to the possible effect of aircraft on the stratosphere, simple incremental scenarios of climate change were formulated to evaluate what the possible effects might be worldwide (CIAP, 1975). The purpose of this chapter is to assess the current state of climate scenario development. It discusses research issues that are addressed by researchers who develop climate scenarios and that must be considered by impacts researchers when they select scenarios for use in impact assessments. This chapter is not concerned, however, with presenting a comprehensive set of climate scenarios for the IPCC Third Assessment Report. |
Other reports in this collection |