3.2.2 21st century regional changes
There is now higher confidence than in the TAR in projected patterns of warming and other regional-scale features, including changes in wind patterns, precipitation and some aspects of extremes and sea ice. {WGI 8.2, 8.3, 8.4, 8.5, 9.4, 9.5, 10.3, 11.1}
Projected warming in the 21st century shows scenario-independent geographical patterns similar to those observed over the past several decades. Warming is expected to be greatest over land and at most high northern latitudes, and least over the Southern Ocean (near Antarctica) and northern North Atlantic, continuing recent observed trends (Figure 3.2 right panels). {WGI 10.3, SPM}
Snow cover area is projected to contract. Widespread increases in thaw depth are projected over most permafrost regions. Sea ice is projected to shrink in both the Arctic and Antarctic under all SRES scenarios. In some projections, Arctic late-summer sea ice disappears almost entirely by the latter part of the 21st century. {WGI 10.3, 10.6, SPM; WGII 15.3.4}
It is very likely that hot extremes, heat waves and heavy precipitation events will become more frequent. {SYR Table 3.2; WGI 10.3, SPM}
Based on a range of models, it is likely that future tropical cyclones (typhoons and hurricanes) will become more intense, with larger peak wind speeds and more heavy precipitation associated with ongoing increases of tropical sea-surface temperatures. There is less confidence in projections of a global decrease in numbers of tropical cyclones. The apparent increase in the proportion of very intense storms since 1970 in some regions is much larger than simulated by current models for that period. {WGI 3.8, 9.5, 10.3, SPM}
Extra-tropical storm tracks are projected to move poleward, with consequent changes in wind, precipitation and temperature patterns, continuing the broad pattern of observed trends over the last half-century. {WGI 3.6, 10.3, SPM}
Since the TAR there is an improving understanding of projected patterns of precipitation. Increases in the amount of precipitation are very likely in high-latitudes, while decreases are likely in most subtropical land regions (by as much as about 20% in the A1B scenario in 2100, Figure 3.3), continuing observed patterns in recent trends. {WGI 3.3, 8.3, 9.5, 10.3, 11.2-11.9, SPM}