IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability

14.2.6 Human settlements

Economic base of resource-dependent communities

Among the most climate-sensitive North American communities are those of indigenous populations dependent on one or a few natural resources. About 1.2 million (60%) of the U.S. tribal members live on or near reservations, and many pursue lifestyles with a mix of traditional subsistence activities and wage labour (Houser et al., 2001). Many reservation economies and budgets of indigenous governments depend heavily on agriculture, forest products and tourism (NAST, 2001). A 1993 hantavirus outbreak related indirectly to heavy rainfall led to a significant reduction in tourist visits to the American South-west (NAST, 2001). Many indigenous communities in northern Canada and Alaska are already experiencing constraints on lifestyles and economic activity from less reliable sea and lake ice (for travelling, hunting, fishing and whaling), loss of forest resources from insect damage, stress on caribou, and more exposed coastal infrastructure from diminishing sea ice (NAST, 2001; CCME, 2003; ACIA, 2005). Many rural settlements in North America, particularly those dependent on a narrow resource base, such as fishing or forestry, have been seriously affected by recent declines in the resource base, caused by a number of factors (CDLI, 1996). However, not all communities have suffered, as some Alaskan fishing communities have benefited from rising regional abundance of selected salmon stocks since the mid-1970s (Eggers, 2006).

Infrastructure and extreme events

About 80% of North Americans live in urban areas (Census Bureau, 2000; Statistics Canada, 2001b). North American cities, while diverse in size, function, climate and other factors, are largely shielded from the natural environment by technical systems. The devastating effects of hurricanes Ivan in 2004 and Katrina, Rita and Wilma in 2005, however, illustrate the vulnerability of North American infrastructure and urban systems that were either not designed or not maintained to adequate safety margins. When protective systems fail, impacts can be widespread and multi-dimensional (see Chapter 7, Boxes 7.2 and 7.4). Disproportionate impacts of Hurricane Katrina on the poor, infirm, elderly, and other dependent populations were amplified by inadequate public sector development and/or execution of evacuation and emergency services plans (Select Bipartisan Committee, 2006).

Costs of weather-related natural disasters in North America rose at the end of the 20th century, mainly as a result of the increasing value of infrastructure at risk (Changnon, 2003, 2005). Key factors in the increase in exposure include rising wealth, demographic shifts to coastal areas, urbanisation in storm-prone areas, and ageing infrastructure, combined with substandard structures and inadequate building codes (Easterling et al., 2000; Balling and Cerveny, 2003; Changnon, 2003, 2005). Trends in the number and intensity of extreme events in North America are variable, with many (e.g., hail events, tornadoes, severe windstorms, winter storms) holding steady or even decreasing (Kunkel et al., 1999; McCabe et al., 2001; Balling and Cerveny, 2003; Changnon, 2003; Trenberth et al., 2007: Section 3.8.4.2).

North America very likely will continue to suffer serious losses of life and property simply due to growth in property values and numbers of people at risk (very high confidence) (Pielke Jr., 2005; Pielke et al., 2005). Of the US$19 trillion value of all insured residential and commercial property in the U.S. states exposed to North Atlantic hurricanes, US$7.2 trillion (41%) is located in coastal counties. This economic value includes 79% of the property in Florida, 63% of the property in New York, and 61% of the property in Connecticut (AIR, 2002). Cumulative decadal hurricane intensity in the U.S. has risen in the last 25 years, following a peak in the mid 20th century and a later decline (Figure 14.1e). North American mortality (deaths and death rates) from hurricanes, tornadoes, floods and lightning have generally declined since the beginning of the 20th century, due largely to improved warning systems (Goklany, 2006). Mortality was dominated by three storms where the warning/evacuation system did not lead to timely evacuation: Galveston in 1900, Okeechobee in 1926, and Katrina in 2005.

Flood hazards are not limited to the coastal zone. River basins with a history of major floods (e.g., the Sacramento (Miller, 2003), the Fraser (Lemmen and Warren, 2004), the Red River (Simonovic and Li, 2004) and the upper Mississippi (Allen et al., 2003)) illustrate the sensitivity of riverine flooding to extreme events and highlight the critical importance of infrastructure design standards, land-use planning and weather/flood forecasts.