3.2.3 Changes beyond the 21st century
Anthropogenic warming and sea level rise would continue for centuries due to the time scales associated with climate processes and feedbacks, even if GHG concentrations were to be stabilised. {WGI 10.4, 10.5, 10.7, SPM}
If radiative forcing were to be stabilised, keeping all the radiative forcing agents constant at B1 or A1B levels in 2100, model experiments show that a further increase in global average temperature of about 0.5°C would still be expected by 2200. In addition, thermal expansion alone would lead to 0.3 to 0.8m of sea level rise by 2300 (relative to 1980-1999). Thermal expansion would continue for many centuries, due to the time required to transport heat into the deep ocean. {WGI 10.7, SPM}
Contraction of the Greenland ice sheet is projected to continue to contribute to sea level rise after 2100. Current models suggest ice mass losses increase with temperature more rapidly than gains due to increased precipitation and that the surface mass balance becomes negative (net ice loss) at a global average warming (relative to pre-industrial values) in excess of 1.9 to 4.6°C. If such a negative surface mass balance were sustained for millennia, that would lead to virtually complete elimination of the Greenland ice sheet and a resulting contribution to sea level rise of about 7m. The corresponding future temperatures in Greenland (1.9 to 4.6°C global) are comparable to those inferred for the last interglacial period 125,000 years ago, when palaeoclimatic information suggests reductions of polar land ice extent and 4 to 6m of sea level rise. {WGI 6.4, 10.7, SPM}
Dynamical processes related to ice flow – which are not included in current models but suggested by recent observations – could increase the vulnerability of the ice sheets to warming, increasing future sea level rise. Understanding of these processes is limited and there is no consensus on their magnitude. {WGI 4.6, 10.7, SPM}
Current global model studies project that the Antarctic ice sheet will remain too cold for widespread surface melting and gain mass due to increased snowfall. However, net loss of ice mass could occur if dynamical ice discharge dominates the ice sheet mass balance. {WGI 10.7, SPM}
Both past and future anthropogenic CO2 emissions will continue to contribute to warming and sea level rise for more than a millennium, due to the time scales required for the removal of this gas from the atmosphere. {WGI 7.3, 10.3, Figure 7.12, Figure 10.35, SPM}
Estimated long-term (multi-century) warming corresponding to the six AR4 WG III stabilisation categories is shown in Figure 3.4.