![]() |
![]() |
Working Group I: The Scientific Basis |
![]() |
|
|
|
Other reports in this collection |
3.5 Observations, Trends and Budgets
3.5.1 Atmospheric Measurements and Global CO2
Budgets
Continuous time-series of highly precise measurements of the atmospheric composition
are of central importance to current understanding of the contemporary carbon
cycle. CO2 has been measured at the Mauna Loa and South Pole stations
since 1957 (Keeling et al., 1995; Figure 3.2a),
and through a global surface sampling network developed in the 1970s that is
becoming progressively more extensive and better inter-calibrated (Conway et
al., 1994; Keeling et al., 1995). Associated measurements of In addition to fossil fuel CO2 emissions, Figure 3.3 shows the observed seasonally corrected growth rate of the atmospheric CO2 concentrations, based on the two longest running atmospheric CO2 recording stations (Keeling and Whorf, 2000). It is evident from this comparison that a part of the anthropogenic CO2 has not remained in the atmosphere; in other words, CO2 has been taken up by the land or the ocean or both. This comparison also shows that there is considerable interannual variability in the total rate of uptake. O2 and CO2 measurements are used here to provide observationally-based budgets of atmospheric CO2 ( 3.1). CO2 budgets are presented here (Table 3.1) for the 1980s (for comparison with previous work; Table 3.3), and for the 1990s. The reported error ranges are based on uncertainties of global fossil fuel emissions, determination of the decadal average changes in the atmospheric CO2 concentration, and O2:N2 ratio; and uncertainties in the assumed O2:CO2 stoichiometric ratios in the combustion of fossil fuels and in photosynthesis and respiration. The error ranges reflect uncertainties of the decadal mean averaged values; they do not reflect interannual variability in annual values, which far exceeds uncertainty in the decadal mean rate of increase, as is further discussed in Section 3.5.2. The salient facts are as follows:
Ocean uptake in the 1980s as estimated from O2 and CO2
measurements thus agrees with the estimates in the SRRF (Schimel et al., 1995)
and the SAR (Schimel et al., 1996) (although these were model-based estimates;
this section presents only observationally-based estimates (Table
3.3)). Considering the uncertainties, the ocean sink in the 1990s was not
significantly different from that in the 1980s. The land-atmosphere flux was
close to zero in the 1980s, as also implied by the SAR budget. The land appears
to have taken up more carbon during the 1990s than during the 1980s. The causes
cannot yet be reliably quantified, but possible mechanisms include a slow down
in deforestation (Section 3.4.2), and climate variability
that resulted in temporarily increased land and/or ocean uptake in the early
1990s (Section 3.5.2). These budgets are consistent with
information from atmospheric
Several alternative approaches to estimating the ocean-atmosphere and land-atmosphere
fluxes of CO2 are summarised in Table 3.4.
Alternative methods for estimating the global ocean-atmosphere flux, based on
surface-water pCO2 measurements and ocean The land-atmosphere flux based on atmospheric measurements represents the balance of a net land-use flux (currently a positive flux, or carbon source, dominated by tropical deforestation) and a residual component which is, by inference, a negative flux or carbon sink. Using the land-atmosphere flux estimates from Table 3.1, assuming that land-use change contributed +1.7 PgC/yr to the atmosphere during the 1980s (Section 3.4.2), then a residual terrestrial flux of -1.9 PgC/yr (i.e., a residual sink of similar magnitude to the total ocean uptake) is required for mass balance. This is the term popularly (and misleadingly) known as the “missing sink”. The central estimate of its magnitude agrees with previous analyses, e.g., in the SAR (if “northern forest regrowth” is combined with “residual terrestrial sink” terms in the SAR budget; Schimel et al., 1996) and the SRLULUCF (Bolin et al., 2000) (Table 3.3). The uncertainty around this number is rather large, however, because it compounds the uncertainty in the atmospheric budget with a major uncertainty about changes in land use. Using an error range corresponding to 90% confidence intervals around the atmospheric estimate of -0.2 PgC/yr (i.e., 1.6s, giving confidence intervals of ±1.1 PgC/yr), and taking the range of estimates for CO2 released due to land-use change during the 1980s from Section 3.4.2, the residual terrestrial sink is estimated to range from -3.8 to +0.3 PgC/yr for the 1980s. Model-based analysis of the components of the residual terrestrial sink (Table 3.4) is discussed in Section 3.6.2.2. |
Other reports in this collection |