2.4 Attribution of climate change
Attribution evaluates whether observed changes are quantitatively consistent with the expected response to external forcings (e.g. changes in solar irradiance or anthropogenic GHGs) and inconsistent with alternative physically plausible explanations. {WGI TS.4, SPM}
Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic GHG concentrations. This is an advance since the TAR’s conclusion that “most of the observed warming over the last 50 years is likely to have been due to the increase in GHG concentrations” (Figure 2.5). {WGI 9.4, SPM}
The observed widespread warming of the atmosphere and ocean, together with ice mass loss, support the conclusion that it is extremely unlikely that global climate change of the past 50 years can be explained without external forcing and very likely that it is not due to known natural causes alone. During this period, the sum of solar and volcanic forcings would likely have produced cooling, not warming. Warming of the climate system has been detected in changes in surface and atmospheric temperatures and in temperatures of the upper several hundred metres of the ocean. The observed pattern of tropospheric warming and stratospheric cooling is very likely due to the combined influences of GHG increases and stratospheric ozone depletion. It is likely that increases in GHG concentrations alone would have caused more warming than observed because volcanic and anthropogenic aerosols have offset some warming that would otherwise have taken place. {WGI 2.9, 3.2, 3.4, 4.8, 5.2, 7.5, 9.4, 9.5, 9.7, TS.4.1, SPM}
It is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent (except Antarctica) (Figure 2.5). {WGI 3.2, 9.4, SPM}
The observed patterns of warming, including greater warming over land than over the ocean, and their changes over time, are simulated only by models that include anthropogenic forcing. No coupled global climate model that has used natural forcing only has reproduced the continental mean warming trends in individual continents (except Antarctica) over the second half of the 20th century. {WGI 3.2, 9.4, TS.4.2, SPM}
Difficulties remain in simulating and attributing observed temperature changes at smaller scales. On these scales, natural climate variability is relatively larger, making it harder to distinguish changes expected due to external forcings. Uncertainties in local forcings, such as those due to aerosols and land-use change, and feedbacks also make it difficult to estimate the contribution of GHG increases to observed small-scale temperature changes. {WGI 8.3, 9.4, SPM}
Advances since the TAR show that discernible human influences extend beyond average temperature to other aspects of climate, including temperature extremes and wind patterns. {WGI 9.4, 9.5, SPM}
Temperatures of the most extreme hot nights, cold nights and cold days are likely to have increased due to anthropogenic forcing. It is more likely than not that anthropogenic forcing has increased the risk of heat waves. Anthropogenic forcing is likely to have contributed to changes in wind patterns, affecting extra-tropical storm tracks and temperature patterns in both hemispheres. However, the observed changes in the Northern Hemisphere circulation are larger than simulated by models in response to 20th century forcing change. {WGI 3.5, 3.6, 9.4, 9.5, 10.3, SPM}
It is very likely that the response to anthropogenic forcing contributed to sea level rise during the latter half of the 20th century. There is some evidence of the impact of human climatic influence on the hydrological cycle, including the observed large-scale patterns of changes in land precipitation over the 20th century. It is more likely than not that human influence has contributed to a global trend towards increases in area affected by drought since the 1970s and the frequency of heavy precipitation events. {WGI 3.3, 5.5, 9.5, TS.4.1, TS.4.3}
Anthropogenic warming over the last three decades has likely had a discernible influence at the global scale on observed changes in many physical and biological systems. {WGII 1.4}
A synthesis of studies strongly demonstrates that the spatial agreement between regions of significant warming across the globe and the locations of significant observed changes in many natural systems consistent with warming is very unlikely to be due solely to natural variability of temperatures or natural variability of the systems. Several modelling studies have linked some specific responses in physical and biological systems to anthropogenic warming, but only a few such studies have been performed. Taken together with evidence of significant anthropogenic warming over the past 50 years averaged over each continent (except Antarctica), it is likely that anthropogenic warming over the last three decades has had a discernible influence on many natural systems. {WGI 3.2, 9.4, SPM; WGII 1.4, SPM}
Limitations and gaps currently prevent more complete attribution of the causes of observed natural system responses to anthropogenic warming. The available analyses are limited in the number of systems, length of records and locations considered. Natural temperature variability is larger at the regional than the global scale, thus affecting identification of changes to external forcing. At the regional scale, other non-climate factors (such as land-use change, pollution and invasive species) are influential. {WGII 1.2, 1.3, 1.4, SPM}