IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group III: Mitigation of Climate Change

7.5.1 Electricity savings

Electricity savings are of particular interest, since they feedback into the mitigation potential calculation for the energy sector and because of the potential for double counting of the emissions reductions. Section 7.3.2 indicates that in the EU and USA electric motor driven systems account for about 65% of industrial energy use, and that efficient systems could reduce this use by 30%. About one-third of the savings potential was assumed to be realized in the baseline, resulting in a net mitigation potential of 13% of industrial electricity use. This mitigation potential was included in the estimates of mitigation potential for energy-intensive industries presented in Table 7.8. However, it is also necessary to consider the potential for electricity savings from non-energy-intensive industries, which are large consumers of electricity.

The estimation procedure used to develop these numbers was as follows: Because data could not be found on other countries/regions, US data (EIA, 2002) on electricity use as a fraction of total energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global patterns. Based on De Keulenaer et al. (2004) and Xenergy (1998), a 30% mitigation potential was assumed. Emission factors to convert electricity savings into CO2 reductions were derived from IEA data (IEA, 2004). The emission reduction potential from non-energy-intensive industries were calculated by subtracting the savings from energy-intensive industries from total industrial emissions reduction potential. Using the B2 baseline, 49% of total electricity savings are found in industries other than those identified in Table 7.8.

Table 7.8: Mitigation potential and cost in 2030

   2030 production (Mt)a  GHG intensity (tCO2-eq/t prod.)  Mitigation potential (%)  Cost range (US$) Mitigation potential (MtCO2-eq/yr) 
Product Areab A1 B2 A1 B2 
CO2 emissions from processes and energy use 
Steelc,d Global 1,163 1,121 1.6-3.8 15-40 20-50 430-1,500 420-1,500 
 OECD 370 326 1.6-2.0 15-40 20-50 90-300 80-260 
 EIT 162 173 20.-3.8 25-40 20-50 80-240 85-260 
 Dev. Nat. 639 623 1.6-3.8 25-40 20-50 260-970 250-940 
Primary Global 39 37 8.4 15-25 <100 53-82 49-75 
aluminiume,f OECD 12 11 8.5 15-25 <100 16-25 15-22 
 EIT 8.6 15-25 <100 12-19 8-13 
 Dev. Nat. 19 20 8.3 15-25 <100 25-38 26-40 
Cementg,h,i Global 6,517 5,251 0.73-0.99 11-40 <50 720-2,100 480-1,700 
 OECD 600 555 0.73-0.99 11-40 <50 65-180 50-160 
 EIT 362 181 0.81-0.89 11-40 <50 40-120 20-60 
 Dev. Nat. 5,555 4,515 0.82-0.93 11-40 <50 610-1,800 410-1,500 
Ethylenej Global 329 218 1.33 20 <20 85 58 
 OECD 139 148 1.33 20 <20 35 40 
 EIT 19 11 1.33 20 <20 
 Dev. Nat. 170 59 1.33 20 <20 45 15 
Ammoniak,l Global 218 202 1.6-2.7 25 <20 110 100 
 OECD 23 20 1.6-2.7 25 <20 11 10 
 EIT 21 23 1.6-2.7 25 <20 10 12 
 Dev. Nat. 175 159 1.6-2.7 25 <20 87 80 
Petroleum Global 4,691 4,508 0.32-0.64 10-20 Half <20 150-300 140-280 
refiningm OECD 2,198 2,095 0.32-0.64 10-20 Half <50 70-140 67-130 
 EIT 384 381 0.32-0.64 10-20 “ 12-24 12-24 
 Dev. Nat. 2,108 2,031 0.32-0.64 10-20 “ 68-140 65-130 
Pulp and papern Global 1,321 920 0.22-1.40 5-40 <20 49-420 37-300 
OECD 695 551 0.22-1.40 5-40 <20 28-220 22-180 
EIT 65 39 0.22-1.40 5-40 <20 3-21 2-13 
Dev. Nat.  561 330 0.22-1.40 5-40 <20 18-180 13-110 

