5.3 Adaptation and mitigation
There is high confidence that neither adaptation nor mitigation alone can avoid all climate change impacts. Adaptation is necessary both in the short term and longer term to address impacts resulting from the warming that would occur even for the lowest stabilisation scenarios assessed. There are barriers, limits and costs that are not fully understood. Adaptation and mitigation can complement each other and together can significantly reduce the risks of climate change. {WGII 4.ES, TS 5.1, 18.4, 18.6, 20.7, SPM; WGIII 1.2, 2.5, 3.5, 3.6}
Adaptation will be ineffective for some cases such as natural ecosystems (e.g. loss of Arctic sea ice and marine ecosystem viability), the disappearance of mountain glaciers that play vital roles in water storage and supply, or adaptation to sea level rise of several metres. It will be less feasible or very costly in many cases for the projected climate change beyond the next several decades (such as deltaic regions and estuaries). There is high confidence that the ability of many ecosystems to adapt naturally will be exceeded this century. In addition, multiple barriers and constraints to effective adaptation exist in human systems (see Topic 4.2). {SYR 4.2; WGII 17.4.2, 19.2, 19.4.1}
Unmitigated climate change would, in the long term, be likely to exceed the capacity of natural, managed and human systems to adapt. Reliance on adaptation alone could eventually lead to a magnitude of climate change to which effective adaptation is not possible, or will only be available at very high social, environmental and economic costs. {WGII 18.1, SPM}
Efforts to mitigate GHG emissions to reduce the rate and magnitude of climate change need to account for inertia in the climate and socio-economic systems. {SYR 3.2; WGI 10.3, 10.4, 10.7, SPM; WGIII 2.3.4}
After GHG concentrations are stabilised, the rate at which the global average temperature increases is expected to slow within a few decades. Small increases in global average temperature could still be expected for several centuries. Sea level rise from thermal expansion would continue for many centuries at a rate that eventually decreases from that reached before stabilisation, due to ongoing heat uptake by oceans. {SYR 3.2, WGI 10.3, 10.4, 10.7, SPM}
Delayed emission reductions significantly constrain the opportunities to achieve lower stabilisation levels and increase the risk of more severe climate change impacts. Even though benefits of mitigation measures in terms of avoided climate change would take several decades to materialise, mitigation actions begun in the short term would avoid locking in both long-lived carbon intensive infrastructure and development pathways, reduce the rate of climate change and reduce the adaptation needs associated with higher levels of warming. {WGII 18.4, 20.6, 20.7, SPM; WGIII 2.3.4, 3.4, 3.5, 3.6, SPM}