8.4.2 Vulnerable populations and regions
Human health vulnerability to climate change was assessed based on a range of scientific evidence, including the current burdens of climate-sensitive health determinants and outcomes, projected climate-change-related exposures, and trends in adaptive capacity. Box 8.5 describes trends in climate-change-related exposures of importance to human health. As highlighted in the following sections, particularly vulnerable populations and regions are more likely to suffer harm, have less ability to respond to stresses imposed by climate variability and change, and have exhibited limited progress in reducing current vulnerabilities. For example, all persons living in a flood plain are at risk during a flood, but those with lowered ability to escape floodwaters and their consequences (such as children and the infirm, or those living in sub-standard housing) are at higher risk.
Box 8.5. Projected trends in climate-change-related exposures of importance to human health
Heatwaves, floods, droughts and other extreme events: IPCC (2007b) concludes, with high confidence, that heatwaves will increase, cold days will decrease over mid- to low-latitudes, and the proportion of heavy precipitation events will increase, with differences in the spatial distribution of the changes (although there will be a few areas with projected decreases in absolute numbers of heavy precipitation events) (Meehl et al., 2007). Water availability will be affected by changes in runoff due to alterations in the rainy and dry seasons.
Air quality: Climate change could affect tropospheric ozone by modifying precursor emissions, chemistry and transport; each could cause positive or negative feedbacks to climate change. Future climate change may cause either an increase or a decrease in background tropospheric ozone, due to the competing effects of higher water vapour and higher stratospheric input; increases in regional ozone pollution are expected, due to higher temperatures and weaker circulation. Future climate change may cause significant air-quality degradation by changing the dispersion rate of pollutants, the chemical environment for ozone and aerosol generation, and the strength of emissions from the biosphere, fires and dust. The sign and magnitude of these effects are highly uncertain and will vary regionally (Denman et al., 2007).
Crop yields: Chapter 5 concluded that crop productivity is projected to increase slightly at mid- to high latitudes for local mean temperature increases of up to 1-3°C depending on the crop, and then decrease beyond that in some regions. At lower latitudes, especially seasonally dry and tropical regions, crop productivity is projected to decrease for even small local temperature increases (1-2°C), which would increase the risk of hunger, with large negative effects on sub-Saharan Africa. Smallholder and subsistence farmers, pastoralists and artisanal fisherfolk will suffer complex, localised impacts of climate change.