Table 7.8 continued

   2030 production (Mt)a CCS Potential (tCO2/t) Mitigation potential (%) Cost range (US$) Mitigation potential (MtCO2-eq) 
Product Areab A1 B2 A1 B2 
Carbon Capture and Storage 
Ammoniao,p Global 218 202 0.5 about 100 <50 150 140 
 OECD 23 20 0.5 about 100 <50 15 13 
 EIT 21 23 0.5 about 100 <50 14 16 
 Dev. Nat. 175 159 0.5 about 100 <50 120 110 
Petroleum Global 4,691 4,508 0.032-0.064 about 50 <50 75-150 72-150 
Refiningm,p,q OECD 2,198 2,095 0.032-0.064 about 50 <50 35-70 34-70 
 EIT 384 381 0.032-0.064 about 50 <50 6-12 6-12 
 Dev. Nat. 2,108 2,031 0.032-0.064 about 50 <50 34-70 32-65 
Cementr Global 6,517 5,251 0.65-0.89 about 6 <100 250-350 200-280 
 OECD 600 555 0.65-0.80 about 6 <100 23-32 22-27 
 EIT 362 181 0.73-0.80 about 6 <100 16-17 8-9 
 Dev. Nat. 5,555 4,515 0.74-0.84 about 6 <100 210-300 170-240 
Iron and Steel Global 1,163 1,121 0.32-0.76 about 20 <50 70-180 70-170 
 OECD 370 326 0.32-0.40 about 20 <50 24-30 21-26 
 EIT 162 173 0.40-0.76 about 20 <50 13-25 14-26 
 Dev. Nat. 639 623 0.32-0.76 about 20 <50 33-120 35-120 
                 
Non-CO2 gasesr 
 Global 668     37% <0US$ 380 
 OECD 305     53% <20US$ 160 
 EIT 53     55% <50US$ 29 
 Dev. Nat. 310     57%<100US$ 190 
Other industries, electricity conservations 
                 
 Global         25% <20 1,100-1,300 410-540 
 OECD         25% <50 140-210 65-140 
 EIT         50% <100 340-350 71-85 
 Dev. Nat.         d 640-700 280-320 
Sumt,u,v,w Global           3,000-6,300 2,000-5,100 
 OECD           580-1,300 470-1,100 
 EIT           540-830 250-510 
 Dev. Nat.            2,000-4,300 1,300-3,400 

Notes and sources:

a Price et al., 2006.

b Global total may not equal sum of regions due to independent rounding.

c Kim and Worrell, 2002a.

d Expert judgement.

e Emission intensity based on IAI Life-Cycle Analysis (IAI, 2003), excluding alumina production and aluminium shaping and rolling. Emissions include anode manufacture, anode oxidation and power and fuel used in the primary smelter. PFC emission included under non-CO2 gases.

f Assumes upgrade to current state-of-the art smelter electricity use and 50% penetration of zero emission inert electrode technology by 2030.

g Humphreys and Mahasenan, 2002.

h Hendriks et al., 1999.

i Worrell et al., 1995.

j Ren et al., 2005.

k Basis for estimate: 10 GJ/t NH3 difference between the average plant and the best available technology (Figure 7.2) and operation on natural gas (Section 7.4.3.2).

l Rafiqul et al., 2005.

m Worrell and Galitsky, 2005.

n Farahani et al., 2004.

o The process emissions from ammonia manufacturing (based on natural gas) are about 1.35 tCO2/t NH3 (De Beer, 1998). However, as noted in Section 7.4.3.2, the fertilizer industry uses nearly half of the CO2 it generates for the production of urea and nitrophosphates. The remaining CO2 is suitable for storage. IPCC (2005a) indicates that it should be possible to store essentially all of this remaining CO2 at a cost of <20 US$/t.

p IPCC, 2005a.

q US refineries use about 4% of their energy input to manufacture hydrogen (Worrell and Galitsky, 2005). Refinery hydrogen production is expected to increase as crude slates become heavier and the demand for clean products increases. We assume that in 2030, 5% of refinery energy use worldwide will be used for hydrogen production, and that the byproduct CO2 will be suitable for carbon storage.

r Total potential and application potential derived from IEA, 2006a. Subdivision into regions based in production volumes and carbon intensities. IEA, 2006a does not provide a regional breakdown.

s Extrapolated from US EPA, 2006b. This publication does not use the SRES scenarios as baselines.

t See Section 7.5.1 for details of the estimation procedure.

u Due to gaps in quantitative information (see the text) the column sums in this table do not represent total industry emissions or mitigation potential. Global total may not equal sum of regions due to independent rounding.

v The mitigation potential of the main industries include electricity savings. To prevent double counting with the energy supply sector, these are shown separately in Chapter 11.

w Mitigation potential for other industries includes only reductions for reduced electricity use for motors. Limited data in the literature did not allow estimation of the potential for other mitigation options in these industries.