IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability

14.2.7 Tourism and recreation

The U.S. and Canada rank among the top ten nations for international tourism receipts (US$112 billion and US$16 billion, respectively) with domestic tourism and outdoor recreation markets that are several times larger (World Tourism Organization, 2002; Southwick Associates, 2006). Climate variability affects many segments of this growing economic sector. For example, wildfires in Colorado (2002) and British Columbia (2003) caused tens of millions of dollars in tourism losses by reducing visitation and destroying infrastructure (Associated Press, 2002; Butler, 2002; BC Stats, 2003). Similar economic losses were caused by drought-affected water levels in rivers and reservoirs in the western U.S. and parts of the Great Lakes (Fisheries and Oceans Canada, 2000; Kesmodel, 2002; Allen, 2003). The ten-day closure and clean-up following Hurricane Georges (September 1998) resulted in tourism revenue losses of approximately US$32 million in the Florida Keys (EPA, 1999). While the North American tourism industry acknowledges the important influence of climate, its impacts have not been analysed comprehensively (Scott et al., 2006).

14.2.8 Energy, industry and transportation

North American industry, energy supply and transportation networks are sensitive to weather extremes that exceed their safety margins. Costs of these impacts can be high. For example, power outages in the U.S. cost the economy US$30 billion to 130 billion annually (EPRI, 2003; LaCommare and Eto, 2004). The hurricanes crossing Florida in the summer of 2004 resulted in direct system restoration costs of US$1.4 billion to the four Florida public utilities involved (EEI, 2005). From 1994 to 2004, fourteen U.S. utilities experienced 81 other major storms, which cost an average of US$49 million/storm, with the highest single storm impact of US$890 million (EEI, 2005).

Although it was not triggered specifically by the concurrent hot weather, the 2003 summer outage in north-eastern U.S. and south-eastern Canada illustrates costs to North American society that result from large-scale power interruptions during periods of high demand. Over 50 million people were without power, resulting in US$180 million in insured losses and up to US$10 billion in total losses (Fletcher, 2004). Business interruptions were particularly significant, with costs of over US$250,000/hr incurred by the top quartile of recently surveyed companies (RM, 2003).

The impacts of Hurricanes Katrina, Rita and Wilma in 2005 and Ivan in 2004 demonstrated that the Gulf of Mexico offshore oil and natural gas platforms and pipelines, petroleum refineries, and supporting infrastructure can be seriously harmed by major hurricanes, which can produce national-level impacts, and require recovery times stretching to months or longer (Business Week, 2005; EEA, 2005; EIA, 2005a; Levitan and Associates Inc., 2005; RMS, 2005b; Swiss Re, 2005b, c, d, e).

Hydropower production is known to be sensitive to total runoff, to its timing, and to reservoir levels. For example, during the 1990s, Great Lakes levels fell as a result of a lengthy drought, and in 1999 hydropower production was down significantly both at Niagara and Sault St. Marie (CCME, 2003).